// Copyright (C) 2007 Id Software, Inc. // #ifndef __PHYSICS_SIMPLERIGIDBODY_H__ #define __PHYSICS_SIMPLERIGIDBODY_H__ /* =================================================================================== "Simple" rigid body physics Mimics a rigid body, but isn't a rigid body at all - this is more akin to Q1/2/3 grenades than a rigid body, but outwardly seems very rigid-body-like =================================================================================== */ #include "Physics_Base.h" typedef struct simpleRigidBodyPState_s { int atRest; // set when simulation is suspended float lastTimeStep; // length of last time step idVec6 pushVelocity; // push velocity // dynamic state idVec3 position; // position of trace model idMat3 orientation; // orientation of trace model idVec3 linearVelocity; // translational velocity relative to center of mass idVec3 angularVelocity; // rotational velocity relative to center of mass } simpleRigidBodyPState_t; class sdSimpleRigidBodyNetworkState : public sdEntityStateNetworkData { public: sdSimpleRigidBodyNetworkState( void ) { ; } virtual void MakeDefault( void ); virtual void Write( idFile* file ) const; virtual void Read( idFile* file ); idVec3 position; idCQuat orientation; idVec3 linearVelocity; idVec3 angularVelocity; }; class sdSimpleRigidBodyBroadcastState : public sdEntityStateNetworkData { public: sdSimpleRigidBodyBroadcastState( void ) { ; } virtual void MakeDefault( void ); virtual void Write( idFile* file ) const; virtual void Read( idFile* file ); idVec3 localPosition; idCQuat localOrientation; int atRest; bool orientedClip; }; class sdPhysics_SimpleRigidBody : public idPhysics_Base { public: CLASS_PROTOTYPE( sdPhysics_SimpleRigidBody ); sdPhysics_SimpleRigidBody( void ); ~sdPhysics_SimpleRigidBody( void ); // initialisation void SetFriction( const float linear, const float angular, const float contact ) { ; } void SetWaterFriction( const float linear, const float angular ); void SetBouncyness( const float b ); void SetBouncyness( float normal, float tangential, float angular ); void SetStopSpeed( float stopSpeed ); void SetBuoyancy( float b ); // same as above but drop to the floor first void DropToFloor( void ); // no contact determination and contact friction void NoContact( void ); // enable/disable activation by impact virtual void EnableImpact( void ); virtual void DisableImpact( void ); public: // common physics interface void SetClipModel( idClipModel *model, float density, int id = 0, bool freeOld = true ); idClipModel * GetClipModel( int id = 0 ) const; int GetNumClipModels( void ) const; void SetMass( float mass, int id = -1 ); float GetMass( int id = -1 ) const; virtual const idMat3& GetInertiaTensor( int id = -1 ) const { return inertiaTensor; } void SetContents( int contents, int id = -1 ); int GetContents( int id = -1 ) const; const idBounds & GetBounds( int id = -1 ) const; const idBounds & GetAbsBounds( int id = -1 ) const; bool Evaluate( int timeStepMSec, int endTimeMSec ); void UpdateTime( int endTimeMSec ); int GetTime( void ) const; void GetImpactInfo( const int id, const idVec3 &point, impactInfo_t *info ) const; void ApplyImpulse( const int id, const idVec3 &point, const idVec3 &impulse ); void AddForce( const int id, const idVec3 &point, const idVec3 &force ); void Activate( void ); void PutToRest( void ); bool IsAtRest( void ) const; int GetRestStartTime( void ) const; bool IsPushable( void ) const; void SaveState( void ); void RestoreState( void ); void SetOrigin( const idVec3 &newOrigin, int id = -1 ); void SetAxis( const idMat3 &newAxis, int id = -1 ); void Translate( const idVec3 &translation, int id = -1 ); void Rotate( const idRotation &rotation, int id = -1 ); const idVec3 & GetOrigin( int