// Copyright (C) 2007 Id Software, Inc. // #include "../idlib/precompiled.h" #pragma hdrstop #ifndef USE_LIBC_MALLOC #define USE_LIBC_MALLOC 1 #if USE_LIBC_MALLOC #if defined( _WIN32 ) && ( _MSC_VER >= 1300 ) && defined( _DEBUG ) && !defined( ID_REDIRECT_NEWDELETE ) #include #endif #endif #endif #pragma warning( push ) #pragma warning( disable: 4267 4312 4311 ) #ifndef CRASH_ON_STATIC_ALLOCATION // #define CRASH_ON_STATIC_ALLOCATION #endif #if USE_LIBC_MALLOC // uncomment to turn on all CRT heap debugging... SLOW!! //#define FULL_CRT_DEBUG 1 #endif //=============================================================== // // idHeap // //=============================================================== #define SMALL_HEADER_SIZE ( (int) ( sizeof( byte ) + sizeof( byte ) ) ) #define MEDIUM_HEADER_SIZE ( (int) ( sizeof( mediumHeapEntry_s ) + sizeof( byte ) ) ) #define LARGE_HEADER_SIZE ( (int) ( sizeof( dword * ) + sizeof( byte ) ) ) #define ALIGN_SIZE( bytes ) ( ( (bytes) + ALIGN - 1 ) & ~(ALIGN - 1) ) #define SMALL_ALIGN( bytes ) ( ALIGN_SIZE( (bytes) + SMALL_HEADER_SIZE ) - SMALL_HEADER_SIZE ) #define MEDIUM_SMALLEST_SIZE ( ALIGN_SIZE( 256 ) + ALIGN_SIZE( MEDIUM_HEADER_SIZE ) ) class idHeap { public: idHeap( void ); ~idHeap( void ); // frees all associated data void Init( void ); // initialize void * Allocate( const size_t bytes ); // allocate memory void Free( void *p ); // free memory void * AllocateAligned( const size_t bytes, align_t align ); void FreeAligned( void *p ); size_t Msize( void *p ); // return size of data block void Dump( void ); void AllocDefragBlock( void ); // hack for huge renderbumps private: enum { ALIGN = 8 // memory alignment in bytes }; enum { INVALID_ALLOC = 0xdd, SMALL_ALLOC = 0xaa, // small allocation MEDIUM_ALLOC = 0xbb, // medium allocaction LARGE_ALLOC = 0xcc // large allocaction }; struct page_s { // allocation page void * data; // data pointer to allocated memory dword dataSize; // number of bytes of memory 'data' points to page_s * next; // next free page in same page manager page_s * prev; // used only when allocated dword largestFree; // this data used by the medium-size heap manager void * firstFree; // pointer to first free entry }; struct mediumHeapEntry_s { page_s * page; // pointer to page dword size; // size of block mediumHeapEntry_s * prev; // previous block mediumHeapEntry_s * next; // next block mediumHeapEntry_s * prevFree; // previous free block mediumHeapEntry_s * nextFree; // next free block dword freeBlock; // non-zero if free block }; // variables void * smallFirstFree[256/ALIGN+1]; // small heap allocator lists (for allocs of 1-255 bytes) page_s * smallCurPage; // current page for small allocations dword smallCurPageOffset; // byte offset in current page page_s * smallFirstUsedPage; // first used page of the small heap manager page_s * mediumFirstFreePage; // first partially free page page_s * mediumLastFreePage; // last partially free page page_s * mediumFirstUsedPage; // completely used page page_s * largeFirstUsedPage; // first page used by the large heap manager page_s * swapPage; dword pagesAllocated; // number of pages currently allocated dword pageSize; // size of one alloc page in bytes dword pageRequests; // page requests dword OSAllocs; // number of allocs made to the OS int c_heapAllocRunningCount; void *defragBlock; // a single huge block that can be allocated // at startup, then freed when needed // methods page_s * AllocatePage( dword bytes ); // allocate page from the OS void FreePage( idHeap::page_s *p ); // free an OS allocated page void * SmallAllocate( dword bytes ); // allocate memory (1-255 bytes) from small heap manager void SmallFree( void *ptr ); // free memory allocated by small heap manager void * MediumAllocateFromPage( idHeap::page_s *p, dword sizeNeeded ); void * MediumAllocate( dword bytes ); // allocate memory (256-32768 bytes) from medium heap manager void MediumFree( void *ptr ); // free memory allocated by medium heap manager void * LargeAllocate( dword bytes ); // allocate large block from OS directly void LargeFree( void *ptr ); // free memory allocated by large heap manager void ReleaseSwappedPages( void ); void FreePageReal( idHeap::page_s *p ); }; /* ================ idHeap::Init ================ */ void idHeap::Init ( void ) { OSAllocs = 0; pageRequests = 0; pageSize = 65536 - sizeof( idHeap::page_s ); pagesAllocated = 0; // reset page allocation counter largeFirstUsedPage = NULL; // init large heap manager swapPage = NULL; memset( smallFirstFree, 0, sizeof(smallFirstFree) ); // init small heap manager smallFirstUsedPage = NULL; smallCurPage = AllocatePage( pageSize ); assert( smallCurPage ); smallCurPageOffset = SMALL_ALIGN( 0 ); defragBlock = NULL; mediumFirstFreePage = NULL; // init medium heap manager mediumLastFreePage = NULL; mediumFirstUsedPage = NULL; c_heapAllocRunningCount = 0; #if !defined( SD_SDK_BUILD ) #if USE_LIBC_MALLOC && ( _MSC_VER >= 1300 ) && !defined( _XENON ) && !defined( ID_REDIRECT_NEWDELETE ) #if defined( _DEBUG ) #if FULL_CRT_DEBUG // check on every allocation _CrtSetDbgFlag( _CRTDBG_ALLOC_MEM_DF | _CRTDBG_CHECK_ALWAYS_DF | _CRTDBG_LEAK_CHECK_DF ); #else // always check intermittently in debug builds so these bugs don't go unnoticed! //_CrtSetDbgFlag( _CRTDBG_CHECK_EVERY_1024_DF ); _CrtSetDbgFlag( 0 ); #endif #endif #endif #endif // SD_SDK_BUILD } /* ================ idHeap::idHeap ================ */ idHeap::idHeap( void ) { Init(); } /* ================ idHeap::~idHeap returns all allocated memory back to OS ================ */ idHeap::~idHeap( void ) { idHeap::page_s *p; if ( smallCurPage ) { FreePage( smallCurPage ); // free small-heap current allocation page } p = smallFirstUsedPage; // free small-heap allocated pages while( p ) { idHeap::page_s *next = p->next; FreePage( p ); p= next; } p = largeFirstUsedPage; // free large-heap allocated pages while( p ) { idHeap::page_s *next = p->next; FreePage( p ); p = next; } p = mediumFirstFreePage; // free medium-heap allocated pages while( p ) { idHeap::page_s *next = p->next; FreePage( p ); p = next; } p = mediumFirstUsedPage; // free medium-heap allocated completely used pages while( p ) { idHeap::page_s *next = p->next; FreePage( p ); p = next; } ReleaseSwappedPages(); if ( defragBlock ) { free( defragBlock ); } assert( pagesAllocated == 0 ); } /* ================ idHeap::AllocDefragBlock ================ */ void idHeap::AllocDefragBlock( void ) { int size = 0x40000000; if ( defragBlock ) { return; } while( 1 ) { defragBlock = malloc( size ); if ( defragBlock ) { break; } size >>= 1; } idLib::common->Printf( "Allocated a %i mb defrag block\n", size / (1024*1024) ); } /* ================ idHeap::Allocate ================ */ void *idHeap::Allocate( const size_t bytes ) { if ( !bytes ) { return NULL; } c_heapAllocRunningCount++; #if USE_LIBC_MALLOC return malloc( bytes ); #else if ( !(bytes & ~255) ) { return SmallAllocate( bytes ); } if ( !(bytes & ~32767) ) { return MediumAllocate( bytes ); } return LargeAllocate( bytes ); #endif } /* ================ idHeap::Free ================ */ void idHeap::Free( void *p ) { if ( !p ) { return; } c_heapAllocRunningCount--; #if USE_LIBC_MALLOC free( p ); #else switch( ((byte *)(p))[-1] ) { case SMALL_ALLOC: { SmallFree( p ); break; } case MEDIUM_ALLOC: { MediumFree( p ); break; } case LARGE_ALLOC: { LargeFree( p ); break; } default: { idLib::common->FatalError( "idHeap::Free: invalid memory block (%s)", idLib::sys->GetCallStackCurStr( 4 ) ); break; } } #endif } /* ================ idHeap::AllocateAligned ================ */ void *idHeap::AllocateAligned( const size_t bytes, const align_t align ) { byte *ptr, *alignedPtr; if ( align != ALIGN_NONE && align != ALIGN_4 && align != ALIGN_8 && align != ALIGN_16 && align != ALIGN_32 && align != ALIGN_64 && align != ALIGN_128 ) { idLib::common->FatalError( "idHeap::AllocateAligned: bad alignment %d", align ); } ptr = (byte *) malloc( bytes + align + sizeof( UINT_PTR ) ); if ( !ptr ) { if ( defragBlock ) { idLib::common->Printf( "Freeing defragBlock on alloc of %li.\n", bytes ); free( defragBlock ); defragBlock = NULL; ptr = (byte *) malloc( bytes + align + sizeof( UINT_PTR ) ); AllocDefragBlock(); } if ( !ptr ) { #if defined( _WIN32 ) && !defined( _XENON ) MEMORYSTATUSEX statex; statex.dwLength = sizeof( statex ); GlobalMemoryStatusEx( &statex ); common->Printf( "\nTotal Physical Memory: %I64d bytes\nAvailable Physical Memory: %I64d bytes\nMemory Utilization: %d %%\n\n", statex.ullTotalPhys, statex.ullAvailPhys, (int)statex.dwMemoryLoad ); #endif #if defined( SD_PUBLIC_BUILD ) *( int* )( 0x00000000 ) = 7; #endif // SD_PUBLIC_BUILD common->FatalError( "idHeap::AllocateAligned request for %li bytes aligned at %i failed", bytes, align ); } } if ( align == ALIGN_NONE ) { alignedPtr = ptr + sizeof( UINT_PTR ); } else { alignedPtr = (byte *) ( ( (UINT_PTR)ptr + ( align - 1 ) ) & ~( align - 1 ) ); if ( alignedPtr - ptr < sizeof( UINT_PTR ) ) { alignedPtr += align; } } *((UINT_PTR *)( (UINT_PTR)alignedPtr - sizeof( UINT_PTR ) )) = (UINT_PTR) ptr; return (void *) alignedPtr; } /* ================ idHeap::Free ================ */ void idHeap::FreeAligned( void *p ) { free( (void *) *((int *) (( (byte *) p ) - sizeof( uintptr_t ))) ); } /* ================ idHeap::Msize returns size of allocated memory block p = pointer to memory block Notes: size may not be the same as the size in the original allocation request (due to block alignment reasons). ================ */ size_t idHeap::Msize( void *p ) { if ( !p ) { return 0; } #if USE_LIBC_MALLOC #ifdef _WIN32 return _msize( p ); #else return 0; #endif #else switch( ((byte *)(p))[-1] ) { case SMALL_ALLOC: { return SMALL_ALIGN( ((byte *)(p))[-SMALL_HEADER_SIZE] * ALIGN ); } case MEDIUM_ALLOC: { return ((mediumHeapEntry_s *)(((byte *)(p)) - ALIGN_SIZE( MEDIUM_HEADER_SIZE )))->size - ALIGN_SIZE( MEDIUM_HEADER_SIZE ); } case LARGE_ALLOC: { return ((idHeap::page_s*)(*((dword *)(((byte *)p) - ALIGN_SIZE( LARGE_HEADER_SIZE )))))->dataSize - ALIGN_SIZE( LARGE_HEADER_SIZE ); } default: { idLib::common->FatalError( "idHeap::Msize: invalid memory block (%s)", idLib::sys->GetCallStackCurStr( 4 ) ); return 0; } } #endif } /* ================ idHeap::Dump dump contents of the heap ================ */ void idHeap::Dump( void ) { idHeap::page_s *pg; for ( pg = smallFirstUsedPage; pg; pg = pg->next ) { idLib::common->Printf( "%p bytes %-8d (in use by small heap)\n", pg->data, pg->dataSize); } if ( smallCurPage ) { pg = smallCurPage; idLib::common->Printf( "%p bytes %-8d (small heap active page)\n", pg->data, pg->dataSize ); } for ( pg = mediumFirstUsedPage; pg; pg = pg->next ) { idLib::common->Printf( "%p bytes %-8d (completely used by medium heap)\n", pg->data, pg->dataSize ); } for ( pg = mediumFirstFreePage; pg; pg = pg->next ) { idLib::common->Printf( "%p bytes %-8d (partially used by medium heap)\n", pg->data, pg->dataSize ); } for ( pg = largeFirstUsedPage; pg; pg = pg->next ) { idLib::common->Printf( "%p bytes %-8d (fully used by large heap)\n", pg->data, pg->dataSize ); } idLib::common->Printf( "pages allocated : %d\n", pagesAllocated ); } /* ================ idHeap::FreePageReal frees page to be used by the OS p = page to free ================ */ void idHeap::FreePageReal( idHeap::page_s *p ) { assert( p ); ::free( p ); } /* ================ idHeap::ReleaseSwappedPages releases the swap page to OS ================ */ void idHeap::ReleaseSwappedPages ( void ) { if ( swapPage ) { FreePageReal( swapPage ); } swapPage = NULL; } /* ================ idHeap::AllocatePage allocates memory from the OS bytes = page size in bytes returns pointer to page ================ */ idHeap::page_s* idHeap::AllocatePage( dword bytes ) { idHeap::page_s* p; pageRequests++; if ( swapPage && swapPage->dataSize == bytes ) { // if we've got a swap page somewhere p = swapPage; swapPage = NULL; } else { dword size; size = bytes + sizeof(idHeap::page_s); p = (idHeap::page_s *) ::malloc( size + ALIGN - 1 ); if ( !p ) { if ( defragBlock ) { idLib::common->Printf( "Freeing defragBlock on alloc of %i.