reaction/code/game/q_math.c
2013-01-04 13:27:22 +00:00

1847 lines
43 KiB
C

//-----------------------------------------------------------------------------
//
// $Id$
//
//-----------------------------------------------------------------------------
//
// $Log$
// Revision 1.12 2005/09/08 03:47:35 jbravo
// Fixing 'No newline at end of file' warnings
//
// Revision 1.11 2005/09/07 20:27:42 makro
// Entity attachment trees
//
// Revision 1.10 2005/02/15 16:33:39 makro
// Tons of updates (entity tree attachment system, UI vectors)
//
// Revision 1.9 2002/06/16 20:51:10 niceass
// assembly code got messed up
//
// Revision 1.8 2002/06/16 20:06:14 jbravo
// Reindented all the source files with "indent -kr -ut -i8 -l120 -lc120 -sob -bad -bap"
//
// Revision 1.7 2002/05/27 17:47:19 jbravo
// Fixes and cleanups
//
// Revision 1.6 2002/05/27 06:55:02 niceass
// reflection byte function for sparks
//
// Revision 1.5 2002/01/11 19:48:30 jbravo
// Formatted the source in non DOS format.
//
// Revision 1.4 2001/12/31 16:28:42 jbravo
// I made a Booboo with the Log tag.
//
//
//-----------------------------------------------------------------------------
// Copyright (C) 1999-2000 Id Software, Inc.
//
// q_math.c -- stateless support routines that are included in each code module
#include "../qcommon/q_shared.h"
vec3_t vec3_origin = { 0, 0, 0 };
vec3_t axisDefault[3] = { {1, 0, 0}
, {0, 1, 0}
, {0, 0, 1}
};
vec4_t colorBlack = { 0, 0, 0, 1 };
vec4_t colorRed = { 1, 0, 0, 1 };
vec4_t colorGreen = { 0, 1, 0, 1 };
vec4_t colorBlue = { 0, 0, 1, 1 };
vec4_t colorYellow = { 1, 1, 0, 1 };
vec4_t colorMagenta = { 1, 0, 1, 1 };
vec4_t colorCyan = { 0, 1, 1, 1 };
vec4_t colorWhite = { 1, 1, 1, 1 };
vec4_t colorLtGrey = { 0.75, 0.75, 0.75, 1 };
vec4_t colorMdGrey = { 0.5, 0.5, 0.5, 1 };
vec4_t colorDkGrey = { 0.25, 0.25, 0.25, 1 };
vec4_t g_color_table[8] = {
{0.0, 0.0, 0.0, 1.0}
,
{1.0, 0.0, 0.0, 1.0}
,
{0.0, 1.0, 0.0, 1.0}
,
{1.0, 1.0, 0.0, 1.0}
,
{0.0, 0.0, 1.0, 1.0}
,
{0.0, 1.0, 1.0, 1.0}
,
{1.0, 0.0, 1.0, 1.0}
,
{1.0, 1.0, 1.0, 1.0}
,
};
//Makro - new table; this allows for a much faster DirToByte function
vec3_t bytedirs[NUMVERTEXNORMALS] =
{
{ 1.00000000f, 0.00000000f, 0.00000000f },
{ 0.92387950f, 0.38268346f, 0.00000000f },
{ 0.70710677f, 0.70710677f, 0.00000000f },
{ 0.38268343f, 0.92387950f, 0.00000000f },
{ -0.00000004f, 1.00000000f, 0.00000000f },
{ -0.38268340f, 0.92387956f, 0.00000000f },
{ -0.70710677f, 0.70710677f, 0.00000000f },
{ -0.92387950f, 0.38268349f, 0.00000000f },
{ -1.00000000f, -0.00000009f, 0.00000000f },
{ -0.92387950f, -0.38268343f, 0.00000000f },
{ -0.70710683f, -0.70710671f, 0.00000000f },
{ -0.38268358f, -0.92387950f, 0.00000000f },
{ 0.00000001f, -1.00000000f, 0.00000000f },
{ 0.38268360f, -0.92387944f, 0.00000000f },
{ 0.70710665f, -0.70710689f, 0.00000000f },
{ 0.92387956f, -0.38268343f, 0.00000000f },
{ 0.92387950f, 0.00000000f, -0.38268346f },
{ 0.85355335f, 0.35355341f, -0.38268346f },
{ 0.65328145f, 0.65328145f, -0.38268346f },
{ 0.35355338f, 0.85355335f, -0.38268346f },
{ -0.00000004f, 0.92387950f, -0.38268346f },
{ -0.35355335f, 0.85355341f, -0.38268346f },
{ -0.65328145f, 0.65328145f, -0.38268346f },
{ -0.85355335f, 0.35355341f, -0.38268346f },
{ -0.92387950f, -0.00000008f, -0.38268346f },
{ -0.85355335f, -0.35355338f, -0.38268346f },
{ -0.65328151f, -0.65328139f, -0.38268346f },
{ -0.35355350f, -0.85355335f, -0.38268346f },
{ 0.00000001f, -0.92387950f, -0.38268346f },
{ 0.35355353f, -0.85355330f, -0.38268346f },
{ 0.65328133f, -0.65328157f, -0.38268346f },
{ 0.85355341f, -0.35355338f, -0.38268346f },
{ 0.70710677f, 0.00000000f, -0.70710677f },
{ 0.65328145f, 0.27059805f, -0.70710677f },
{ 0.49999997f, 0.49999997f, -0.70710677f },
{ 0.27059805f, 0.65328145f, -0.70710677f },
{ -0.00000003f, 0.70710677f, -0.70710677f },
{ -0.27059802f, 0.65328151f, -0.70710677f },
{ -0.49999997f, 0.49999997f, -0.70710677f },
{ -0.65328145f, 0.27059808f, -0.70710677f },
{ -0.70710677f, -0.00000006f, -0.70710677f },
{ -0.65328145f, -0.27059805f, -0.70710677f },
{ -0.50000000f, -0.49999994f, -0.70710677f },
{ -0.27059814f, -0.65328145f, -0.70710677f },
{ 0.00000001f, -0.70710677f, -0.70710677f },
{ 0.27059817f, -0.65328139f, -0.70710677f },
{ 0.49999991f, -0.50000006f, -0.70710677f },
{ 0.65328151f, -0.27059805f, -0.70710677f },
{ 0.38268343f, 0.00000000f, -0.92387950f },
{ 0.35355338f, 0.14644662f, -0.92387950f },
{ 0.27059805f, 0.27059805f, -0.92387950f },
{ 0.14644660f, 0.35355338f, -0.92387950f },
{ -0.00000002f, 0.38268343f, -0.92387950f },
