// Copyright (C) 2007 Id Software, Inc. // #include "../precompiled.h" #pragma hdrstop /* ================= idSurface_Patch::SetSize ================= */ void idSurface_Patch::SetSize( int patchWidth, int patchHeight ) { if ( patchWidth < 1 || patchWidth > maxWidth ) { idLib::common->FatalError("idSurface_Patch::SetSize: invalid patchWidth"); } if ( patchHeight < 1 || patchHeight > maxHeight ) { idLib::common->FatalError("idSurface_Patch::SetSize: invalid patchHeight"); } width = patchWidth; height = patchHeight; verts.SetNum( width * height, false ); } /* ============ idSurface_Patch::SetMaxSize ============ */ void idSurface_Patch::SetMaxSize( int patchWidth, int patchHeight ) { maxWidth = patchWidth; maxHeight = patchHeight; } /* ================= idSurface_Patch::PutOnCurve Expects an expanded patch. ================= */ void idSurface_Patch::PutOnCurve( void ) { int i, j; idDrawVert prev, next; assert( expanded == true ); // put all the approximating points on the curve for ( i = 0; i < width; i++ ) { for ( j = 1; j < height; j += 2 ) { LerpVert( verts[j*maxWidth+i], verts[(j+1)*maxWidth+i], prev ); LerpVert( verts[j*maxWidth+i], verts[(j-1)*maxWidth+i], next ); LerpVert( prev, next, verts[j*maxWidth+i] ); } } for ( j = 0; j < height; j++ ) { for ( i = 1; i < width; i += 2 ) { LerpVert( verts[j*maxWidth+i], verts[j*maxWidth+i+1], prev ); LerpVert( verts[j*maxWidth+i], verts[j*maxWidth+i-1], next ); LerpVert( prev, next, verts[j*maxWidth+i] ); } } } /* ================ idSurface_Patch::ProjectPointOntoVector ================ */ void idSurface_Patch::ProjectPointOntoVector( const idVec3 &point, const idVec3 &vStart, const idVec3 &vEnd, idVec3 &vProj ) { idVec3 pVec, vec; pVec = point - vStart; vec = vEnd - vStart; vec.Normalize(); // project onto the directional vector for this segment vProj = vStart + (pVec * vec) * vec; } /* ================ idSurface_Patch::RemoveLinearColumnsRows Expects an expanded patch. ================ */ void idSurface_Patch::RemoveLinearColumnsRows( void ) { int i, j, k; float len, maxLength; idVec3 proj, dir; assert( expanded == true ); for ( j = 1; j < width - 1; j++ ) { maxLength = 0; for ( i = 0; i < height; i++ ) { idSurface_Patch::ProjectPointOntoVector( verts[i*maxWidth + j].xyz, verts[i*maxWidth + j-1].xyz, verts[i*maxWidth + j+1].xyz, proj); dir = verts[i*maxWidth + j].xyz - proj; len = dir.LengthSqr(); if ( len > maxLength ) { maxLength = len; } } if ( maxLength < Square( 0.2f ) ) { width--; for ( i = 0; i < height; i++ ) { for ( k = j; k < width; k++ ) { verts[i*maxWidth + k] = verts[i*maxWidth + k+1]; } } j--; } } for ( j = 1; j < height - 1; j++ ) { maxLength = 0; for ( i = 0; i < width; i++ ) { idSurface_Patch::ProjectPointOntoVector( verts[j*maxWidth + i].xyz, verts[(j-1)*maxWidth + i].xyz, verts[(j+1)*maxWidth + i].xyz, proj); dir = verts[j*maxWidth + i].xyz - proj; len = dir.LengthSqr(); if ( len > maxLength ) { maxLength = len; } } if ( maxLength < Square( 0.2f ) ) { height--; for ( i = 0; i < width; i++ ) { for ( k = j; k < height; k++ ) { verts[k*maxWidth + i] = verts[(k+1)*maxWidth + i]; } } j--; } } } /* ================ idSurface_Patch::ResizeExpanded ================ */ void idSurface_Patch::ResizeExpanded( int newHeight, int newWidth ) { int i, j; assert( expanded == true ); if ( newHeight <= maxHeight && newWidth <= maxWidth ) { return; } if ( newHeight * newWidth > maxHeight * maxWidth ) { verts.SetNum( newHeight * newWidth ); } // space out verts for new height and width for ( j = maxHeight-1; j >= 0; j-- ) { for ( i = maxWidth-1; i >= 0; i-- ) { verts[j*newWidth + i] = verts[j*maxWidth + i]; } } maxHeight = newHeight; maxWidth = newWidth; } /* ================ idSurface_Patch::Collapse ================ */ void idSurface_Patch::Collapse( void ) { int i, j; if ( !expanded ) { idLib::common->FatalError("idSurface_Patch::Collapse: patch not expanded"); } expanded = false; if ( width != maxWidth ) { for ( j = 0; j < height; j++ ) { for ( i = 0; i < width; i++ ) { verts[j*width + i] = verts[j*maxWidth + i]; } } } verts.SetNum( width * height, false ); } /* ================ idSurface_Patch::Expand ================ */ void idSurface_Patch::Expand( void ) { int i, j; if ( expanded ) { idLib::common->FatalError("idSurface_Patch::Expand: patch alread expanded"); } expanded = true; verts.SetNum( maxWidth * maxHeight, false ); if ( width != maxWidth ) { for ( j = height-1; j >= 0; j-- ) { for ( i = width-1; i >= 0; i-- ) { verts[j*maxWidth + i] = verts[j*width + i]; } } } } /* ============ idSurface_Patch::LerpVert ============ */ void idSurface_Patch::LerpVert( const idDrawVert &a, const idDrawVert &b, idDrawVert &out ) const { out.xyz[0] = 0.5f * ( a.xyz[0] + b.xyz[0] ); out.xyz[1] = 0.5f * ( a.xyz[1] + b.xyz[1] ); out.xyz[2] = 0.5f * ( a.xyz[2] + b.xyz[2] ); // FIXME: SD_USE_DRAWVERT_SIZE_32 #if defined( SD_USE_DRAWVERT_SIZE_32 ) idVec3 na = a.GetNormal(); idVec3 nb = b.GetNormal(); idVec3 n; n[0] = 0.5f * ( na[0] + nb[0] ); n[1] = 0.5f * ( na[1] + nb[1] ); n[2] = 0.5f * ( na[2] + nb[2] ); n.Normalize(); out.SetNormal( n ); #else out._normal[0] = 0.5f * ( a._normal[0] + b._normal[0] ); out._normal[1] = 0.5f * ( a._normal[1] + b._normal[1] ); out._normal[2] = 0.5f * ( a._normal[2] + b._normal[2] ); #endif out._st[0] = 0.5f * ( a._st[0] + b._st[0] ); out._st[1] = 0.5f * ( a._st[1] + b._st[1] ); } /* ================= idSurface_Patch::GenerateNormals Handles all the complicated wrapping and degenerate cases Expects a Not expanded patch. ================= */ #define COPLANAR_EPSILON 0.1f void idSurface_Patch::GenerateNormals( void ) { int i, j, k, dist; idVec3 norm; idVec3 sum; int count; idVec3 base; idVec3 delta; int x, y; idVec3 around[8], temp; bool good[8]; bool wrapWidth, wrapHeight; static int neighbors[8][2] = { {0,1}, {1,1}, {1,0}, {1,-1}, {0,-1}, {-1,-1}, {-1,0}, {-1,1} }; assert( expanded == false ); // // if all points are coplanar, set all normals to that plane // idVec3 extent[3]; float offset; extent[0] = verts[width - 1].xyz - verts[0].xyz; extent[1] = verts[(height-1) * width + width - 1].xyz - verts[0].xyz; extent[2] = verts[(height-1) * width].xyz - verts[0].xyz; norm = extent[0].Cross( extent[1] ); if ( norm.LengthSqr() == 0.0f ) { norm = extent[0].Cross( extent[2] ); if ( norm.LengthSqr() == 0.0f ) { norm = extent[1].Cross( extent[2] ); } } // wrapped patched may not get a valid normal here if ( norm.Normalize() != 0.0f ) { offset = verts[0].xyz * norm; for ( i = 1; i < width * height; i++ ) { float d = verts[i].xyz * norm; if ( idMath::Fabs( d - offset ) > COPLANAR_EPSILON ) { break; } } if ( i == width * height ) { // all are coplanar for ( i = 0; i < width * height; i++ ) { verts[i].SetNormal( norm ); } return; } } // check for wrapped edge cases, which should smooth across themselves wrapWidth = false; for ( i = 0; i < height; i++ ) { delta = verts[i * width].xyz - verts[i * width + width-1].xyz; if ( delta.LengthSqr() > Square( 1.0f ) ) { break; } } if ( i == height ) { wrapWidth = true; } wrapHeight = false; for ( i = 0; i < width; i++ ) { delta = verts[i].xyz - verts[(height-1) * width + i].xyz; if ( delta.LengthSqr() > Square( 1.0f ) ) { break; } } if ( i == width ) { wrapHeight = true; } for ( i = 0; i < width; i++ ) { for ( j = 0; j < height; j++ ) { count = 0; base = verts[j * width + i].xyz; for ( k = 0; k < 8; k++ ) { around[k] = vec3_origin; good[k] = false; for ( dist = 1; dist <= 3; dist++ ) { x = i + neighbors[k][0] * dist; y = j + neighbors[k][1] * dist; if ( wrapWidth ) { if ( x < 0 ) { x = width - 1 + x; } else if ( x >= width ) { x = 1 + x - width; } } if ( wrapHeight ) { if ( y < 0 ) { y = height - 1 + y; } else if ( y >= height ) { y = 1 + y - height; } } if ( x < 0 || x >= width || y < 0 || y >= height ) { break; // edge of patch } temp = verts[y * width + x].xyz - base; if ( temp.Normalize() == 0.0f ) { continue; // degenerate edge, get more dist } else { good[k] = true; around[k] = temp; break; // good edge } } } sum = vec3_origin; for ( k = 0; k < 8; k++ ) { if ( !good[k] || !good[(k+1)&7] ) { continue; // didn't get two points } norm = around[(k+1)&7].Cross( around[k] ); if ( norm.Normalize() == 0.0f ) { continue; } sum += norm; count++; } if ( count == 0 ) { //idLib::common->Printf("bad normal\n"); count = 1; } // FIXME: SD_USE_DRAWVERT_SIZE_32 sum.Normalize(); verts[j * width + i].SetNormal( sum ); } } } /* ================= idSurface_Patch::GenerateIndexes ================= */ void idSurface_Patch::GenerateIndexes( void ) { int i, j, v1, v2, v3, v4, index; indexes.SetNum( (width-1) * (height-1) * 2 * 3, false ); index = 0; for ( i = 0; i < width - 1; i++ ) { for ( j = 0; j < height - 1; j++ ) { v1 = j * width + i; v2 = v1 + 1; v3 = v1 + width + 1; v4 = v1 + width; indexes[index++] = v1; indexes[index++] = v3; indexes[index++] = v2; indexes[index++] = v1; indexes[index++] = v4; indexes[index++] = v3; } } GenerateEdgeIndexes(); } /* =============== idSurface_Patch::SampleSinglePatchPoint =============== */ void idSurface_Patch::SampleSinglePatchPoint( const idDrawVert ctrl[3][3], float u, float v, idDrawVert *out ) const { float vCtrl[3][8]; int vPoint; int axis; // find the control points for the v coordinate for ( vPoint = 0; vPoint < 3; vPoint++ ) { for ( axis = 0; axis < 8; axis++ ) { float a, b, c; float qA, qB, qC; if ( axis < 3 ) { a = ctrl[0][vPoint].xyz[axis]; b = ctrl[1][vPoint].xyz[axis]; c = ctrl[2][vPoint].xyz[axis]; } else if ( axis < 6 ) { // FIXME: SD_USE_DRAWVERT_SIZE_32 a = ctrl[0][vPoint].GetNormalIdx( axis-3 ); b = ctrl[1][vPoint].GetNormalIdx( axis-3 ); c = ctrl[2][vPoint].GetNormalIdx( axis-3 ); } else { // FIXME: SD_USE_DRAWVERT_SIZE_32 a = ctrl[0][vPoint]._st[ axis-6 ]; b = ctrl[1][vPoint]._st[ axis-6 ]; c = ctrl[2][vPoint]._st[ axis-6 ]; } qA = a - 2.0f * b + c; qB = 2.0f * b - 2.0f * a; qC = a; vCtrl[vPoint][axis] = qA * u * u + qB * u + qC; } } // interpolate the v value #if defined( SD_USE_DRAWVERT_SIZE_32 ) idVec3 normal; #endif for ( axis = 0; axis < 8; axis++ ) { float a, b, c; float