//----------------------------------------------------------------------------- // // $Id$ // //----------------------------------------------------------------------------- // // $Log$ // Revision 1.2 2002/08/25 19:19:49 jbravo // Added cg_atmospheric to the Linux Makefile and added a CVS header to // cg_atmospheric and indented it like the other files. // // //----------------------------------------------------------------------------- /* ** Copyright (C) 2000, 2001 by the Q3F Development team ** All rights reserved. ** ** cg_atmospheric.c ** ** Add atmospheric effects to view. ** ** Current supported effects are rain and snow. */ #include "cg_local.h" #define MAX_ATMOSPHERIC_PARTICLES 1000 // maximum # of particles #define MAX_ATMOSPHERIC_DISTANCE 1000 // maximum distance from refdef origin that particles are visible #define MAX_ATMOSPHERIC_HEIGHT 4096 // maximum world height (FIXME: since 1.27 this should be 65536) #define MIN_ATMOSPHERIC_HEIGHT -4096 // minimum world height (FIXME: since 1.27 this should be -65536) #define MAX_ATMOSPHERIC_EFFECTSHADERS 6 // maximum different effectshaders for an atmospheric effect #define ATMOSPHERIC_DROPDELAY 1000 #define ATMOSPHERIC_CUTHEIGHT 800 #define ATMOSPHERIC_RAIN_SPEED 1.1f * DEFAULT_GRAVITY #define ATMOSPHERIC_RAIN_HEIGHT 150 #define ATMOSPHERIC_SNOW_SPEED 0.1f * DEFAULT_GRAVITY #define ATMOSPHERIC_SNOW_HEIGHT 10 typedef struct cg_atmosphericParticle_s { vec3_t pos, delta, deltaNormalized, colour, surfacenormal; float height, minz, weight; qboolean active; int contents, surface, nextDropTime; qhandle_t *effectshader; } cg_atmosphericParticle_t; typedef struct cg_atmosphericEffect_s { cg_atmosphericParticle_t particles[MAX_ATMOSPHERIC_PARTICLES]; qhandle_t effectshaders[MAX_ATMOSPHERIC_EFFECTSHADERS]; qhandle_t effectwatershader, effectlandshader; int lastRainTime, numDrops, gustStartTime, gustEndTime; int baseStartTime, baseEndTime, gustMinTime, gustMaxTime; int changeMinTime, changeMaxTime, baseMinTime, baseMaxTime; float baseWeight, gustWeight; int baseDrops, gustDrops, numEffectShaders; qboolean waterSplash, landSplash; vec3_t baseVec, gustVec; qboolean(*ParticleCheckVisible) (cg_atmosphericParticle_t * particle); qboolean(*ParticleGenerate) (cg_atmosphericParticle_t * particle, vec3_t currvec, float currweight); void (*ParticleRender) (cg_atmosphericParticle_t * particle); } cg_atmosphericEffect_t; static cg_atmosphericEffect_t cg_atmFx; /* ** Render utility functions */ void CG_EffectMark(qhandle_t markShader, const vec3_t origin, const vec3_t dir, float alpha, float radius) { // 'quick' version of the CG_ImpactMark function vec3_t axis[3], originalPoints[4]; float texCoordScale; byte colors[4]; int i; polyVert_t *v, verts[4]; if (!cg_addMarks.integer) { return; } if (radius <= 0) { CG_Error("CG_EffectMark called with <= 0 radius"); } // create the texture axis VectorNormalize2(dir, axis[0]); PerpendicularVector(axis[1], axis[0]); VectorSet(axis[2], 1, 0, 0); // This is _wrong_, but the function is for water anyway (i.e. usually flat) CrossProduct(axis[0], axis[2], axis[1]); texCoordScale = 0.5 * 1.0 / radius; // create the full polygon for (i = 0; i < 3; i++) { originalPoints[0][i] = origin[i] - radius * axis[1][i] - radius * axis[2][i]; originalPoints[1][i] = origin[i] + radius * axis[1][i] - radius * axis[2][i]; originalPoints[2][i] = origin[i] + radius * axis[1][i] + radius * axis[2][i]; originalPoints[3][i] = origin[i] - radius * axis[1][i] + radius * axis[2][i]; } colors[0] = 127; colors[1] = 127; colors[2] = 127; colors[3] = alpha * 255; for (i = 0, v = verts; i < 4; i++, v++) { vec3_t delta; VectorCopy(originalPoints[i], v->xyz); VectorSubtract(v->xyz, origin, delta); v->st[0] = 0.5 + DotProduct(delta, axis[1]) * texCoordScale; v->st[1] = 0.5 + DotProduct(delta, axis[2]) * texCoordScale; *(int *) v->modulate = *(int *) colors; } trap_R_AddPolyToScene(markShader, 4, verts); } /* ** Raindrop management functions */ static qboolean CG_RainParticleCheckVisible(cg_atmosphericParticle_t * particle) { // Check the raindrop is visible and still going, wrapping if necessary. float moved; vec3_t distance; if (!particle || !particle->active) return (qfalse); moved = (cg.time - cg_atmFx.lastRainTime) * 0.001; // Units moved since last frame VectorMA(particle->pos, moved, particle->delta, particle->pos); if (particle->pos[2] + ATMOSPHERIC_CUTHEIGHT < particle->minz) return (particle->active = qfalse); VectorSubtract(cg.refdef.vieworg, particle->pos, distance); if (sqrt(distance[0] * distance[0] + distance[1] * distance[1]) > MAX_ATMOSPHERIC_DISTANCE) return (particle->active = qfalse); return (qtrue); } static qboolean CG_RainParticleGenerate(cg_atmosphericParticle_t * particle, vec3_t currvec, float currweight) { // Attempt to 'spot' a raindrop somewhere below a sky texture. float angle, distance, origz; vec3_t testpoint, testend; trace_t tr; angle = random() * 2 * M_PI; distance = 20 + MAX_ATMOSPHERIC_DISTANCE * random(); testpoint[0] = testend[0] = cg.refdef.vieworg[0] + sin(angle) * distance; testpoint[1] = testend[1] = cg.refdef.vieworg[1] + cos(angle) * distance; testpoint[2] = origz = cg.refdef.vieworg[2]; testend[2] = testpoint[2] + MAX_ATMOSPHERIC_HEIGHT; while (1) { if (testpoint[2] >= MAX_ATMOSPHERIC_HEIGHT) return (qfalse); if (testend[2] >= MAX_ATMOSPHERIC_HEIGHT) testend[2] = MAX_ATMOSPHERIC_HEIGHT - 1; CG_Trace(&tr, testpoint, NULL, NULL, testend, ENTITYNUM_NONE, MASK_SOLID | MASK_WATER); if (tr.startsolid) // Stuck in something, skip over it. { testpoint[2] += 64; testend[2] = testpoint[2] + MAX_ATMOSPHERIC_HEIGHT; } else if (tr.fraction == 1) // Didn't hit anything, we're (probably) outside the world return (qfalse); else if (tr.surfaceFlags & SURF_SKY) // Hit sky, this is where we start. break; else return (qfalse); } particle->active = qtrue; particle->colour[0] = 0.6 + 0.2 * random(); particle->colour[1] = 0.6 + 0.2 * random(); particle->colour[2] = 0.6 + 0.2 * random(); VectorCopy(tr.endpos, particle->pos); VectorCopy(currvec, particle->delta); particle->delta[2] += crandom() * 100; VectorNormalize2(particle->delta, particle->deltaNormalized); particle->height = ATMOSPHERIC_RAIN_HEIGHT + crandom() * 100; particle->weight = currweight; particle->effectshader = &cg_atmFx.effectshaders[0]; distance = ((float) (tr.endpos[2] - MIN_ATMOSPHERIC_HEIGHT)) / -particle->delta[2]; VectorMA(tr.endpos, distance, particle->delta, testend); CG_Trace(&tr, particle->pos, NULL, NULL, testend, ENTITYNUM_NONE, MASK_SOLID | MASK_WATER); particle->minz = tr.endpos[2]; tr.endpos[2]--; VectorCopy(tr.plane.normal, particle->surfacenormal); particle->surface = tr.surfaceFlags; particle->contents = CG_PointContents(tr.endpos, ENTITYNUM_NONE); return (qtrue); } static