{ -0.14644660f, 0.35355338f, -0.92387950f },
{ -0.27059805f, 0.27059805f, -0.92387950f },
{ -0.35355338f, 0.14644663f, -0.92387950f },
{ -0.38268343f, -0.00000003f, -0.92387950f },
{ -0.35355338f, -0.14644660f, -0.92387950f },
{ -0.27059805f, -0.27059802f, -0.92387950f },
{ -0.14644666f, -0.35355338f, -0.92387950f },
{ 0.00000000f, -0.38268343f, -0.92387950f },
{ 0.14644668f, -0.35355335f, -0.92387950f },
{ 0.27059799f, -0.27059808f, -0.92387950f },
{ 0.35355338f, -0.14644660f, -0.92387950f },
{ -0.00000004f, 0.00000000f, -1.00000000f },
{ -0.00000004f, -0.00000002f, -1.00000000f },
{ -0.00000003f, -0.00000003f, -1.00000000f },
{ -0.00000002f, -0.00000004f, -1.00000000f },
{ 0.00000000f, -0.00000004f, -1.00000000f },
{ 0.00000002f, -0.00000004f, -1.00000000f },
{ 0.00000003f, -0.00000003f, -1.00000000f },
{ 0.00000004f, -0.00000002f, -1.00000000f },
{ 0.00000004f, 0.00000000f, -1.00000000f },
{ 0.00000004f, 0.00000002f, -1.00000000f },
{ 0.00000003f, 0.00000003f, -1.00000000f },
{ 0.00000002f, 0.00000004f, -1.00000000f },
{ -0.00000000f, 0.00000004f, -1.00000000f },
{ -0.00000002f, 0.00000004f, -1.00000000f },
{ -0.00000003f, 0.00000003f, -1.00000000f },
{ -0.00000004f, 0.00000002f, -1.00000000f },
{ -0.38268340f, 0.00000000f, -0.92387956f },
{ -0.35355335f, -0.14644660f, -0.92387956f },
{ -0.27059802f, -0.27059802f, -0.92387956f },
{ -0.14644660f, -0.35355335f, -0.92387956f },
{ 0.00000002f, -0.38268340f, -0.92387956f },
{ 0.14644659f, -0.35355335f, -0.92387956f },
{ 0.27059802f, -0.27059802f, -0.92387956f },
{ 0.35355335f, -0.14644662f, -0.92387956f },
{ 0.38268340f, 0.00000003f, -0.92387956f },
{ 0.35355335f, 0.14644660f, -0.92387956f },
{ 0.27059805f, 0.27059799f, -0.92387956f },
{ 0.14644665f, 0.35355335f, -0.92387956f },
{ -0.00000000f, 0.38268340f, -0.92387956f },
{ -0.14644666f, 0.35355332f, -0.92387956f },
{ -0.27059796f, 0.27059805f, -0.92387956f },
{ -0.35355335f, 0.14644660f, -0.92387956f },
{ -0.70710677f, 0.00000000f, -0.70710677f },
{ -0.65328145f, -0.27059805f, -0.70710677f },
{ -0.49999997f, -0.49999997f, -0.70710677f },
{ -0.27059805f, -0.65328145f, -0.70710677f },
{ 0.00000003f, -0.70710677f, -0.70710677f },
{ 0.27059802f, -0.65328151f, -0.70710677f },
{ 0.49999997f, -0.49999997f, -0.70710677f },
{ 0.65328145f, -0.27059808f, -0.70710677f },
{ 0.70710677f, 0.00000006f, -0.70710677f },
{ 0.65328145f, 0.27059805f, -0.70710677f },
{ 0.50000000f, 0.49999994f, -0.70710677f },
{ 0.27059814f, 0.65328145f, -0.70710677f },
{ -0.00000001f, 0.70710677f, -0.70710677f },
{ -0.27059817f, 0.65328139f, -0.70710677f },
{ -0.49999991f, 0.50000006f, -0.70710677f },
{ -0.65328151f, 0.27059805f, -0.70710677f },
{ -0.92387950f, 0.00000000f, -0.38268349f },
{ -0.85355335f, -0.35355341f, -0.38268349f },
{ -0.65328145f, -0.65328145f, -0.38268349f },
{ -0.35355338f, -0.85355335f, -0.38268349f },
{ 0.00000004f, -0.92387950f, -0.38268349f },
{ 0.35355335f, -0.85355341f, -0.38268349f },
{ 0.65328145f, -0.65328145f, -0.38268349f },
{ 0.85355335f, -0.35355341f, -0.38268349f },
{ 0.92387950f, 0.00000008f, -0.38268349f },
{ 0.85355335f, 0.35355338f, -0.38268349f },
{ 0.65328151f, 0.65328139f, -0.38268349f },
{ 0.35355350f, 0.85355335f, -0.38268349f },
{ -0.00000001f, 0.92387950f, -0.38268349f },
{ -0.35355353f, 0.85355330f, -0.38268349f },
{ -0.65328133f, 0.65328157f, -0.38268349f },
{ -0.85355341f, 0.35355338f, -0.38268349f },
{ -1.00000000f, 0.00000000f, 0.00000009f },
{ -0.92387950f, -0.38268346f, 0.00000009f },
{ -0.70710677f, -0.70710677f, 0.00000009f },
{ -0.38268343f, -0.92387950f, 0.00000009f },
{ 0.00000004f, -1.00000000f, 0.00000009f },
{ 0.38268340f, -0.92387956f, 0.00000009f },
{ 0.70710677f, -0.70710677f, 0.00000009f },
{ 0.92387950f, -0.38268349f, 0.00000009f },
{ 1.00000000f, 0.00000009f, 0.00000009f },
{ 0.92387950f, 0.38268343f, 0.00000009f },
{ 0.70710683f, 0.70710671f, 0.00000009f },
{ 0.38268358f, 0.92387950f, 0.00000009f },
{ -0.00000001f, 1.00000000f, 0.00000009f },
{ -0.38268360f, 0.92387944f, 0.00000009f },
{ -0.70710665f, 0.70710689f, 0.00000009f },
{ -0.92387956f, 0.38268343f, 0.00000009f },
{ -0.92387950f, 0.00000000f, 0.38268343f },
{ -0.85355335f, -0.35355341f, 0.38268343f },
{ -0.65328145f, -0.65328145f, 0.38268343f },
{ -0.35355338f, -0.85355335f, 0.38268343f },
{ 0.00000004f, -0.92387950f, 0.38268343f },
{ 0.35355335f, -0.85355341f, 0.38268343f },
{ 0.65328145f, -0.65328145f, 0.38268343f },
{ 0.85355335f, -0.35355341f, 0.38268343f },
{ 0.92387950f, 0.00000008f, 0.38268343f },
{ 0.85355335f, 0.35355338f, 0.38268343f },
{ 0.65328151f, 0.65328139f, 0.38268343f },