id = 0 ) const; const idMat3 & GetAxis( int id = 0 ) const; virtual const idVec3& GetCenterOfMass() const { return centerOfMass; } void SetLinearVelocity( const idVec3 &newLinearVelocity, int id = 0 ); void SetAngularVelocity( const idVec3 &newAngularVelocity, int id = 0 ); const idVec3 & GetLinearVelocity( int id = 0 ) const; const idVec3 & GetAngularVelocity( int id = 0 ) const; void ClipTranslation( trace_t &results, const idVec3 &translation, const idClipModel *model ) const; void ClipRotation( trace_t &results, const idRotation &rotation, const idClipModel *model ) const; int ClipContents( const idClipModel *model ) const; void UnlinkClip( void ); void LinkClip( void ); void DisableClip( bool activateContacting = true ); void EnableClip( void ); bool EvaluateContacts( CLIP_DEBUG_PARMS_DECLARATION_ONLY ); void SetPushed( int deltaTime ); const idVec3 & GetPushedLinearVelocity( const int id = 0 ) const; const idVec3 & GetPushedAngularVelocity( const int id = 0 ) const; void SetMaster( idEntity *master, const bool orientated ); virtual void ApplyNetworkState( networkStateMode_t mode, const sdEntityStateNetworkData& newState ); virtual bool CheckNetworkStateChanges( networkStateMode_t mode, const sdEntityStateNetworkData& baseState ) const; virtual void WriteNetworkState( networkStateMode_t mode, const sdEntityStateNetworkData& baseState, sdEntityStateNetworkData& newState, idBitMsg& msg ) const; virtual void ReadNetworkState( networkStateMode_t mode, const sdEntityStateNetworkData& baseState, sdEntityStateNetworkData& newState, const idBitMsg& msg ) const; virtual sdEntityStateNetworkData* CreateNetworkStructure( networkStateMode_t mode ) const; virtual void DrawDebugInfo( void ) { DebugDraw(); } virtual float InWater( void ) const { return waterLevel; } void SetClipOriented( bool oriented ) { orientedClip = oriented; LinkClip(); } private: void CheckWater( void ); private: // state of the rigid body simpleRigidBodyPState_t current; simpleRigidBodyPState_t saved; idVec3 localOrigin; // origin relative to master idMat3 localAxis; // axis relative to master idVec3 lastCollideNormal; // rigid body properties float normalBouncyness; // bouncyness normal to the surface float tangentialBouncyness; // bouncyness tangential to the surface float stopSpeed; // bounce speed at which it will stop moving float angularBouncyness; // scales the angular veocity on a bounce float linearFrictionWater; // translational friction when in water float angularFrictionWater; // rotational friction when in water float buoyancy; idClipModel * clipModel; // clip model used for collision detection idClipModel * centeredClipModel; // clip model at the center of mass // derived properties float mass; // mass of body float inverseMass; // 1 / mass idVec3 centerOfMass; // center of mass of trace model idMat3 inertiaTensor; // mass distribution idMat3 inverseInertiaTensor; // inverse inertia tensor bool dropToFloor; // true if dropping to the floor and putting to rest bool testSolid; // true if testing for solid when dropping to the floor bool noImpact; // if true do not activate when another object collides bool noContact; // if true do not determine contacts and no contact friction // master bool hasMaster; bool isOrientated; float waterLevel; bool orientedClip; const sdProgram::sdFunction* restFunc; private: void Integrate( const float deltaTime, simpleRigidBodyPState_t &next ); bool CheckForCollisions( const float deltaTime, simpleRigidBodyPState_t &next, trace_t &collision ); bool CollisionResponse( const trace_t &collision, idVec3 &impulse ); void DropToFloorAndRest( void ); bool TestIfAtRest( void ) const; void Rest( void ); void DebugDraw( void ); }; #endif /* !__PHYSICS_SIMPLERIGIDBODY_H__ */