void CG_RainParticleRender(cg_atmosphericParticle_t * particle) { // Draw a raindrop vec3_t forward, right; polyVert_t verts[4]; vec2_t line; float len, frac; vec3_t start, finish; if (!particle->active) return; VectorCopy(particle->pos, start); len = particle->height; if (start[2] <= particle->minz) { // Stop rain going through surfaces. len = particle->height - particle->minz + start[2]; frac = start[2]; VectorMA(start, len - particle->height, particle->deltaNormalized, start); if (!cg_lowEffects.integer) { frac = (ATMOSPHERIC_CUTHEIGHT - particle->minz + frac) / (float) ATMOSPHERIC_CUTHEIGHT; // Splash effects on different surfaces if (particle->contents & (CONTENTS_WATER | CONTENTS_SLIME)) { // Water splash if (cg_atmFx.effectwatershader && frac > 0 && frac < 1) CG_EffectMark(cg_atmFx.effectwatershader, start, particle->surfacenormal, frac * 0.5, 8 - frac * 8); } else if (!(particle->contents & CONTENTS_LAVA) && !(particle-> surface & (SURF_NODAMAGE | SURF_NOIMPACT | SURF_NOMARKS | SURF_SKY))) { // Solid splash if (cg_atmFx.effectlandshader && frac > 0 && frac < 1) CG_ImpactMark(cg_atmFx.effectlandshader, start, particle->surfacenormal, 0, 1, 1, 1, frac * 0.5, qfalse, 3 - frac * 2, qtrue); } } } if (len <= 0) return; VectorCopy(particle->deltaNormalized, forward); VectorMA(start, -len, forward, finish); line[0] = DotProduct(forward, cg.refdef.viewaxis[1]); line[1] = DotProduct(forward, cg.refdef.viewaxis[2]); VectorScale(cg.refdef.viewaxis[1], line[1], right); VectorMA(right, -line[0], cg.refdef.viewaxis[2], right); VectorNormalize(right); VectorMA(finish, particle->weight, right, verts[0].xyz); verts[0].st[0] = 1; verts[0].st[1] = 0; verts[0].modulate[0] = 255; verts[0].modulate[1] = 255; verts[0].modulate[2] = 255; verts[0].modulate[3] = 0; VectorMA(finish, -particle->weight, right, verts[1].xyz); verts[1].st[0] = 0; verts[1].st[1] = 0; verts[1].modulate[0] = 255; verts[1].modulate[1] = 255; verts[1].modulate[2] = 255; verts[1].modulate[3] = 0; VectorMA(start, -particle->weight, right, verts[2].xyz); verts[2].st[0] = 0; verts[2].st[1] = 1; verts[2].modulate[0] = 255; verts[2].modulate[1] = 255; verts[2].modulate[2] = 255; verts[2].modulate[3] = 127; VectorMA(start, particle->weight, right, verts[3].xyz); verts[3].st[0] = 1; verts[3].st[1] = 1; verts[3].modulate[0] = 255; verts[3].modulate[1] = 255; verts[3].modulate[2] = 255; verts[3].modulate[3] = 127; trap_R_AddPolyToScene(*particle->effectshader, 4, verts); } /* ** Snow management functions */ static qboolean CG_SnowParticleGenerate(cg_atmosphericParticle_t * particle, vec3_t currvec, float currweight) { // Attempt to 'spot' a raindrop somewhere below a sky texture. float angle, distance, origz; vec3_t testpoint, testend; trace_t tr; angle = random() * 2 * M_PI; distance = 20 + MAX_ATMOSPHERIC_DISTANCE * random(); testpoint[0] = testend[0] = cg.refdef.vieworg[0] + sin(angle) * distance; testpoint[1] = testend[1] = cg.refdef.vieworg[1] + cos(angle) * distance; testpoint[2] = origz = cg.refdef.vieworg[2]; testend[2] = testpoint[2] + MAX_ATMOSPHERIC_HEIGHT; while (1) { if (testpoint[2] >= MAX_ATMOSPHERIC_HEIGHT) return (qfalse); if (testend[2] >= MAX_ATMOSPHERIC_HEIGHT) testend[2] = MAX_ATMOSPHERIC_HEIGHT - 1; CG_Trace(&tr, testpoint, NULL, NULL, testend, ENTITYNUM_NONE, MASK_SOLID | MASK_WATER); if (tr.startsolid) // Stuck in something, skip