{ 0.35355350f, 0.85355335f, 0.38268343f },
{ -0.00000001f, 0.92387950f, 0.38268343f },
{ -0.35355353f, 0.85355330f, 0.38268343f },
{ -0.65328133f, 0.65328157f, 0.38268343f },
{ -0.85355341f, 0.35355338f, 0.38268343f },
{ -0.70710683f, 0.00000000f, 0.70710671f },
{ -0.65328151f, -0.27059808f, 0.70710671f },
{ -0.50000000f, -0.50000000f, 0.70710671f },
{ -0.27059805f, -0.65328151f, 0.70710671f },
{ 0.00000003f, -0.70710683f, 0.70710671f },
{ 0.27059805f, -0.65328157f, 0.70710671f },
{ 0.50000000f, -0.50000000f, 0.70710671f },
{ 0.65328151f, -0.27059811f, 0.70710671f },
{ 0.70710683f, 0.00000006f, 0.70710671f },
{ 0.65328151f, 0.27059805f, 0.70710671f },
{ 0.50000006f, 0.49999997f, 0.70710671f },
{ 0.27059817f, 0.65328151f, 0.70710671f },
{ -0.00000001f, 0.70710683f, 0.70710671f },
{ -0.27059820f, 0.65328145f, 0.70710671f },
{ -0.49999994f, 0.50000012f, 0.70710671f },
{ -0.65328157f, 0.27059805f, 0.70710671f },
{ -0.38268358f, 0.00000000f, 0.92387950f },
{ -0.35355350f, -0.14644668f, 0.92387950f },
{ -0.27059814f, -0.27059814f, 0.92387950f },
{ -0.14644666f, -0.35355350f, 0.92387950f },
{ 0.00000002f, -0.38268358f, 0.92387950f },
{ 0.14644665f, -0.35355353f, 0.92387950f },
{ 0.27059814f, -0.27059814f, 0.92387950f },
{ 0.35355350f, -0.14644669f, 0.92387950f },
{ 0.38268358f, 0.00000003f, 0.92387950f },
{ 0.35355350f, 0.14644666f, 0.92387950f },
{ 0.27059817f, 0.27059811f, 0.92387950f },
{ 0.14644672f, 0.35355350f, 0.92387950f },
{ -0.00000000f, 0.38268358f, 0.92387950f },
{ -0.14644673f, 0.35355350f, 0.92387950f },
{ -0.27059811f, 0.27059820f, 0.92387950f },
{ -0.35355353f, 0.14644666f, 0.92387950f },
{ 0.00000001f, 0.00000000f, 1.00000000f },
{ 0.00000001f, 0.00000000f, 1.00000000f },
{ 0.00000001f, 0.00000001f, 1.00000000f },
{ 0.00000000f, 0.00000001f, 1.00000000f },
{ -0.00000000f, 0.00000001f, 1.00000000f },
{ -0.00000000f, 0.00000001f, 1.00000000f },
{ -0.00000001f, 0.00000001f, 1.00000000f },
{ -0.00000001f, 0.00000000f, 1.00000000f },
{ -0.00000001f, -0.00000000f, 1.00000000f },
{ -0.00000001f, -0.00000000f, 1.00000000f },
{ -0.00000001f, -0.00000001f, 1.00000000f },
{ -0.00000000f, -0.00000001f, 1.00000000f },
{ 0.00000000f, -0.00000001f, 1.00000000f },
{ 0.00000000f, -0.00000001f, 1.00000000f },
{ 0.00000001f, -0.00000001f, 1.00000000f },
{ 0.00000001f, -0.00000000f, 1.00000000f },
{ 0.38268360f, 0.00000000f, 0.92387944f },
{ 0.35355353f, 0.14644669f, 0.92387944f },
{ 0.27059817f, 0.27059817f, 0.92387944f },
{ 0.14644668f, 0.35355353f, 0.92387944f },
{ -0.00000002f, 0.38268360f, 0.92387944f },
{ -0.14644666f, 0.35355356f, 0.92387944f },
{ -0.27059817f, 0.27059817f, 0.92387944f },
{ -0.35355353f, 0.14644669f, 0.92387944f },
{ -0.38268360f, -0.00000003f, 0.92387944f },
{ -0.35355353f, -0.14644668f, 0.92387944f },
{ -0.27059820f, -0.27059814f, 0.92387944f },
{ -0.14644673f, -0.35355353f, 0.92387944f },
{ 0.00000000f, -0.38268360f, 0.92387944f },
{ 0.14644673f, -0.35355350f, 0.92387944f },
{ 0.27059811f, -0.27059820f, 0.92387944f },
{ 0.35355356f, -0.14644668f, 0.92387944f },
{ 0.70710665f, 0.00000000f, 0.70710689f },
{ 0.65328133f, 0.27059802f, 0.70710689f },
{ 0.49999991f, 0.49999991f, 0.70710689f },
{ 0.27059799f, 0.65328133f, 0.70710689f },
{ -0.00000003f, 0.70710665f, 0.70710689f },
{ -0.27059796f, 0.65328139f, 0.70710689f },
{ -0.49999991f, 0.49999991f, 0.70710689f },
{ -0.65328133f, 0.27059802f, 0.70710689f },
{ -0.70710665f, -0.00000006f, 0.70710689f },
{ -0.65328133f, -0.27059799f, 0.70710689f },
{ -0.49999994f, -0.49999985f, 0.70710689f },
{ -0.27059811f, -0.65328133f, 0.70710689f },
{ 0.00000001f, -0.70710665f, 0.70710689f },
{ 0.27059811f, -0.65328127f, 0.70710689f },
{ 0.49999982f, -0.49999997f, 0.70710689f },
{ 0.65328139f, -0.27059799f, 0.70710689f },
{ 0.92387956f, 0.00000000f, 0.38268343f },
{ 0.85355341f, 0.35355341f, 0.38268343f },
{ 0.65328151f, 0.65328151f, 0.38268343f },
{ 0.35355338f, 0.85355341f, 0.38268343f },
{ -0.00000004f, 0.92387956f, 0.38268343f },
{ -0.35355335f, 0.85355347f, 0.38268343f },
{ -0.65328151f, 0.65328151f, 0.38268343f },
{ -0.85355341f, 0.35355344f, 0.38268343f },
{ -0.92387956f, -0.00000008f, 0.38268343f },
{ -0.85355341f, -0.35355338f, 0.38268343f },
{ -0.65328157f, -0.65328145f, 0.38268343f },
{ -0.35355353f, -0.85355341f, 0.38268343f },
{ 0.00000001f, -0.92387956f, 0.38268343f },
{ 0.35355356f, -0.85355335f, 0.38268343f },
{ 0.65328139f, -0.65328163f, 0.38268343f },
{ 0.85355347f, -0.35355338f, 0.38268343f }
};
//old table
/*
vec3_t bytedirs[NUMVERTEXNORMALS] = {
{-0.525731f, 0.000000f, 0.850651f}
, {-0.442863f, 0.238856f, 0.864188f}