qA, qB, qC; a = vCtrl[0][axis]; b = vCtrl[1][axis]; c = vCtrl[2][axis]; qA = a - 2.0f * b + c; qB = 2.0f * b - 2.0f * a; qC = a; if ( axis < 3 ) { out->xyz[axis] = qA * v * v + qB * v + qC; } else if ( axis < 6 ) { // FIXME: SD_USE_DRAWVERT_SIZE_32 #if defined( SD_USE_DRAWVERT_SIZE_32 ) normal[axis-3] = qA * v * v + qB * v + qC; #else out->_normal[axis-3] = qA * v * v + qB * v + qC; #endif } else { // FIXME: SD_USE_DRAWVERT_SIZE_32 out->_st[axis-6] = qA * v * v + qB * v + qC; } } #if defined( SD_USE_DRAWVERT_SIZE_32 ) normal.Normalize(); out->SetNormal( normal ); #endif } /* =================== idSurface_Patch::SampleSinglePatch =================== */ void idSurface_Patch::SampleSinglePatch( const idDrawVert ctrl[3][3], int baseCol, int baseRow, int width, int horzSub, int vertSub, idDrawVert *outVerts ) const { int i, j; float u, v; horzSub++; vertSub++; for ( i = 0; i < horzSub; i++ ) { for ( j = 0; j < vertSub; j++ ) { u = (float) i / ( horzSub - 1 ); v = (float) j / ( vertSub - 1 ); SampleSinglePatchPoint( ctrl, u, v, &outVerts[((baseRow + j) * width) + i + baseCol] ); } } } /* ================= idSurface_Patch::SubdivideExplicit ================= */ void idSurface_Patch::SubdivideExplicit( int horzSubdivisions, int vertSubdivisions, bool genNormals, bool removeLinear ) { int i, j, k, l; idDrawVert sample[3][3]; int outWidth = ((width - 1) / 2 * horzSubdivisions) + 1; int outHeight = ((height - 1) / 2 * vertSubdivisions) + 1; idDrawVert *dv = new idDrawVert[ outWidth * outHeight ]; // generate normals for the control mesh if ( genNormals ) { GenerateNormals(); } int baseCol = 0; for ( i = 0; i + 2 < width; i += 2 ) { int baseRow = 0; for ( j = 0; j + 2 < height; j += 2 ) { for ( k = 0; k < 3; k++ ) { for ( l = 0; l < 3; l++ ) { sample[k][l] = verts[ ((j + l) * width) + i + k ]; } } SampleSinglePatch( sample, baseCol, baseRow, outWidth, horzSubdivisions, vertSubdivisions, dv ); baseRow += vertSubdivisions; } baseCol += horzSubdivisions; } verts.SetNum( outWidth * outHeight ); for ( i = 0; i < outWidth * outHeight; i++ ) { verts[i] = dv[i]; } delete[] dv; width = maxWidth = outWidth; height = maxHeight = outHeight; expanded = false; if ( removeLinear ) { Expand(); RemoveLinearColumnsRows(); Collapse(); } // normalize all the lerped normals // if ( genNormals ) { #if !defined( SD_USE_DRAWVERT_SIZE_32 ) // pointless on 32bit format given normal is stored as 2 values, therefor when 3rd is calced // it will always be normalised. important that normalised as work is carried out. for ( i = 0; i < width * height; i++ ) { // FIXME: SD_USE_DRAWVERT_SIZE_32 verts[i]._normal.Normalize(); } #endif } GenerateIndexes(); } /* ================= idSurface_Patch::Subdivide ================= */ void idSurface_Patch::Subdivide( float maxHorizontalError, float maxVerticalError, float maxLength, bool genNormals ) { int i, j, k, l; idDrawVert prev, next, mid; idVec3 prevxyz, nextxyz, midxyz; idVec3 delta; float maxHorizontalErrorSqr, maxVerticalErrorSqr, maxLengthSqr; // generate normals for the control mesh if ( genNormals ) { GenerateNormals(); } maxHorizontalErrorSqr = Square( maxHorizontalError ); maxVerticalErrorSqr = Square( maxVerticalError ); maxLengthSqr = Square( maxLength ); Expand(); // horizontal subdivisions for ( j = 0; j + 2 < width; j += 2 ) { // check subdivided midpoints against