over it. { testpoint[2] += 64; testend[2] = testpoint[2] + MAX_ATMOSPHERIC_HEIGHT; } else if (tr.fraction == 1) // Didn't hit anything, we're (probably) outside the world return (qfalse); else if (tr.surfaceFlags & SURF_SKY) // Hit sky, this is where we start. break; else return (qfalse); } particle->active = qtrue; particle->colour[0] = 0.6 + 0.2 * random(); particle->colour[1] = 0.6 + 0.2 * random(); particle->colour[2] = 0.6 + 0.2 * random(); VectorCopy(tr.endpos, particle->pos); VectorCopy(currvec, particle->delta); particle->delta[2] += crandom() * 25; VectorNormalize2(particle->delta, particle->deltaNormalized); particle->height = ATMOSPHERIC_SNOW_HEIGHT + crandom() * 8; particle->weight = particle->height * 0.5f; particle->effectshader = &cg_atmFx.effectshaders[(int) (random() * (cg_atmFx.numEffectShaders - 1))]; distance = ((float) (tr.endpos[2] - MIN_ATMOSPHERIC_HEIGHT)) / -particle->delta[2]; VectorMA(tr.endpos, distance, particle->delta, testend); CG_Trace(&tr, particle->pos, NULL, NULL, testend, ENTITYNUM_NONE, MASK_SOLID | MASK_WATER); particle->minz = tr.endpos[2]; tr.endpos[2]--; VectorCopy(tr.plane.normal, particle->surfacenormal); particle->surface = tr.surfaceFlags; particle->contents = CG_PointContents(tr.endpos, ENTITYNUM_NONE); return (qtrue); } static void CG_SnowParticleRender(cg_atmosphericParticle_t * particle) { // Draw a snowflake vec3_t forward, right; polyVert_t verts[4]; vec2_t line; float len, sinTumbling, cosTumbling, particleWidth; vec3_t start, finish; if (!particle->active) return; VectorCopy(particle->pos, start); sinTumbling = sin(particle->pos[2] * 0.03125f); cosTumbling = cos((particle->pos[2] + particle->pos[1]) * 0.03125f); start[0] += 24 * (1 - particle->deltaNormalized[2]) * sinTumbling; start[1] += 24 * (1 - particle->deltaNormalized[2]) * cosTumbling; len = particle->height; if (start[2] <= particle->minz) { // Stop snow going through surfaces. len = particle->height - particle->minz + start[2]; // frac = start[2]; VectorMA(start, len - particle->height, particle->deltaNormalized, start); } if (len <= 0) return; VectorCopy(particle->deltaNormalized, forward); VectorMA(start, -(len * sinTumbling), forward, finish); line[0] = DotProduct(forward, cg.refdef.viewaxis[1]); line[1] = DotProduct(forward, cg.refdef.viewaxis[2]); VectorScale(cg.refdef.viewaxis[1], line[1], right); VectorMA(right, -line[0], cg.refdef.viewaxis[2], right); VectorNormalize(right); particleWidth = cosTumbling * particle->weight; VectorMA(finish, particleWidth, right, verts[0].xyz); verts[0].st[0] = 1; verts[0].st[1] = 0; verts[0].modulate[0] = 255; verts[0].modulate[1] = 255; verts[0].modulate[2] = 255; verts[0].modulate[3] = 255; VectorMA(finish, -particleWidth, right, verts[1].xyz); verts[1].st[0] = 0; verts[1].st[1] = 0; verts[1].modulate[0] = 255; verts[1].modulate[1] = 255; verts[1].modulate[2] = 255; verts[1].modulate[3] = 255; VectorMA(start, -particleWidth, right, verts[2].xyz); verts[2].st[0] = 0; verts[2].st[1] = 1; verts[2].modulate[0] = 255; verts[2].modulate[1] = 255; verts[2].modulate[2] = 255; verts[2].modulate[3] = 255; VectorMA(start, particleWidth, right, verts[3].xyz); verts[3].st[0] = 1; verts[3].st[1] = 1; verts[3].modulate[0] = 255; verts[3].modulate[1] = 255; verts[3].modulate[2] = 255; verts[3].modulate[3] = 255; trap_R_AddPolyToScene(*particle->effectshader, 