,
{-0.295242f, 0.000000f, 0.955423f}
, {-0.309017f, 0.500000f, 0.809017f}
,
{-0.162460f, 0.262866f, 0.951056f}
, {0.000000f, 0.000000f, 1.000000f}
,
{0.000000f, 0.850651f, 0.525731f}
, {-0.147621f, 0.716567f, 0.681718f}
,
{0.147621f, 0.716567f, 0.681718f}
, {0.000000f, 0.525731f, 0.850651f}
,
{0.309017f, 0.500000f, 0.809017f}
, {0.525731f, 0.000000f, 0.850651f}
,
{0.295242f, 0.000000f, 0.955423f}
, {0.442863f, 0.238856f, 0.864188f}
,
{0.162460f, 0.262866f, 0.951056f}
, {-0.681718f, 0.147621f, 0.716567f}
,
{-0.809017f, 0.309017f, 0.500000f}
, {-0.587785f, 0.425325f, 0.688191f}
,
{-0.850651f, 0.525731f, 0.000000f}
, {-0.864188f, 0.442863f, 0.238856f}
,
{-0.716567f, 0.681718f, 0.147621f}
, {-0.688191f, 0.587785f, 0.425325f}
,
{-0.500000f, 0.809017f, 0.309017f}
, {-0.238856f, 0.864188f, 0.442863f}
,
{-0.425325f, 0.688191f, 0.587785f}
, {-0.716567f, 0.681718f, -0.147621f}
,
{-0.500000f, 0.809017f, -0.309017f}
, {-0.525731f, 0.850651f, 0.000000f}
,
{0.000000f, 0.850651f, -0.525731f}
, {-0.238856f, 0.864188f, -0.442863f}
,
{0.000000f, 0.955423f, -0.295242f}
, {-0.262866f, 0.951056f, -0.162460f}
,
{0.000000f, 1.000000f, 0.000000f}
, {0.000000f, 0.955423f, 0.295242f}
,
{-0.262866f, 0.951056f, 0.162460f}
, {0.238856f, 0.864188f, 0.442863f}
,
{0.262866f, 0.951056f, 0.162460f}
, {0.500000f, 0.809017f, 0.309017f}
,
{0.238856f, 0.864188f, -0.442863f}
, {0.262866f, 0.951056f, -0.162460f}
,
{0.500000f, 0.809017f, -0.309017f}
, {0.850651f, 0.525731f, 0.000000f}
,
{0.716567f, 0.681718f, 0.147621f}
, {0.716567f, 0.681718f, -0.147621f}
,
{0.525731f, 0.850651f, 0.000000f}
, {0.425325f, 0.688191f, 0.587785f}
,
{0.864188f, 0.442863f, 0.238856f}
, {0.688191f, 0.587785f, 0.425325f}
,
{0.809017f, 0.309017f, 0.500000f}
, {0.681718f, 0.147621f, 0.716567f}
,
{0.587785f, 0.425325f, 0.688191f}
, {0.955423f, 0.295242f, 0.000000f}
,
{1.000000f, 0.000000f, 0.000000f}
, {0.951056f, 0.162460f, 0.262866f}
,
{0.850651f, -0.525731f, 0.000000f}
, {0.955423f, -0.295242f, 0.000000f}
,
{0.864188f, -0.442863f, 0.238856f}
, {0.951056f, -0.162460f, 0.262866f}
,
{0.809017f, -0.309017f, 0.500000f}
, {0.681718f, -0.147621f, 0.716567f}
,
{0.850651f, 0.000000f, 0.525731f}
, {0.864188f, 0.442863f, -0.238856f}
,
{0.809017f, 0.309017f, -0.500000f}
, {0.951056f, 0.162460f, -0.262866f}
,
{0.525731f, 0.000000f, -0.850651f}
, {0.681718f, 0.147621f, -0.716567f}
,
{0.681718f, -0.147621f, -0.716567f}
, {0.850651f, 0.000000f, -0.525731f}
,
{0.809017f, -0.309017f, -0.500000f}
, {0.864188f, -0.442863f, -0.238856f}
,
{0.951056f, -0.162460f, -0.262866f}
, {0.147621f, 0.716567f, -0.681718f}
,
{0.309017f, 0.500000f, -0.809017f}
, {0.425325f, 0.688191f, -0.587785f}
,
{0.442863f, 0.238856f, -0.864188f}
, {0.587785f, 0.425325f, -0.688191f}
,
{0.688191f, 0.587785f, -0.425325f}
, {-0.147621f, 0.716567f, -0.681718f}
,
{-0.309017f, 0.500000f, -0.809017f}
, {0.000000f, 0.525731f, -0.850651f}
,
{-0.525731f, 0.000000f, -0.850651f}
, {-0.442863f, 0.238856f, -0.864188f}
,
{-0.295242f, 0.000000f, -0.955423f}
, {-0.162460f, 0.262866f, -0.951056f}
,
{0.000000f, 0.000000f, -1.000000f}
, {0.295242f, 0.000000f, -0.955423f}
,
{0.162460f, 0.262866f, -0.951056f}
, {-0.442863f, -0.238856f, -0.864188f}
,
{-0.309017f, -0.500000f, -0.809017f}
, {-0.162460f, -0.262866f, -0.951056f}
,
{0.000000f, -0.850651f, -0.525731f}
, {-0.147621f, -0.716567f, -0.681718f}
,
{0.147621f, -0.716567f, -0.681718f}
, {0.000000f, -0.525731f, -0.850651f}
,
{0.309017f, -0.500000f, -0.809017f}
, {0.442863f, -0.238856f, -0.864188f}
,
{0.162460f, -0.262866f, -0.951056f}
, {0.238856f, -0.864188f, -0.442863f}
,
{0.500000f, -0.809017f, -0.309017f}
, {0.425325f, -0.688191f, -0.587785f}
,
{0.716567f, -0.681718f, -0.147621f}
, {0.688191f, -0.587785f, -0.425325f}
,
{0.587785f, -0.425325f, -0.688191f}
, {0.000000f, -0.955423f, -0.295242f}
,
{0.000000f, -1.000000f, 0.000000f}
, {0.262866f, -0.951056f, -0.162460f}
,
{0.000000f, -0.850651f, 0.525731f}
, {0.000000f, -0.955423f, 0.295242f}
,
{0.238856f, -0.864188f, 0.442863f}
, {0.262866f, -0.951056f, 0.162460f}
,
{0.500000f, -0.809017f, 0.309017f}
, {0.716567f, -0.681718f, 0.147621f}
,
{0.525731f, -0.850651f, 0.000000f}
, {-0.238856f, -0.864188f, -0.442863f}
,
{-0.500000f, -0.809017f, -0.309017f}
, {-0.262866f, -0.951056f, -0.162460f}
,
{-0.850651f, -0.525731f, 0.000000f}
, {-0.716567f, -0.681718f, -0.147621f}
,
{-0.716567f, -0.681718f, 0.147621f}
, {-0.525731f, -0.850651f, 0.000000f}
,
{-0.500000f, -0.809017f, 0.309017f}
, {-0.238856f, -0.864188f, 0.442863f}
,
{-0.262866f, -0.951056f, 0.162460f}
, {-0.864188f, -0.442863f, 0.238856f}
,