control points for ( i = 0; i < height; i++ ) { for ( l = 0; l < 3; l++ ) { prevxyz[l] = verts[i*maxWidth + j+1].xyz[l] - verts[i*maxWidth + j ].xyz[l]; nextxyz[l] = verts[i*maxWidth + j+2].xyz[l] - verts[i*maxWidth + j+1].xyz[l]; midxyz[l] = (verts[i*maxWidth + j ].xyz[l] + verts[i*maxWidth + j+1].xyz[l] * 2.0f + verts[i*maxWidth + j+2].xyz[l] ) * 0.25f; } if ( maxLength > 0.0f ) { // if the span length is too long, force a subdivision if ( prevxyz.LengthSqr() > maxLengthSqr || nextxyz.LengthSqr() > maxLengthSqr ) { break; } } // see if this midpoint is off far enough to subdivide delta = verts[i*maxWidth + j+1].xyz - midxyz; if ( delta.LengthSqr() > maxHorizontalErrorSqr ) { break; } } if ( i == height ) { continue; // didn't need subdivision } if ( width + 2 >= maxWidth ) { ResizeExpanded( maxHeight, maxWidth + 4 ); } // insert two columns and replace the peak width += 2; for ( i = 0; i < height; i++ ) { idSurface_Patch::LerpVert( verts[i*maxWidth + j ], verts[i*maxWidth + j+1], prev ); idSurface_Patch::LerpVert( verts[i*maxWidth + j+1], verts[i*maxWidth + j+2], next ); idSurface_Patch::LerpVert( prev, next, mid ); for ( k = width - 1; k > j + 3; k-- ) { verts[i*maxWidth + k] = verts[i*maxWidth + k-2]; } verts[i*maxWidth + j+1] = prev; verts[i*maxWidth + j+2] = mid; verts[i*maxWidth + j+3] = next; } // back up and recheck this set again, it may need more subdivision j -= 2; } // vertical subdivisions for ( j = 0; j + 2 < height; j += 2 ) { // check subdivided midpoints against control points for ( i = 0; i < width; i++ ) { for ( l = 0; l < 3; l++ ) { prevxyz[l] = verts[(j+1)*maxWidth + i].xyz[l] - verts[j*maxWidth + i].xyz[l]; nextxyz[l] = verts[(j+2)*maxWidth + i].xyz[l] - verts[(j+1)*maxWidth + i].xyz[l]; midxyz[l] = (verts[j*maxWidth + i].xyz[l] + verts[(j+1)*maxWidth + i].xyz[l] * 2.0f + verts[(j+2)*maxWidth + i].xyz[l] ) * 0.25f; } if ( maxLength > 0.0f ) { // if the span length is too long, force a subdivision if ( prevxyz.LengthSqr() > maxLengthSqr || nextxyz.LengthSqr() > maxLengthSqr ) { break; } } // see if this midpoint is off far enough to subdivide delta = verts[(j+1)*maxWidth + i].xyz - midxyz; if ( delta.LengthSqr() > maxVerticalErrorSqr ) { break; } } if ( i == width ) { continue; // didn't need subdivision } if ( height + 2 >= maxHeight ) { ResizeExpanded( maxHeight + 4, maxWidth ); } // insert two columns and replace the peak height += 2; for ( i = 0; i < width; i++ ) { LerpVert( verts[j*maxWidth + i], verts[(j+1)*maxWidth + i], prev ); LerpVert( verts[(j+1)*maxWidth + i], verts[(j+2)*maxWidth + i], next ); LerpVert( prev, next, mid ); for ( k = height - 1; k > j + 3; k-- ) { verts[k*maxWidth + i] = verts[(k-2)*maxWidth + i]; } verts[(j+1)*maxWidth + i] = prev; verts[(j+2)*maxWidth + i] = mid; verts[(j+3)*maxWidth + i] = next; } // back up and recheck this set again, it may need more subdivision j -= 2; } PutOnCurve(); RemoveLinearColumnsRows(); Collapse(); // normalize all the lerped normals if ( genNormals ) { #if !defined( SD_USE_DRAWVERT_SIZE_32 ) // pointless on 32bit format given normal is stored as 2 values, therefor when 3rd is calced // it will always be normalised. important that normalised as work is carried out. for ( i = 0; i < width * height; i++ ) { // FIXME: SD_USE_DRAWVERT_SIZE_32 verts[i]._normal.Normalize(); } #endif } GenerateIndexes(); }