// Copyright (C) 2007 Id Software, Inc. // #ifndef __PHYSICS_RIGIDBODY_H__ #define __PHYSICS_RIGIDBODY_H__ /* =================================================================================== Rigid body physics Employs an impulse based dynamic simulation which is not very accurate but relatively fast and still reliable due to the continuous collision detection. =================================================================================== */ #include "Physics_Base.h" typedef struct rigidBodyIState_s { idVec3 position; // position of trace model idMat3 orientation; // orientation of trace model idVec3 linearMomentum; // translational momentum relative to center of mass idVec3 angularMomentum; // rotational momentum relative to center of mass } rigidBodyIState_t; typedef struct rigidBodyPState_s { int atRest; // set when simulation is suspended float lastTimeStep; // length of last time step idVec6 pushVelocity; // push velocity idVec3 externalForce; // external force relative to center of mass idVec3 externalTorque; // external torque relative to center of mass rigidBodyIState_t i; // state used for integration } rigidBodyPState_t; class sdRigidBodyNetworkState : public sdEntityStateNetworkData { public: sdRigidBodyNetworkState( void ) { ; } virtual void MakeDefault( void ); virtual void Write( idFile* file ) const; virtual void Read( idFile* file ); idVec3 position; idCQuat orientation; idVec3 linearVelocity; idVec3 angularVelocity; }; class sdRigidBodyBroadcastState : public sdEntityStateNetworkData { public: sdRigidBodyBroadcastState( void ) { ; } virtual void MakeDefault( void ); virtual void Write( idFile* file ) const; virtual void Read( idFile* file ); idVec3 localPosition; idCQuat localOrientation; int atRest; }; class idPhysics_RigidBody : public idPhysics_Base { public: CLASS_PROTOTYPE( idPhysics_RigidBody ); idPhysics_RigidBody( void ); ~idPhysics_RigidBody( void ); // initialisation void SetFriction( const float linear, const float angular, const float contact ); void SetWaterFriction( const float linear, const float angular ); void SetBouncyness( const float b ); void SetBuoyancy( float b ); // same as above but drop to the floor first void DropToFloor( void ); // no contact determination and contact friction void NoContact( void ); // enable/disable activation by impact virtual void EnableImpact( void ); virtual void DisableImpact( void ); public: // common physics interface void SetClipModel( idClipModel *model, float density, int id = 0, bool freeOld = true ); idClipModel * GetClipModel( int id = 0 ) const; int GetNumClipModels( void ) const; void SetMass( float mass, int id = -1 ); float GetMass( int id = -1 ) const; virtual const idMat3& GetInertiaTensor( int id = -1 ) const { return inertiaTensor; } void SetContents( int contents, int id = -1 ); int GetContents( int id = -1 ) const; const idBounds & GetBounds( int id = -1 ) const; const idBounds & GetAbsBounds( int id = -1 ) const; bool Evaluate( int timeStepMSec, int endTimeMSec ); void UpdateTime( int endTimeMSec ); int GetTime( void ) const; void GetImpactInfo( const int id, const idVec3 &point, impactInfo_t *info ) const; void ApplyImpulse( const int id, const idVec3 &point, const idVec3 &impulse ); void AddForce( const int id, const idVec3 &point, const idVec3 &force ); void Activate( void ); void PutToRest( void ); bool IsAtRest( void ) const; int GetRestStartTime( void ) const; bool IsPushable( void ) const; void SaveState( void ); void RestoreState( void ); void SetOrigin( const idVec3 &newOrigin, int id = -1 ); void SetAxis( const idMat3 &newAxis, int id = -1 ); void Translate( const idVec3 &translation, int id = -1 ); void Rotate( const idRotation &rotation, int id = -1 ); const idVec3 & GetOrigin( int id = 0 ) const; const idMat3 & GetAxis( int id = 0 ) const; virtual const idVec3& GetCenterOfMass() const { return centerOfMass; } void SetLinearVelocity( const idVec3 &newLinearVelocity, int id = 0 ); void SetAngularVelocity( const idVec3 &newAngularVelocity, int id = 0 ); const idVec3 & GetLinearVelocity( int id = 0 ) const; const idVec3 & GetAngularVelocity( int id = 0 ) const; void ClipTranslation( trace_t &results, const idVec3 &translation, const idClipModel *model ) const; void ClipRotation( trace_t &results, const idRotation &rotation, const idClipModel *model ) const; int ClipContents( const idClipModel *model ) const; void UnlinkClip( void ); void LinkClip( void ); void DisableClip( bool activateContacting = true ); void EnableClip( void ); bool EvaluateContacts( CLIP_DEBUG_PARMS_DECLARATION_ONLY ); void SetPushed( int deltaTime ); const idVec3 & GetPushedLinearVelocity( const int id = 0 ) const; const idVec3 & GetPushedAngularVelocity( const int id = 0 ) const; void SetMaster( idEntity *master, const bool orientated ); void SetApplyImpulse( bool i ) { noApplyImpulse = !i; } virtual void ApplyNetworkState( networkStateMode_t mode, const sdEntityStateNetworkData& newState ); virtual bool CheckNetworkStateChanges( networkStateMode_t mode, const sdEntityStateNetworkData& baseState ) const; virtual void WriteNetworkState( networkStateMode_t mode, const sdEntityStateNetworkData& baseState, sdEntityStateNetworkData& newState, idBitMsg& msg ) const; virtual void ReadNetworkState( networkStateMode_t mode, const sdEntityStateNetworkData& baseState, sdEntityStateNetworkData& newState, const idBitMsg& msg ) const; virtual sdEntityStateNetworkData* CreateNetworkStructure( networkStateMode_t mode ) const; virtual void DrawDebugInfo( void ) { DebugDraw(); } virtual float InWater( void ) const { return waterLevel; } private: void CheckWater( void ); private: // state of the rigid body rigidBodyPState_t current; rigidBodyPState_t saved; idVec3 localOrigin; // origin relative to master idMat3 localAxis; // axis relative to master // rigid body properties float linearFriction; // translational friction float angularFriction; // rotational friction float bouncyness; // bouncyness float linearFrictionWater; // translational friction when in water float angularFrictionWater; // rotational friction when in water float contactFriction; // friction with contact surfaces float buoyancy; idClipModel * clipModel; // clip model used for collision detection idClipModel * centeredClipModel; // clip model at the center of mass // derived properties float mass; // mass of body float inverseMass; // 1 / mass idVec3 centerOfMass; // center of mass of trace model idMat3 inertiaTensor; // mass distribution idMat3 inverseInertiaTensor; // inverse inertia tensor idODE * integrator; // integrator bool dropToFloor; // true if dropping to the floor and putting to rest bool testSolid; // true if testing for solid when dropping to the floor bool noImpact; // if true do not activate when another object collides bool noContact; // if true do not determine contacts and no contact friction bool noApplyImpulse; // if true do not apply an impulse to another object when colliding // master bool hasMaster; bool isOrientated; float waterLevel; private: friend void RigidBodyDerivatives( const float t, const void *clientData, const float *state, float *derivatives ); void Integrate( const float deltaTime, rigidBodyPState_t &next ); bool CheckForCollisions( const float deltaTime, rigidBodyPState_t &next, trace_t &collision ); bool CollisionImpulse( const trace_t &collision, idVec3 &impulse ); void ContactFriction( float deltaTime ); void DropToFloorAndRest( void ); bool TestIfAtRest( void ) const; void Rest( void ); void DebugDraw( void ); }; #endif /* !__PHYSICS_RIGIDBODY_H__ */