{-0.809017f, -0.309017f, 0.500000f}
, {-0.688191f, -0.587785f, 0.425325f}
,
{-0.681718f, -0.147621f, 0.716567f}
, {-0.442863f, -0.238856f, 0.864188f}
,
{-0.587785f, -0.425325f, 0.688191f}
, {-0.309017f, -0.500000f, 0.809017f}
,
{-0.147621f, -0.716567f, 0.681718f}
, {-0.425325f, -0.688191f, 0.587785f}
,
{-0.162460f, -0.262866f, 0.951056f}
, {0.442863f, -0.238856f, 0.864188f}
,
{0.162460f, -0.262866f, 0.951056f}
, {0.309017f, -0.500000f, 0.809017f}
,
{0.147621f, -0.716567f, 0.681718f}
, {0.000000f, -0.525731f, 0.850651f}
,
{0.425325f, -0.688191f, 0.587785f}
, {0.587785f, -0.425325f, 0.688191f}
,
{0.688191f, -0.587785f, 0.425325f}
, {-0.955423f, 0.295242f, 0.000000f}
,
{-0.951056f, 0.162460f, 0.262866f}
, {-1.000000f, 0.000000f, 0.000000f}
,
{-0.850651f, 0.000000f, 0.525731f}
, {-0.955423f, -0.295242f, 0.000000f}
,
{-0.951056f, -0.162460f, 0.262866f}
, {-0.864188f, 0.442863f, -0.238856f}
,
{-0.951056f, 0.162460f, -0.262866f}
, {-0.809017f, 0.309017f, -0.500000f}
,
{-0.864188f, -0.442863f, -0.238856f}
, {-0.951056f, -0.162460f, -0.262866f}
,
{-0.809017f, -0.309017f, -0.500000f}
, {-0.681718f, 0.147621f, -0.716567f}
,
{-0.681718f, -0.147621f, -0.716567f}
, {-0.850651f, 0.000000f, -0.525731f}
,
{-0.688191f, 0.587785f, -0.425325f}
, {-0.587785f, 0.425325f, -0.688191f}
,
{-0.425325f, 0.688191f, -0.587785f}
, {-0.425325f, -0.688191f, -0.587785f}
,
{-0.587785f, -0.425325f, -0.688191f}
, {-0.688191f, -0.587785f, -0.425325f}
};
*/
//==============================================================
int Q_rand(int *seed)
{
*seed = (69069 * *seed + 1);
return *seed;
}
float Q_random(int *seed)
{
return (Q_rand(seed) & 0xffff) / (float) 0x10000;
}
float Q_crandom(int *seed)
{
return 2.0 * (Q_random(seed) - 0.5);
}
#ifdef __LCC__
int VectorCompare(const vec3_t v1, const vec3_t v2)
{
if (v1[0] != v2[0] || v1[1] != v2[1] || v1[2] != v2[2]) {
return 0;
}
return 1;
}
vec_t VectorLength(const vec3_t v)
{
return (vec_t) sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
}
vec_t VectorLengthSquared(const vec3_t v)
{
return (v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
}
vec_t Distance(const vec3_t p1, const vec3_t p2)
{
vec3_t v;
VectorSubtract(p2, p1, v);
return VectorLength(v);
}
vec_t DistanceSquared(const vec3_t p1, const vec3_t p2)
{
vec3_t v;
VectorSubtract(p2, p1, v);
return v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
}
// fast vector normalize routine that does not check to make sure
// that length != 0, nor does it return length, uses rsqrt approximation
void VectorNormalizeFast(vec3_t v)
{
float ilength;
ilength = Q_rsqrt(DotProduct(v, v));
v[0] *= ilength;
v[1] *= ilength;
v[2] *= ilength;
}
void VectorInverse(vec3_t v)
{
v[0] = -v[0];
v[1] = -v[1];
v[2] = -v[2];
}
void CrossProduct(const vec3_t v1, const vec3_t v2, vec3_t cross)
{
cross[0] = v1[1] * v2[2] - v1[2] * v2[1];
cross[1] = v1[2] * v2[0] - v1[0] * v2[2];
cross[2] = v1[0] * v2[1] - v1[1] * v2[0];
}
#endif
//=======================================================
signed char ClampChar(int i)
{
if (i < -128) {
return -128;
}
if (i > 127) {
return 127;
}
return i;
}
signed short ClampShort(int i)
{
if (i < -32768) {
return -32768;
}
if (i > 0x7fff) {
return 0x7fff;
}
return i;
}
//Makro - new function
int DirToByte(vec3_t dir)
{
vec3_t angles;
vectoangles(dir, angles);
return ((int) (angles[YAW] * 16 / 360.0f) & 15) | ((((int) (angles[PITCH] * 16 / 360.0f)) & 15) << 4);
}
//old function
// this isn't a real cheap function to call!
/*
int DirToByte(vec3_t dir)
{
int i, best;
float d, bestd;
if (!dir) {
return 0;
}
bestd = 0;
best = 0;
for (i = 0; i < NUMVERTEXNORMALS; i++) {
d = DotProduct(dir, bytedirs[i]);
if (d > bestd) {
bestd = d;
best = i;
}
}
return best;
}
*/
void ByteToDir(int b, vec3_t dir)
{
if (b < 0 || b >= NUMVERTEXNORMALS) {
VectorCopy(vec3_origin, dir);
return;
}
VectorCopy(bytedirs[b], dir);
}
unsigned ColorBytes3(float r, float g, float b)
{
unsigned i;
((byte *) & i)[0] = r * 255;
((byte *) & i)[1] = g * 255;
((byte *) & i)[2] = b * 255;
return i;
}
unsigned ColorBytes4(float r, float g, float b, float a)
{
unsigned i;
((byte *) & i)[0] = r * 255;
((byte *) & i)[1] = g * 255;
((byte *) & i)[2] = b * 255;
((byte *) & i)[3] = a * 255;
return i;
}
float NormalizeColor(const vec3_t in, vec3_t out)
{
float max;
max = in[0];
if (in[1] > max) {
max = in[1];
}
if (in[2] > max) {
max = in[2];
}
if (!max) {
VectorClear(out);
} else {
out[0] = in[0] / max;
out[1] = in[1] / max;
out[2] = in[2] / max;
}
return max;
}
/*
=====================
PlaneFromPoints
Returns false if the triangle is degenrate.