\n", size + ALIGN - 1 ); free( defragBlock ); defragBlock = NULL; p = (idHeap::page_s *) ::malloc( size + ALIGN - 1 ); AllocDefragBlock(); } if ( !p ) { #if defined( _WIN32 ) && !defined( _XENON ) MEMORYSTATUSEX statex; statex.dwLength = sizeof( statex ); GlobalMemoryStatusEx( &statex ); common->Printf( "\nTotal Physical Memory: %I64d bytes\nAvailable Physical Memory: %I64d bytes\nMemory Utilization: %i %%\n\n", statex.ullTotalPhys, statex.ullAvailPhys, (int)statex.dwMemoryLoad ); #endif common->FatalError( "idHeap::AllocatePage request for %i bytes failed", bytes ); } } p->data = (void *) ALIGN_SIZE( (UINT_PTR)((byte *)(p)) + sizeof( idHeap::page_s ) ); p->dataSize = size - sizeof(idHeap::page_s); p->firstFree = NULL; p->largestFree = 0; OSAllocs++; } p->prev = NULL; p->next = NULL; pagesAllocated++; return p; } /* ================ idHeap::FreePage frees a page back to the operating system p = pointer to page ================ */ void idHeap::FreePage( idHeap::page_s *p ) { assert( p ); if ( p->dataSize == pageSize && !swapPage ) { // add to swap list? swapPage = p; } else { FreePageReal( p ); } pagesAllocated--; } //=============================================================== // // small heap code // //=============================================================== /* ================ idHeap::SmallAllocate allocate memory (1-255 bytes) from the small heap manager bytes = number of bytes to allocate returns pointer to allocated memory ================ */ void *idHeap::SmallAllocate( dword bytes ) { // we need the at least sizeof( dword ) bytes for the free list if ( bytes < sizeof( dword ) ) { bytes = sizeof( dword ); } // increase the number of bytes if necessary to make sure the next small allocation is aligned bytes = SMALL_ALIGN( bytes ); byte *smallBlock = (byte *)(smallFirstFree[bytes / ALIGN]); if ( smallBlock ) { dword *link = (dword *)(smallBlock + SMALL_HEADER_SIZE); smallBlock[1] = SMALL_ALLOC; // allocation identifier smallFirstFree[bytes / ALIGN] = (void *)(*link); return (void *)(link); } dword bytesLeft = (long)(pageSize) - smallCurPageOffset; // if we need to allocate a new page if ( bytes >= bytesLeft ) { smallCurPage->next = smallFirstUsedPage; smallFirstUsedPage = smallCurPage; smallCurPage = AllocatePage( pageSize ); if ( !smallCurPage ) { return NULL; } // make sure the first allocation is aligned smallCurPageOffset = SMALL_ALIGN( 0 ); } smallBlock = ((byte *)smallCurPage->data) + smallCurPageOffset; smallBlock[0] = (byte)(bytes / ALIGN); // write # of bytes/ALIGN smallBlock[1] = SMALL_ALLOC; // allocation identifier smallCurPageOffset += bytes + SMALL_HEADER_SIZE; // increase the offset on the current page return ( smallBlock + SMALL_HEADER_SIZE ); // skip the first two bytes } /* ================ idHeap::SmallFree frees a block of memory allocated by SmallAllocate() call data = pointer to block of memory ================ */ void idHeap::SmallFree( void *ptr ) { ((byte *)(ptr))[-1] = INVALID_ALLOC; byte *d = ( (byte *)ptr ) - SMALL_HEADER_SIZE; dword *dt = (dword *)ptr; // index into the table with free small memory blocks dword ix = *d; // check if the index is correct if ( ix > (256 / ALIGN) ) { idLib::common->FatalError( "SmallFree: invalid memory block" ); } *dt = (dword)smallFirstFree[ix]; // write next index smallFirstFree[ix] = (void *)d; // link } //=============================================================== // // medium heap code // // Medium-heap allocated pages not returned to OS until heap destructor // called (re-used instead on subsequent medium-size malloc requests). // //=============================================================== /* ================ idHeap::MediumAllocateFromPage performs allocation using the medium heap manager from a given page p = page sizeNeeded = # of bytes needed returns pointer to allocated memory ================ */ void *idHeap::MediumAllocateFromPage( idHeap::page_s *p, dword sizeNeeded ) { mediumHeapEntry_s *best,*nw = NULL; byte *ret; best = (mediumHeapEntry_s *)(p->firstFree); // first block is largest assert( best ); assert( best->size == p->largestFree ); assert( best->size >= sizeNeeded ); // if we can allocate another block from this page after allocating sizeNeeded bytes if ( best->size >= (dword)( sizeNeeded + MEDIUM_SMALLEST_SIZE ) ) { nw = (mediumHeapEntry_s *)((byte *)best + best->size - sizeNeeded); nw->page = p; nw->prev = best; nw->next = best->next; nw->prevFree = NULL; nw->nextFree = NULL; nw->size = sizeNeeded; nw->freeBlock = 0; // used block if ( best->next ) { best->next->prev = nw; } best->next = nw; best->size -= sizeNeeded; p->largestFree = best->size; } else { if ( best->prevFree ) { best->prevFree->nextFree = best->nextFree; } else { p->firstFree = (void *)best->nextFree; } if ( best->nextFree ) { best->nextFree->prevFree = best->prevFree; } best->prevFree = NULL; best->nextFree = NULL; best->freeBlock = 0; // used block nw = best; p->largestFree = 0; } ret = (byte *)(nw) + ALIGN_SIZE( MEDIUM_HEADER_SIZE ); ret[-1] = MEDIUM_ALLOC; // allocation identifier return (void *)(ret); } /* ================ idHeap::MediumAllocate allocate memory (256-32768 bytes) from medium heap manager bytes = number of bytes to allocate returns pointer to allocated memory ================ */ void *idHeap::MediumAllocate( dword bytes ) { idHeap::page_s *p; void *data; dword sizeNeeded = ALIGN_SIZE( bytes ) + ALIGN_SIZE( MEDIUM_HEADER_SIZE ); // find first page with enough space for ( p = mediumFirstFreePage; p; p = p->next ) { if ( p->largestFree >= sizeNeeded ) { break; } assert( p->next != mediumFirstFreePage ); // this should never happen } if ( !p ) { // need to allocate new page? p = AllocatePage( pageSize ); if ( !p ) { return NULL; // malloc failure! } p->prev = NULL; p->next = mediumFirstFreePage; if (p->next) { p->next->prev = p; } else { mediumLastFreePage = p; } mediumFirstFreePage = p; p->largestFree = pageSize; p->firstFree = (void *)p->data; mediumHeapEntry_s *e; e = (mediumHeapEntry_s *)(p->firstFree); e->page = p; // make sure ((byte *)e + e->size) is aligned e->size = pageSize & ~(ALIGN - 1); e->prev = NULL; e->next = NULL; e->prevFree = NULL; e->nextFree = NULL; e->freeBlock = 1; } data = MediumAllocateFromPage( p, sizeNeeded ); // allocate data from page // if the page can no longer serve memory, move it away from free list // (so that it won't slow down the later alloc queries) // this modification speeds up the pageWalk from O(N) to O(sqrt(N)) // a call to free may swap this page back to the free list if ( p->largestFree < MEDIUM_SMALLEST_SIZE ) { if ( p == mediumLastFreePage ) { mediumLastFreePage = p->prev; } if ( p == mediumFirstFreePage ) { mediumFirstFreePage = p->next; } if ( p->prev ) { p->prev->next = p->next; } if ( p->next ) { p->next->prev = p->prev; } // link to "completely used" list p->prev = NULL; p->next = mediumFirstUsedPage; if ( p->next ) { p->next->prev = p; } mediumFirstUsedPage = p; return data; } // re-order linked list (so that next malloc query starts from current // matching block) -- this speeds up both the page walks and block walks if ( p != mediumFirstFreePage ) { assert( mediumLastFreePage ); assert( mediumFirstFreePage ); assert( p->prev ); mediumLastFreePage->next = mediumFirstFreePage; mediumFirstFreePage->prev = mediumLastFreePage; mediumLastFreePage = p->prev; p->prev->next = NULL; p->prev = NULL; mediumFirstFreePage = p; } return data; } /* ================ idHeap::MediumFree frees a block allocated by the medium heap manager ptr = pointer to data block ================ */ void idHeap::MediumFree( void *ptr ) { ((byte *)(ptr))[-1] = INVALID_ALLOC; mediumHeapEntry_s *e = (mediumHeapEntry_s *)((byte *)ptr - ALIGN_SIZE( MEDIUM_HEADER_SIZE )); idHeap::page_s *p = e->page; bool isInFreeList; isInFreeList = p->largestFree >= MEDIUM_SMALLEST_SIZE; assert( e->size ); assert( e->freeBlock == 0 ); mediumHeapEntry_s *prev = e->prev; // if the previous block is free we can merge if ( prev && prev->freeBlock ) { prev->size += e->size; prev->next = e->next; if ( e->next ) { e->next->prev = prev; } e = prev; } else { e->prevFree = NULL; // link to beginning of free list e->nextFree = (mediumHeapEntry_s *)p->firstFree; if ( e->nextFree ) { assert( !(e->nextFree->prevFree) ); e->nextFree->prevFree = e; } p->firstFree = e; p->largestFree = e->size; e->freeBlock = 1; // mark block as free } mediumHeapEntry_s *next = e->next; // if the next block is free we can merge if ( next && next->freeBlock ) { e->size += next->size; e->next = next->next; if ( next->next ) { next->next->prev = e; } if ( next->prevFree ) { next->prevFree->nextFree = next->nextFree; } else { assert( next == p->firstFree ); p->firstFree = next->nextFree; } if ( next->nextFree ) { next->nextFree->prevFree = next->prevFree; } } if ( p->firstFree ) { p->largestFree = ((mediumHeapEntry_s *)(p->firstFree))->size; } else { p->largestFree = 0; } // did e become the largest block of the page ? if ( e->size > p->largestFree ) { assert( e != p->firstFree ); p->largestFree = e->size; if ( e->prevFree ) { e->prevFree->nextFree = e->nextFree; } if ( e->nextFree ) { e->nextFree->prevFree = e->prevFree; } e->nextFree = (mediumHeapEntry_s *)p->firstFree; e->prevFree = NULL; if ( e->nextFree ) { e->nextFree->prevFree = e; } p->firstFree = e; } // if page wasn't in free list (because it was near-full), move it back there if ( !isInFreeList ) { // remove from "completely used" list if ( p->prev ) { p->prev->next = p->next; } if ( p->next ) { p->next->prev = p->prev; } if ( p == mediumFirstUsedPage ) { mediumFirstUsedPage = p->next; } p->next = NULL; p->prev = mediumLastFreePage; if ( mediumLastFreePage ) { mediumLastFreePage->next = p; } mediumLastFreePage = p; if ( !mediumFirstFreePage ) { mediumFirstFreePage = p; } } } //=============================================================== // // large heap code // //=============================================================== /* ================ idHeap::LargeAllocate allocates a block of memory from the operating system bytes = number of bytes to allocate returns pointer to allocated memory ================ */ void *idHeap::LargeAllocate( dword bytes ) { idHeap::page_s *p = AllocatePage( bytes + ALIGN_SIZE( LARGE_HEADER_SIZE ) ); assert( p ); if ( !p ) { return NULL; } byte * d = (byte*)(p->data) + ALIGN_SIZE( LARGE_HEADER_SIZE ); dword * dw = (dword*)(d - ALIGN_SIZE( LARGE_HEADER_SIZE )); dw[0] = (dword)p; // write pointer back to page table d[-1] = LARGE_ALLOC; // allocation identifier // link to 'large used page list' p->prev = NULL; p->next = largeFirstUsedPage; if ( p->next ) { p->next->prev = p; } largeFirstUsedPage = p; return (void *)(d); } /* ================ idHeap::LargeFree frees a block of memory allocated by the 'large memory allocator' p = pointer to allocated memory ================ */ void idHeap::LargeFree( void *ptr) { idHeap::page_s* pg; ((byte *)(ptr))[-1] = INVALID_ALLOC; // get page pointer pg = (idHeap::page_s *)(*((dword *)(((byte *)ptr) - ALIGN_SIZE( LARGE_HEADER_SIZE )))); // unlink from doubly linked list if ( pg->prev ) { pg->prev->next = pg->next; } if ( pg->next ) { pg->next->prev = pg->prev; } if ( pg == largeFirstUsedPage ) { largeFirstUsedPage = pg->next; } pg->next = pg->prev = NULL; FreePage(pg); } //=============================================================== // // memory allocation all in one place // //=============================================================== #undef new static idHeap * mem_heap = NULL; static memoryStats_t mem_total_allocs = { 0, 0x0fffffff, 0, 0 }; static memoryStats_t mem_frame_allocs; static memoryStats_t mem_frame_frees; /* ================== Mem_ClearFrameStats ================== */ void Mem_ClearFrameStats( void ) { mem_frame_allocs.num = mem_frame_frees.num = 0; mem_frame_allocs.minSize = mem_frame_frees.minSize = 0x0fffffff; mem_frame_allocs.maxSize = mem_frame_frees.maxSize = 0; mem_frame_allocs.totalSize = mem_frame_frees.totalSize = 0; } /* ================== Mem_GetFrameStats ================== */ void Mem_GetFrameStats( memoryStats_t &allocs, memoryStats_t &frees ) { allocs = mem_frame_allocs; frees = mem_frame_frees; } /* ================== Mem_GetStats ================== */ void Mem_GetStats( memoryStats_t &stats ) { stats = mem_total_allocs; } /* ================== Mem_UpdateStats ================== */ void Mem_UpdateStats( memoryStats_t &stats, size_t size ) { stats.num++; if ( size < stats.minSize ) { stats.minSize = size; } if ( size > stats.maxSize ) { stats.maxSize = size; } stats.totalSize += size; } /* ================== Mem_UpdateAllocStats ================== */ void Mem_UpdateAllocStats( size_t size ) { Mem_UpdateStats( mem_frame_allocs, size ); Mem_UpdateStats( mem_total_allocs, size ); } /* ================== Mem_UpdateFreeStats ================== */ void Mem_UpdateFreeStats( size_t size ) { Mem_UpdateStats( mem_frame_frees, size ); mem_total_allocs.num--; mem_total_allocs.totalSize -= size; } /* ================== Mem_Size ================== */ size_t Mem_Size( void *ptr ) { return mem_heap->Msize(ptr); } #ifndef ID_DEBUG_MEMORY /* ================== Mem_Alloc ================== */ void *Mem_Alloc( const size_t size ) { if ( !size ) { return NULL; } if ( !mem_heap ) { #ifdef CRASH_ON_STATIC_ALLOCATION *((int*)0x0) = 1; #endif return malloc( size ); } void *mem = mem_heap->Allocate( size ); Mem_UpdateAllocStats( mem_heap->Msize( mem ) ); if ( !mem ) { #if defined( _WIN32 ) && !defined( _XENON ) MEMORYSTATUSEX statex; statex.dwLength = sizeof( statex ); GlobalMemoryStatusEx( &statex ); common->Printf( "\nTotal Physical Memory: %I64d bytes\nAvailable Physical Memory: %I64d bytes\nMemory Utilization: %i %%\n\n", statex.ullTotalPhys, statex.ullAvailPhys, (int)statex.dwMemoryLoad ); #endif common->FatalError( "Mem_Alloc request for %li bytes failed", size ); } return mem; } /* ================== Mem_Free ================== */ void Mem_Free( void *ptr ) { if ( ptr == NULL ) { return; } #if 0 // used to catch memory allocated with Mem_AllocAligned UINT_PTR checkPtr = *((UINT_PTR *)( (UINT_PTR)ptr - sizeof( UINT_PTR ) )); if ( checkPtr > (UINT_PTR)ptr - 132 && checkPtr < (UINT_PTR)ptr ) { assert( !"possible aligned memory deallocation" ); } #endif if ( !mem_heap ) { #ifdef CRASH_ON_STATIC_ALLOCATION *((int*)0x0) = 1; #endif free( ptr ); return; } Mem_UpdateFreeStats( mem_heap->Msize( ptr ) ); mem_heap->Free( ptr ); } /* ================== Mem_AllocAligned ================== */ void *Mem_AllocAligned( const size_t size, const align_t align ) { #if !defined(_XENON) // DirectX relies on being able to allocate 0 bytes and get back a legit pointer if ( !size ) { return NULL; } #endif if ( !mem_heap ) { #ifdef CRASH_ON_STATIC_ALLOCATION *((int*)0x0) = 1; #endif return malloc( size ); } void *mem = mem_heap->AllocateAligned( size, align ); // make sure the memory is aligned assert( align == ALIGN_NONE || ( ((int)mem) & (align-1)) == 0 ); return mem; } /* ================== Mem_FreeAligned ================== */ void Mem_FreeAligned( void *ptr ) { if ( !ptr ) { return; } if ( !mem_heap ) { #ifdef CRASH_ON_STATIC_ALLOCATION *((int*)0x0) = 1; #endif free( ptr ); return; } mem_heap->FreeAligned( ptr ); } /* ================== Mem_ClearedAlloc ================== */ void *Mem_ClearedAlloc( const size_t size ) { void *mem = Mem_Alloc( size ); SIMDProcessor->Memset( mem, 0, size ); return mem; } /* =============== Mem_ClearedAllocAligned =============== */ void *Mem_ClearedAllocAligned( const size_t size, const align_t align ) { void *mem = Mem_AllocAligned( size, align ); SIMDProcessor->Memset( mem, 0, size ); return mem; } /* ================== Mem_ClearedAlloc ================== */ void Mem_AllocDefragBlock( void ) { mem_heap->AllocDefragBlock(); } /* ================== Mem_CopyString ================== */ char *Mem_CopyString( const char *in ) { char *out; out = (char *)Mem_Alloc( idStr::Length( in ) + 1 ); strcpy( out, in ); return out; } /* ================== Mem_Init ================== */ void Mem_Init( void ) { mem_heap = new idHeap; Mem_ClearFrameStats(); } /* ================== Mem_Shutdown ================== */ void Mem_Shutdown( void ) { idHeap *m = mem_heap; mem_heap = NULL; delete m; } /* ================== Mem_EnableLeakTest ================== */ void Mem_EnableLeakTest( const char *name ) { } #else /* !ID_DEBUG_MEMORY */ #undef Mem_Alloc #undef