The normal will point out of the clock for clockwise ordered points
=====================
*/
qboolean PlaneFromPoints(vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c)
{
vec3_t d1, d2;
VectorSubtract(b, a, d1);
VectorSubtract(c, a, d2);
CrossProduct(d2, d1, plane);
if (VectorNormalize(plane) == 0) {
return qfalse;
}
plane[3] = DotProduct(a, plane);
return qtrue;
}
/*
===============
RotatePointAroundVector
This is not implemented very well...
===============
*/
void RotatePointAroundVector(vec3_t dst, const vec3_t dir, const vec3_t point, float degrees)
{
float m[3][3];
float im[3][3];
float zrot[3][3];
float tmpmat[3][3];
float rot[3][3];
int i;
vec3_t vr, vup, vf;
float rad;
vf[0] = dir[0];
vf[1] = dir[1];
vf[2] = dir[2];
PerpendicularVector(vr, dir);
CrossProduct(vr, vf, vup);
m[0][0] = vr[0];
m[1][0] = vr[1];
m[2][0] = vr[2];
m[0][1] = vup[0];
m[1][1] = vup[1];
m[2][1] = vup[2];
m[0][2] = vf[0];
m[1][2] = vf[1];
m[2][2] = vf[2];
memcpy(im, m, sizeof(im));
im[0][1] = m[1][0];
im[0][2] = m[2][0];
im[1][0] = m[0][1];
im[1][2] = m[2][1];
im[2][0] = m[0][2];
im[2][1] = m[1][2];
memset(zrot, 0, sizeof(zrot));
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
rad = DEG2RAD(degrees);
zrot[0][0] = cos(rad);
zrot[0][1] = sin(rad);
zrot[1][0] = -sin(rad);
zrot[1][1] = cos(rad);
MatrixMultiply(m, zrot, tmpmat);
MatrixMultiply(tmpmat, im, rot);
for (i = 0; i < 3; i++) {
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
}
}
/*
===============
RotateAroundDirection
===============
*/
void RotateAroundDirection(vec3_t axis[3], float yaw)
{
// create an arbitrary axis[1]
PerpendicularVector(axis[1], axis[0]);
// rotate it around axis[0] by yaw
if (yaw) {
vec3_t temp;
VectorCopy(axis[1], temp);
RotatePointAroundVector(axis[1], axis[0], temp, yaw);
}
// cross to get axis[2]
CrossProduct(axis[0], axis[1], axis[2]);
}
void vectoangles(const vec3_t value1, vec3_t angles)
{
float forward;
float yaw, pitch;
if (value1[1] == 0 && value1[0] == 0) {
yaw = 0;
if (value1[2] > 0) {
pitch = 90;
} else {
pitch = 270;
}
} else {
if (value1[0]) {
yaw = (atan2(value1[1], value1[0]) * 180 / M_PI);
} else if (value1[1] > 0) {
yaw = 90;
} else {
yaw = 270;
}
if (yaw < 0) {
yaw += 360;
}
forward = sqrt(value1[0] * value1[0] + value1[1] * value1[1]);
pitch = (atan2(value1[2], forward) * 180 / M_PI);
if (pitch < 0) {
pitch += 360;
}
}
angles[PITCH] = -pitch;
angles[YAW] = yaw;
angles[ROLL] = 0;
}
/*
=================
AnglesToAxis
=================
*/
void AnglesToAxis(const vec3_t angles, vec3_t axis[3])
{
vec3_t right;
// angle vectors returns "right" instead of "y axis"
AngleVectors(angles, axis[0], right, axis[2]);
VectorSubtract(vec3_origin, right, axis[1]);
}
void AxisClear(vec3_t axis[3])
{
axis[0][0] = 1;
axis[0][1] = 0;
axis[0][2] = 0;
axis[1][0] = 0;
axis[1][1] = 1;
axis[1][2] = 0;
axis[2][0] = 0;
axis[2][1] = 0;
axis[2][2] = 1;
}
void AxisCopy(vec3_t in[3], vec3_t out[3])
{
VectorCopy(in[0], out[0]);
VectorCopy(in[1], out[1]);
VectorCopy(in[2], out[2]);
}
void ProjectPointOnPlane(vec3_t dst, const vec3_t p, const vec3_t normal)
{
float d;
vec3_t n;
float inv_denom;
inv_denom = DotProduct(normal, normal);
#ifndef Q3_VM
assert(Q_fabs(inv_denom) != 0.0f); // bk010122 - zero vectors get here
#endif
inv_denom = 1.0f / inv_denom;
d = DotProduct(normal, p) * inv_denom;
n[0] = normal[0] * inv_denom;
n[1] = normal[1] * inv_denom;
n[2] = normal[2] * inv_denom;
dst[0] = p[0] - d * n[0];
dst[1] = p[1] - d * n[1];
dst[2] = p[2] - d * n[2];
}
/*
================
MakeNormalVectors
Given a normalized forward vector, create two
other perpendicular vectors
================
*/
void MakeNormalVectors(const vec3_t forward, vec3_t right, vec3_t up)
{
float d;
// this rotate and negate guarantees a vector
// not colinear with the original
right[1] = -forward[0];
right[2] = forward[1];
right[0] = forward[2];
d = DotProduct(right, forward);
VectorMA(right, -d, forward, right);
VectorNormalize(right);
CrossProduct(right, forward, up);
}
void VectorRotate(vec3_t in, vec3_t matrix[3], vec3_t out)
{
out[0] = DotProduct(in, matrix[0]);
out[1] = DotProduct(in, matrix[1]);
out[2] = DotProduct(in, matrix[2]);
}
//============================================================================
#if !idppc
/*
** float q_rsqrt( float number )
*/
float Q_rsqrt(float number)
{
long i;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
i = *(long *) &y; // evil floating point bit level hacking
i = 0x5f3759df - (i >> 1); // what the fuck?
y = *(float *) &i;
y = y * (threehalfs - (x2 * y * y)); // 1st iteration
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
#ifndef Q3_VM
#ifdef __linux__
assert(!isnan(y)); // bk010122 - FPE?
#endif
#endif
return y;
}
float Q_fabs(float f)
{
int tmp = *(int *) &f;
tmp &= 0x7FFFFFFF;
return *(float *) &tmp;
}
#endif
//============================================================
/*
===============
LerpAngle
===============
*/
float LerpAngle(float from, float to, float frac)
{
float a;
if (to - from > 180) {
to -= 360;
}
if (to - from < -180) {
to += 360;
}
a = from + frac * (to - from);
return a;
}
/*
=================
AngleSubtract
Always returns a value from -180 to 180
=================
*/
float AngleSubtract(float a1, float a2)
{
float a;
a = a1 - a2;
while (a > 180) {
a -= 360;
}
while (a < -180) {
a += 360;
}
return a;
}
void AnglesSubtract(vec3_t v1, vec3_t v2, vec3_t v3)
{
v3[0] = AngleSubtract(v1[0], v2[0]);
v3[1] = AngleSubtract(v1[1], v2[1]);
v3[2] = AngleSubtract(v1[2], v2[2]);
}
float AngleMod(float a)
{
a = (360.0 / 65536) * ((int) (a * (65536 / 360.0)) & 65535);
return a;
}
/*
=================
AngleNormalize360
returns angle normalized to the range [0 <= angle < 360]
=================
*/
float AngleNormalize360(float angle)
{
return (360.0 / 65536) * ((int) (angle * (65536 / 360.0)) & 65535);
}
/*
=================
AngleNormalize180
returns angle normalized to the range [-180 < angle <= 180]
=================
*/
float AngleNormalize180(float angle)
{
angle = AngleNormalize360(angle);
if (angle > 180.0) {
angle -= 360.0;
}
return angle;
}
/*
=================
AngleDelta
returns the normalized delta from angle1 to angle2
=================
*/
float AngleDelta(float angle1, float angle2)
{
return AngleNormalize180(angle1 - angle2);
}
//============================================================
/*
=================
SetPlaneSignbits
=================
*/
void SetPlaneSignbits(cplane_t * out)
{
int bits, j;
// for fast box on planeside test
bits = 0;
for (j = 0; j < 3; j++) {
if (out->normal[j] < 0) {
bits |= 1 << j;
}
}
out->signbits = bits;
}
/*
==================
BoxOnPlaneSide
Returns 1, 2, or 1 + 2
// this is the slow, general version
int BoxOnPlaneSide2 (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
int i;
float dist1, dist2;
int sides;
vec3_t corners[2];
for (i=0 ; i<3 ; i++)
{
if (p->normal[i] < 0)
{
corners[0][i] = emins[i];
corners[1][i] = emaxs[i];
}
else
{
corners[1][i] = emins[i];
corners[0][i] = emaxs[i];
}
}
dist1 = DotProduct (p->normal, corners[0]) - p->dist;
dist2 = DotProduct (p->normal, corners[1]) - p->dist;
sides = 0;
if (dist1 >= 0)
sides = 1;
if (dist2 < 0)
sides |= 2;
return sides;
}
==================
*/
#if !( (defined __linux__ || __FreeBSD__) && (defined __i386__) && (!defined C_ONLY)) // rb010123
#if defined __LCC__ || defined C_ONLY || !id386 || defined __VECTORC
int BoxOnPlaneSide(vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
float dist1, dist2;
int sides;
// fast axial cases
if (p->type < 3) {
if (p->dist <= emins[p->type])
return 1;
if (p->dist >= emaxs[p->type])
return 2;
return 3;
}
// general case
switch (p->signbits) {
case 0:
dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2];
dist2 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2];
break;
case 1:
dist1 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2];
dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2];
break;
case 2:
dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2];
dist2 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2];
break;
case 3:
dist1 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2];
dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2];
break;
case 4:
dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2];
dist2 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2];
break;
case 5:
dist1 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2];
dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2];
break;
case 6:
dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2];
dist2 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2];
break;
case 7:
dist1 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2];
dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2];
break;
default:
dist1 = dist2 = 0; // shut up compiler
break;
}
sides = 0;
if (dist1 >= p->dist)
sides = 1;
if (dist2 < p->dist)
sides |= 2;
return sides;
}
#else
#pragma warning( disable: 4035 )
__declspec(naked)
int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
static int bops_initialized;
static int Ljmptab[8];
__asm {
push ebx
cmp bops_initialized, 1
je initialized
mov bops_initialized, 1
mov Ljmptab[0*4], offset Lcase0
mov Ljmptab[1*4], offset Lcase1
mov Ljmptab[2*4], offset Lcase2
mov Ljmptab[3*4], offset Lcase3
mov Ljmptab[4*4], offset Lcase4
mov Ljmptab[5*4], offset Lcase5
mov Ljmptab[6*4], offset Lcase6
mov Ljmptab[7*4], offset Lcase7
initialized:
mov edx,dword ptr[4+12+esp]
mov ecx,dword ptr[4+4+esp]
xor eax,eax
mov ebx,dword ptr[4+8+esp]
mov al,byte ptr[17+edx]
cmp al,8
jge Lerror
fld dword ptr[0+edx]
fld st(0)
jmp dword ptr[Ljmptab+eax*4]
Lcase0:
fmul dword ptr[ebx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ecx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ebx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase1:
fmul dword ptr[ecx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ebx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ebx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase2:
fmul dword ptr[ebx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ecx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ecx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase3:
fmul dword ptr[ecx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ebx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ecx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase4:
fmul dword ptr[ebx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ecx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ebx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase5:
fmul dword ptr[ecx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ebx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ebx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase6:
fmul dword ptr[ebx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ecx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ecx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase7:
fmul dword ptr[ecx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ebx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ecx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
LSetSides:
faddp st(2),st(0)
fcomp dword ptr[12+edx]
xor ecx,ecx
fnstsw ax
fcomp dword ptr[12+edx]
and ah,1
xor ah,1
add cl,ah
fnstsw ax
and ah,1
add ah,ah
add cl,ah
pop ebx
mov eax,ecx
ret
Lerror:
int 3
}
}
#pragma warning( default: 4035 )
#endif
#endif
/*
=================