Mem_ClearedAlloc #undef Mem_Free #undef Mem_CopyString #undef Mem_AllocAligned #undef Mem_FreeAligned #undef Mem_ClearedAllocAligned #define MAX_CALLSTACK_DEPTH 16 #define DEBUG_MEMORY_INFO_HASH_SIZE 1024 struct debugMemoryInfo_t { const char * fileName; int lineNumber; int size; address_t callStack[MAX_CALLSTACK_DEPTH]; debugMemoryInfo_t * next; }; // size of this struct must be a multiple of 8 bytes struct debugMemory_t { debugMemoryInfo_t * info; short frameNumber; short offset; debugMemory_t * prev; debugMemory_t * next; }; assert_sizeof_8_byte_multiple( debugMemory_t ); static debugMemory_t * mem_debugMemory = NULL; static debugMemoryInfo_t * mem_debugMemoryInfo[DEBUG_MEMORY_INFO_HASH_SIZE]; static char mem_leakName[256] = ""; /* ================== Mem_CleanupFileName ================== */ debugMemoryInfo_t *Mem_FindDebugMemoryInfo( const debugMemoryInfo_t &info ) { int i, j, hash; debugMemoryInfo_t *ip; hash = idStr::Hash( info.fileName ); hash ^= info.lineNumber ^ info.size; for ( i = 0; i < MAX_CALLSTACK_DEPTH; i++ ) { hash ^= info.callStack[i] << i; } hash &= ( DEBUG_MEMORY_INFO_HASH_SIZE - 1 ); for ( ip = mem_debugMemoryInfo[hash]; ip != NULL; ip = ip->next ) { if ( ip->lineNumber != info.lineNumber ) { continue; } if ( ip->size != info.size ) { continue; } for ( j = 0; j < MAX_CALLSTACK_DEPTH; j++ ) { if ( ip->callStack[j] != info.callStack[j] ) { break; } } if ( j < MAX_CALLSTACK_DEPTH ) { continue; } if ( idStr::Cmp( ip->fileName, info.fileName ) != 0 ) { continue; } return ip; } ip = (debugMemoryInfo_t *) malloc( sizeof( debugMemoryInfo_t ) ); ip->fileName = info.fileName; ip->lineNumber = info.lineNumber; ip->size = info.size; memcpy( ip->callStack, info.callStack, sizeof( ip->callStack ) ); ip->next = mem_debugMemoryInfo[hash]; mem_debugMemoryInfo[hash] = ip; return ip; } /* ================== Mem_CleanupFileName ================== */ const char *Mem_CleanupFileName( const char *fileName ) { int i1, i2; idStr newFileName; static char newFileNames[4][MAX_STRING_CHARS]; static int index; newFileName = fileName; newFileName.BackSlashesToSlashes(); i1 = newFileName.Find( "quack", false ); if ( i1 >= 0 ) { i1 = newFileName.Find( "/", false, i1 ); newFileName = newFileName.Right( newFileName.Length() - ( i1 + 1 ) ); } while( 1 ) { i1 = newFileName.Find( "/../" ); if ( i1 <= 0 ) { break; } i2 = i1 - 1; while( i2 > 1 && newFileName[i2-1] != '/' ) { i2--; } newFileName = newFileName.Left( i2 - 1 ) + newFileName.Right( newFileName.Length() - ( i1 + 4 ) ); } newFileName.StripLeading( "./" ); index = ( index + 1 ) & 3; strncpy( newFileNames[index], newFileName.c_str(), sizeof( newFileNames[index] ) ); return newFileNames[index]; } /* ================== Mem_GetNonIdLibSourceFile ================== */ const char *Mem_GetNonIdLibSourceFile( address_t callStack[MAX_CALLSTACK_DEPTH] ) { int i; idStr sourceFile; static char staticSourceFile[MAX_STRING_CHARS]; for ( i = 0; i < MAX_CALLSTACK_DEPTH && callStack[i] != 0; i++ ) { sourceFile = idLib::sys->GetFunctionSourceFile( callStack[i] ); if ( sourceFile.Length() == 0 ) { continue; } // skip source files from idlib/ if ( sourceFile.Find( "idlib", false ) != idStr::INVALID_POSITION ) { continue; } // skip .obj files that may show up for functions without a line number if ( sourceFile.Find( ".obj", false ) != idStr::INVALID_POSITION ) { continue; } int index = sourceFile.Find( "quack", false ); if ( index != idStr::INVALID_POSITION ) { idStr::Copynz( staticSourceFile, sourceFile.c_str() + index + 6, sizeof( staticSourceFile ) ); } else { idStr::Copynz( staticSourceFile, sourceFile.c_str(), sizeof( staticSourceFile ) ); } return staticSourceFile; } return ""; } /* ================== Mem_Dump ================== */ void Mem_Dump( const char *fileName ) { int i, numBlocks, totalSize; char dump[32], *ptr; debugMemory_t *b; idStr module, funcName; FILE *f; f = fopen( fileName, "wb" ); if ( !f ) { return; } totalSize = 0; for ( numBlocks = 0, b = mem_debugMemory; b; b = b->next, numBlocks++ ) { ptr = ((char *) b) + sizeof(debugMemory_t); totalSize += b->info->size; for ( i = 0; i < (sizeof(dump)-1) && i < b->info->size; i++) { if ( ptr[i] >= 32 && ptr[i] < 127 ) { dump[i] = ptr[i]; } else { dump[i] = '_'; } } dump[i] = '\0'; if ( ( b->info->size >> 10 ) != 0 ) { fprintf( f, "size: %6d kB: %s, line: %d [%s], call stack: %s\r\n", ( b->info->size >> 10 ), Mem_CleanupFileName( b->info->fileName ), b->info->lineNumber, dump, idLib::sys->GetCallStackStr( b->info->callStack, MAX_CALLSTACK_DEPTH ) ); } else { fprintf( f, "size: %7d B: %s, line: %d [%s], call stack: %s\r\n", b->info->size, Mem_CleanupFileName( b->info->fileName ), b->info->lineNumber, dump, idLib::sys->GetCallStackStr( b->info->callStack, MAX_CALLSTACK_DEPTH ) ); } } idLib::sys->ShutdownSymbols(); fprintf( f, "%8d total memory blocks allocated\r\n", numBlocks ); fprintf( f, "%8d kB memory allocated\r\n", ( totalSize >> 10 ) ); fclose( f ); } /* ================== Mem_DumpCompressed ================== */ struct allocInfo_t { char * fileName; int lineNumber; int size; int numAllocs; address_t callStack[MAX_CALLSTACK_DEPTH]; allocInfo_t * next; }; void Mem_DumpCompressed( const char *fileName, memoryGroupType_t memGroup, memorySortType_t memSort, int sortCallStack, int numFrames, bool xlFriendly ) { int numBlocks, totalSize, r, j, lineNumber; debugMemory_t *b; allocInfo_t *a, *nexta, *allocInfo = NULL, *sortedAllocInfo = NULL, *prevSorted, *nextSorted; idStr module, funcName, path; FILE *f; // build list with memory allocations totalSize = 0; numBlocks = 0; for ( b = mem_debugMemory; b; b = b->next ) { if ( numFrames && b->frameNumber < idLib::frameNumber - numFrames ) { continue; } numBlocks++; totalSize += b->info->size; path = Mem_GetNonIdLibSourceFile( b->info->callStack ); lineNumber = b->info->lineNumber; if ( memGroup == MEMGROUP_FOLDER ) { path.StripFilename(); path += "\\"; lineNumber = idStr::Hash( path ); } else if ( memGroup == MEMGROUP_FILE ) { lineNumber = idStr::Hash( path ); } // search for an allocation from the same source location for ( a = allocInfo; a; a = a->next ) { if ( a->lineNumber != lineNumber ) { continue; } if ( memGroup == MEMGROUP_LINE ) { for ( j = 0; j < MAX_CALLSTACK_DEPTH; j++ ) { if ( a->callStack[j] != b->info->callStack[j] ) { break; } } if ( j < MAX_CALLSTACK_DEPTH ) { continue; } } if ( path.Cmp( a->fileName ) != 0 ) { continue; } a->numAllocs++; a->size += b->info->size; break; } // if this is an allocation from a new source location if ( !a ) { int len = path.Length() + 1; a = (allocInfo_t *) ::malloc( sizeof( allocInfo_t ) + len ); a->fileName = ((char *)a) + sizeof( allocInfo_t ); idStr::Copynz( a->fileName, path, len ); a->lineNumber = lineNumber; a->size = b->info->size; a->numAllocs = 1; for ( j = 0; j < MAX_CALLSTACK_DEPTH; j++ ) { a->callStack[j] = b->info->callStack[j]; } a->next = allocInfo; allocInfo = a; } } // sort list for ( a = allocInfo; a; a = nexta ) { nexta = a->next; prevSorted = NULL; switch( memSort ) { // sort on size case MEMSORT_SIZE: { for ( nextSorted = sortedAllocInfo; nextSorted; nextSorted = nextSorted->next ) { if ( a->size > nextSorted->size ) { break; } prevSorted = nextSorted; } break; } // sort on file name and line number case MEMSORT_LOCATION: { for ( nextSorted = sortedAllocInfo; nextSorted; nextSorted = nextSorted->next ) { r = idStr::IcmpPath( a->fileName, nextSorted->fileName ); if ( r < 0 || ( r == 0 && a->lineNumber < nextSorted->lineNumber ) ) { break; } prevSorted = nextSorted; } break; } // sort on the number of allocations case MEMSORT_NUMALLOCS: { for ( nextSorted = sortedAllocInfo; nextSorted; nextSorted = nextSorted->next ) { if ( a->numAllocs > nextSorted->numAllocs ) { break; } prevSorted = nextSorted; } break; } // sort on call stack case MEMSORT_CALLSTACK: { for ( nextSorted = sortedAllocInfo; nextSorted; nextSorted = nextSorted->next ) { if ( a->callStack[sortCallStack] < nextSorted->callStack[sortCallStack] ) { break; } prevSorted = nextSorted; } break; } } if ( !prevSorted ) { a->next = sortedAllocInfo; sortedAllocInfo = a; } else { prevSorted->next = a; a->next = nextSorted; } } f = fopen( fileName, "wb" ); if ( !f ) { idLib::common->Warning( "Could not open '%s' for writing", fileName ); return; } if ( xlFriendly ) { if ( memGroup == MEMGROUP_FILE || memGroup == MEMGROUP_FOLDER ) { fprintf( f, " Size Allocs File\r\n" ); } else { fprintf( f, " Size Allocs Line File Call Stack\r\n" ); } } // write list to file if ( xlFriendly ) { if ( memGroup == MEMGROUP_FILE || memGroup == MEMGROUP_FOLDER ) { for ( a = sortedAllocInfo; a; a = nexta ) { nexta = a->next; fprintf( f, "%6d %6d %s\r\n", ( a->size >> 10 ), a->numAllocs, a->fileName ); ::free( a ); } } else { for ( a = sortedAllocInfo; a; a = nexta ) { nexta = a->next; fprintf( f, "%6d %6d %5d %s %s\r\n", ( a->size >> 10 ), a->numAllocs, a->lineNumber, a->fileName, idLib::sys->GetCallStackStr( a->callStack, MAX_CALLSTACK_DEPTH ) ); ::free( a ); } } } else { if ( memGroup == MEMGROUP_FILE || memGroup == MEMGROUP_FOLDER ) { for ( a = sortedAllocInfo; a; a = nexta ) { nexta = a->next; fprintf( f, "size: %6d kB, allocs: %5d: %s\r\n", ( a->size >> 10 ), a->numAllocs, a->fileName ); ::free( a ); } } else { for ( a = sortedAllocInfo; a; a = nexta ) { nexta = a->next; fprintf( f, "size: %6d kB, allocs: %5d: %s, line: %d, call stack: %s\r\n", ( a->size >> 10 ), a->numAllocs, a->fileName, a->lineNumber, idLib::sys->GetCallStackStr( a->callStack, MAX_CALLSTACK_DEPTH ) ); ::free( a ); } } } idLib::sys->ShutdownSymbols(); if ( !xlFriendly ) { fprintf( f, "%8d total memory blocks allocated\r\n", numBlocks ); fprintf( f, "%8d KB memory allocated\r\n", ( totalSize >> 10 ) ); } fclose( f ); } /* ================== Mem_DumpPerClass ================== */ struct allocClass_t { char className[MAX_STRING_CHARS]; int totalSize; int numAllocs; allocClass_t * next; }; #define ALLOC_CLASS_HASH_SIZE 4096 void Mem_DumpPerClass( const char *fileName ) { int i, j, numBlocks, totalBlocks, totalSize; const char *funcName, *colon; char className[MAX_CALLSTACK_DEPTH][MAX_STRING_CHARS]; debugMemory_t *b; FILE *f; allocClass_t * allocClass[ALLOC_CLASS_HASH_SIZE]; allocClass_t * a, *nexta; f = fopen( fileName, "wb" ); if ( !f ) { return; } idLib::common->SetRefreshOnPrint( true ); memset( allocClass, 0, sizeof( allocClass ) ); for ( totalBlocks = 0, b = mem_debugMemory; b != NULL; b = b->next, totalBlocks++ ) { } int lastPercentage = 0; totalSize = 0; for ( numBlocks = 0, b = mem_debugMemory; b != NULL; b = b->next, numBlocks++ ) { totalSize += b->info->size; for ( i = 0; i < MAX_CALLSTACK_DEPTH; i++ ) { funcName = idLib::sys->GetFunctionName( b->info->callStack[i] ); colon = strstr( funcName, "::" ); if ( colon == NULL ) { continue; } idStr::Copynz( className[i], funcName, colon - funcName + 1 ); for ( j = 0; j < i; j++ ) { if ( idStr::Cmp( className[j], className[i] ) == 0 ) { break; } } if ( j < i ) { continue; } int hash = idStr::Hash( className[i] ) & ( ALLOC_CLASS_HASH_SIZE - 1 ); for ( a = allocClass[hash]; a; a = a->next ) { if ( idStr::Cmp( a->className, className[i] ) == 0 ) { a->totalSize += b->info->size; a->numAllocs++; break; } } if ( a == NULL ) { a = (allocClass_t *) ::malloc( sizeof( allocClass_t ) ); idStr::Copynz( a->className, className[i], sizeof( a->className ) ); a->totalSize = b->info->size; a->numAllocs = 1; a->next = allocClass[hash]; allocClass[hash] = a; } } int percentage = numBlocks * 100 / totalBlocks; if ( percentage != lastPercentage ) { idLib::common->Printf( "\r%3d%%", percentage ); lastPercentage = percentage; } } for ( i = 0; i < ALLOC_CLASS_HASH_SIZE; i++ ) { for ( a = allocClass[i]; a; a = nexta ) { nexta = a->next; fprintf( f, "size: %6d kB, allocs: %5d: %s\r\n", ( a->totalSize >> 10 ), a->numAllocs, a->className ); ::free( a ); } } idLib::common->Printf( "\r100%%" ); idLib::common->SetRefreshOnPrint( false ); idLib::sys->ShutdownSymbols(); fprintf( f, "%8d total memory blocks allocated\r\n", numBlocks ); fprintf( f, "%8d kB memory allocated\r\n", ( totalSize >> 10 ) ); fclose( f ); } /* ================== Mem_AllocDebugMemory ================== */ void *Mem_AllocDebugMemory( const size_t size, const char *fileName, const int lineNumber, const align_t align ) { void *p; debugMemory_t *m; debugMemoryInfo_t info; short offset = 0; if ( !size ) { return NULL; } if ( !mem_heap ) { #ifdef CRASH_ON_STATIC_ALLOCATION *((int*)0x0) = 1; #endif // NOTE: set a breakpoint here to find memory allocations before mem_heap is initialized return malloc( size ); } if ( align > ALIGN_8 ) { offset = ( ( sizeof( debugMemory_t ) + align - 1 ) / align ) * align - sizeof( debugMemory_t ) ; p = mem_heap->AllocateAligned( size + sizeof( debugMemory_t ) + offset, align ); } else { p = mem_heap->Allocate( size + sizeof( debugMemory_t ) ); } Mem_UpdateAllocStats( size ); info.fileName = fileName; info.lineNumber = lineNumber; info.size = size; idLib::sys->GetCurCallStack( info.callStack, MAX_CALLSTACK_DEPTH ); info.next = NULL; m = (debugMemory_t *) ( ( (byte *) p ) + offset ); m->info = Mem_FindDebugMemoryInfo( info ); m->frameNumber = idLib::frameNumber; m->offset = offset; m->next = mem_debugMemory; m->prev = NULL; if ( mem_debugMemory ) { mem_debugMemory->prev = m; } mem_debugMemory = m; return ( ( (byte *) p ) + sizeof( debugMemory_t ) + offset ); } /* ================== Mem_FreeDebugMemory ================== */ void Mem_FreeDebugMemory( void *p, const char *fileName, const int lineNumber, const bool aligned ) { debugMemory_t *m; short offset; if ( !p ) { return; } if ( !mem_heap ) { #ifdef CRASH_ON_STATIC_ALLOCATION *((int*)0x0) = 1; #endif // NOTE: set a breakpoint here to find memory being freed before mem_heap is initialized free( p ); return; } m = (debugMemory_t *) ( ( (byte *) p ) - sizeof( debugMemory_t ) ); if ( m->offset < 0 ) { idLib::common->FatalError( "memory freed twice, first from %s, now from %s", idLib::sys->GetCallStackStr( m->info->callStack, MAX_CALLSTACK_DEPTH ), idLib::sys->GetCurCallStackStr( MAX_CALLSTACK_DEPTH ) ); } Mem_UpdateFreeStats( m->info->size ); if ( m->next ) { m->next->prev = m->prev; } if ( m->prev ) { m->prev->next = m->next; } else { mem_debugMemory = m->next; } offset = m->offset; m->offset = -1; if ( aligned ) { mem_heap->FreeAligned( ( ( byte * )m ) - offset ); } else { mem_heap->Free( m ); } } /* ================== Mem_Alloc ================== */ void *Mem_Alloc( const size_t size, const char *fileName, const int lineNumber ) { if ( !size ) { return NULL; } return Mem_AllocDebugMemory( size, fileName, lineNumber, ALIGN_8 ); } /* ================== Mem_Free ================== */ void Mem_Free( void *ptr, const char *fileName, const int lineNumber ) { if ( !ptr ) { return; } Mem_FreeDebugMemory( ptr, fileName, lineNumber, false ); } /* ================== Mem_AllocAligned ================== */ void *Mem_AllocAligned( const size_t size, const align_t align, const char *fileName, const int lineNumber ) { if ( !size ) { return NULL; } void *mem = Mem_AllocDebugMemory( size, fileName, lineNumber, align ); // make sure the memory is aligned assert( align == ALIGN_NONE || ( ((int)mem) & (align-1)) == 0 ); return mem; } /* ================== Mem_FreeAligned ================== */ void Mem_FreeAligned( void *ptr, const char *fileName, const int lineNumber ) { if ( !ptr ) { return; } Mem_FreeDebugMemory( ptr, fileName, lineNumber, true ); } /* ================== Mem_ClearedAlloc ================== */ void *Mem_ClearedAlloc( const size_t size, const char *fileName, const int lineNumber ) { void *mem = Mem_Alloc( size, fileName, lineNumber ); SIMDProcessor->Memset( mem, 0, size ); return mem; } /* =============== Mem_ClearedAllocAligned =============== */ void *Mem_ClearedAllocAligned( const size_t size, const align_t align, const char *fileName, const int lineNumber ) { void *mem = Mem_AllocAligned( size, align, fileName, lineNumber ); SIMDProcessor->Memset( mem, 0, size ); return mem; } /* ================== Mem_CopyString ================== */ char *Mem_CopyString( const char *in, const char *fileName, const int lineNumber ) { char *out; out = (char *)Mem_Alloc( idStr::Length( in ) + 1, fileName, lineNumber ); idStr::Copynz( out, in, idStr::Length( in ) + 1 ); return out; } /* ================== Mem_Init ================== */ void Mem_Init( void ) { mem_heap = new idHeap; } /* ================== Mem_Shutdown ================== */ void Mem_Shutdown( void ) { if ( mem_leakName[0] != '\0' ) { Mem_DumpCompressed( va( "%s_leak_size.txt", mem_leakName ), MEMGROUP_LINE, MEMSORT_SIZE, 0, 0, false ); Mem_DumpCompressed( va( "%s_leak_location.txt", mem_leakName ), MEMGROUP_LINE, MEMSORT_LOCATION, 0, 0, false ); Mem_DumpCompressed( va( "%s_leak_cs1.txt", mem_leakName ), MEMGROUP_LINE, MEMSORT_CALLSTACK, 2, 0, false ); } idHeap *m = mem_heap; mem_heap = NULL; delete m; } /* ================== Mem_EnableLeakTest ================== */ void Mem_EnableLeakTest( const char *name ) { idStr::Copynz( mem_leakName, name, sizeof( mem_leakName ) ); } #endif /* !ID_DEBUG_MEMORY */ #pragma warning( pop )