RadiusFromBounds
=================
*/ float RadiusFromBounds(const vec3_t mins, const vec3_t maxs)
{
int i;
vec3_t corner;
float a, b;
for (i = 0; i < 3; i++) {
a = fabs(mins[i]);
b = fabs(maxs[i]);
corner[i] = a > b ? a : b;
}
return VectorLength(corner);
}
void ClearBounds(vec3_t mins, vec3_t maxs)
{
mins[0] = mins[1] = mins[2] = 99999;
maxs[0] = maxs[1] = maxs[2] = -99999;
}
void AddPointToBounds(const vec3_t v, vec3_t mins, vec3_t maxs)
{
if (v[0] < mins[0]) {
mins[0] = v[0];
}
if (v[0] > maxs[0]) {
maxs[0] = v[0];
}
if (v[1] < mins[1]) {
mins[1] = v[1];
}
if (v[1] > maxs[1]) {
maxs[1] = v[1];
}
if (v[2] < mins[2]) {
mins[2] = v[2];
}
if (v[2] > maxs[2]) {
maxs[2] = v[2];
}
}
vec_t VectorNormalize(vec3_t v)
{
float length, ilength;
length = v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
length = sqrt(length);
if (length) {
ilength = 1 / length;
v[0] *= ilength;
v[1] *= ilength;
v[2] *= ilength;
}
return length;
}
vec_t VectorNormalize2(const vec3_t v, vec3_t out)
{
float length, ilength;
length = v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
length = sqrt(length);
if (length) {
#ifndef Q3_VM // bk0101022 - FPE related
// assert( ((Q_fabs(v[0])!=0.0f) || (Q_fabs(v[1])!=0.0f) || (Q_fabs(v[2])!=0.0f)) );
#endif
ilength = 1 / length;
out[0] = v[0] * ilength;
out[1] = v[1] * ilength;
out[2] = v[2] * ilength;
} else {
#ifndef Q3_VM // bk0101022 - FPE related
// assert( ((Q_fabs(v[0])==0.0f) && (Q_fabs(v[1])==0.0f) && (Q_fabs(v[2])==0.0f)) );
#endif
VectorClear(out);
}
return length;
}
void _VectorMA(const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc)
{
vecc[0] = veca[0] + scale * vecb[0];
vecc[1] = veca[1] + scale * vecb[1];
vecc[2] = veca[2] + scale * vecb[2];
}
vec_t _DotProduct(const vec3_t v1, const vec3_t v2)
{
return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
}
void _VectorSubtract(const vec3_t veca, const vec3_t vecb, vec3_t out)
{
out[0] = veca[0] - vecb[0];
out[1] = veca[1] - vecb[1];
out[2] = veca[2] - vecb[2];
}
void _VectorAdd(const vec3_t veca, const vec3_t vecb, vec3_t out)
{
out[0] = veca[0] + vecb[0];
out[1] = veca[1] + vecb[1];
out[2] = veca[2] + vecb[2];
}
void _VectorCopy(const vec3_t in, vec3_t out)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
}
void _VectorScale(const vec3_t in, vec_t scale, vec3_t out)
{
out[0] = in[0] * scale;
out[1] = in[1] * scale;
out[2] = in[2] * scale;
}
void Vector4Scale(const vec4_t in, vec_t scale, vec4_t out)
{
out[0] = in[0] * scale;
out[1] = in[1] * scale;
out[2] = in[2] * scale;
out[3] = in[3] * scale;
}
int Q_log2(int val)
{
int answer;
answer = 0;
while ((val >>= 1) != 0) {
answer++;
}
return answer;
}
/*
=================
PlaneTypeForNormal
=================
*/
/*
int PlaneTypeForNormal (vec3_t normal) {
if ( normal[0] == 1.0 )
return PLANE_X;
if ( normal[1] == 1.0 )
return PLANE_Y;
if ( normal[2] == 1.0 )
return PLANE_Z;
return PLANE_NON_AXIAL;
}
*/
/*
================
MatrixMultiply
================
*/
void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3])
{
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0];
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1];
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2];
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0];
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1];
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2];
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0];
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1];
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2];
}
void AngleVectors(const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
{
float angle;
static float sr, sp, sy, cr, cp, cy;
// static to help MS compiler fp bugs
angle = angles[YAW] * (M_PI * 2 / 360);
sy = sin(angle);
cy = cos(angle);
angle = angles[PITCH] * (M_PI * 2 / 360);
sp = sin(angle);
cp = cos(angle);
angle = angles[ROLL] * (M_PI * 2 / 360);
sr = sin(angle);
cr = cos(angle);
if (forward) {
forward[0] = cp * cy;
forward[1] = cp * sy;
forward[2] = -sp;
}
if (right) {
right[0] = (-1 * sr * sp * cy + -1 * cr * -sy);
right[1] = (-1 * sr * sp * sy + -1 * cr * cy);
right[2] = -1 * sr * cp;
}
if (up) {
up[0] = (cr * sp * cy + -sr * -sy);
up[1] = (cr * sp * sy + -sr * cy);
up[2] = cr * cp;
}
}
/*
** assumes "src" is normalized
*/
void PerpendicularVector(vec3_t dst, const vec3_t src)
{
int pos;
int i;
float minelem = 1.0F;
vec3_t tempvec;
/*
** find the smallest magnitude axially aligned vector
*/
for (pos = 0, i = 0; i < 3; i++) {
if (fabs(src[i]) < minelem) {
pos = i;
minelem = fabs(src[i]);
}
}
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
tempvec[pos] = 1.0F;
/*
** project the point onto the plane defined by src
*/
ProjectPointOnPlane(dst, tempvec, src);
/*
** normalize the result
*/
VectorNormalize(dst);
}
// By NiceAss. Used for reflection of sparks on metal surfaces
int ReflectVectorByte(vec3_t dir, vec3_t plane)
{
vec3_t final;
float dot;
dot = DotProduct(dir, plane);
VectorMA(dir, -2 * dot, plane, final);
return DirToByte(final);
}
//Makro - added
void ChangeRefSystem(vec3_t in, vec3_t neworg, vec3_t newaxis[], vec3_t out)
{
vec3_t result;
VectorScale(newaxis[0], in[0], result);
VectorMA(result, in[1], newaxis[1], result);
VectorMA(result, in[2], newaxis[2], result);
if (neworg)
VectorAdd(result, neworg, result);
VectorCopy(result, out);
}
//Makro - added
void ChangeBackRefSystem(vec3_t in, vec3_t neworg, vec3_t newaxis[], vec3_t out)
{
vec3_t dif;
if (neworg)
VectorSubtract(in, neworg, dif);
else
VectorCopy(in, dif);
out[0] = DotProduct(dif, newaxis[0]);
out[1] = DotProduct(dif, newaxis[1]);
out[2] = DotProduct(dif, newaxis[2]);
}
void ChangeAngleRefSystem(vec3_t in, vec3_t newaxis[], vec3_t out)
{
vec3_t result;
/*
result[YAW_AXIS] = in[YAW];
result[PITCH_AXIS] = in[PITCH];
result[ROLL_AXIS] = in[ROLL];
VectorCopy(result, in);
*/
VectorMA(vec3_origin, in[YAW], newaxis[YAW_AXIS], result);
VectorMA(result, in[PITCH], newaxis[PITCH_AXIS], result);
VectorMA(result, in[ROLL], newaxis[ROLL_AXIS], result);
//VectorCopy(result, out);
out[YAW] = result[YAW_AXIS];
out[PITCH] = result[PITCH_AXIS];
out[ROLL] = result[ROLL_AXIS];
//VectorCopy(in, out);
}
void ToAxisAngles(vec3_t in, vec3_t out)
{
vec3_t angles, result, forward;
VectorClear(result);
//yaw - around the Z axis
result[YAW_AXIS] = in[YAW];
//pitch - around the new Y axis
angles[YAW] = in[YAW];
angles[PITCH] = angles[ROLL] = 0;
AngleVectors(angles, NULL, forward, NULL);
VectorMA(result, -in[PITCH], forward, result);
result[PITCH_AXIS] = in[PITCH];
//roll - around the new X axis
angles[PITCH] = in[PITCH];
AngleVectors(angles, forward, NULL, NULL);
VectorMA(result, in[ROLL], forward, result);
VectorCopy(result, out);
}