4, verts); } /* ** Set up gust parameters. */ static void CG_EffectGust( void ) { // Generate random values for the next gust int diff; cg_atmFx.baseEndTime = cg.time + cg_atmFx.baseMinTime + (rand() % (cg_atmFx.baseMaxTime - cg_atmFx.baseMinTime)); diff = cg_atmFx.changeMaxTime - cg_atmFx.changeMinTime; cg_atmFx.gustStartTime = cg_atmFx.baseEndTime + cg_atmFx.changeMinTime + (diff ? (rand() % diff) : 0); diff = cg_atmFx.gustMaxTime - cg_atmFx.gustMinTime; cg_atmFx.gustEndTime = cg_atmFx.gustStartTime + cg_atmFx.gustMinTime + (diff ? (rand() % diff) : 0); diff = cg_atmFx.changeMaxTime - cg_atmFx.changeMinTime; cg_atmFx.baseStartTime = cg_atmFx.gustEndTime + cg_atmFx.changeMinTime + (diff ? (rand() % diff) : 0); } static qboolean CG_EffectGustCurrent(vec3_t curr, float *weight, int *num) { // Calculate direction for new drops. vec3_t temp; float frac; if (cg.time < cg_atmFx.baseEndTime) { VectorCopy(cg_atmFx.baseVec, curr); *weight = cg_atmFx.baseWeight; *num = cg_atmFx.baseDrops; } else { VectorSubtract(cg_atmFx.gustVec, cg_atmFx.baseVec, temp); if (cg.time < cg_atmFx.gustStartTime) { frac = ((float) (cg.time - cg_atmFx.baseEndTime)) / ((float) (cg_atmFx.gustStartTime - cg_atmFx.baseEndTime)); VectorMA(cg_atmFx.baseVec, frac, temp, curr); *weight = cg_atmFx.baseWeight + (cg_atmFx.gustWeight - cg_atmFx.baseWeight) * frac; *num = cg_atmFx.baseDrops + ((float) (cg_atmFx.gustDrops - cg_atmFx.baseDrops)) * frac; } else if (cg.time < cg_atmFx.gustEndTime) { VectorCopy(cg_atmFx.gustVec, curr); *weight = cg_atmFx.gustWeight; *num = cg_atmFx.gustDrops; } else { frac = 1.0 - ((float) (cg.time - cg_atmFx.gustEndTime)) / ((float) (cg_atmFx.baseStartTime - cg_atmFx.gustEndTime)); VectorMA(cg_atmFx.baseVec, frac, temp, curr); *weight = cg_atmFx.baseWeight + (cg_atmFx.gustWeight - cg_atmFx.baseWeight) * frac; *num = cg_atmFx.baseDrops + ((float) (cg_atmFx.gustDrops - cg_atmFx.baseDrops)) * frac; if (cg.time >= cg_atmFx.baseStartTime) return (qtrue); } } return (qfalse); } static void CG_EP_ParseFloats(char *floatstr, float *f1, float *f2) { // Parse the float or floats char *middleptr; char buff[64]; Q_strncpyz(buff, floatstr, sizeof(buff)); for (middleptr = buff; *middleptr && *middleptr != ' '; middleptr++); if (*middleptr) { *middleptr++ = 0; *f1 = atof(floatstr); *f2 = atof(middleptr); } else { *f1 = *f2 = atof(floatstr); } } void CG_EffectParse(const char *effectstr) { // Split the string into it's component parts. float bmin, bmax, cmin, cmax, gmin, gmax, bdrop, gdrop, wsplash, lsplash; int count; char *startptr, *eqptr, *endptr, *type; char workbuff[128]; if (CG_AtmosphericKludge()) return; // Set up some default values cg_atmFx.baseVec[0] = cg_atmFx.baseVec[1] = 0; cg_atmFx.gustVec[0] = cg_atmFx.gustVec[1] = 100; bmin = 5; bmax = 10; cmin = 1; cmax = 1; gmin = 0; gmax = 2; bdrop = gdrop = 300; cg_atmFx.baseWeight = 0.7f; cg_atmFx.gustWeight = 1.5f; wsplash = 1; lsplash = 1; type = NULL; // Parse the parameter string Q_strncpyz(workbuff, effectstr, sizeof(workbuff)); for (startptr = workbuff; *startptr;) { for (eqptr = startptr; *eqptr && *eqptr != '=' && *eqptr != ','; eqptr++); if (!*eqptr) break; // No more string if (*eqptr == ',') { startptr = eqptr + 1; // Bad argument, continue continue; } *eqptr++ = 0; for (endptr = eqptr; *endptr && *endptr != ','; endptr++); if (*endptr) *endptr++ = 0; if (!type) { if (Q_stricmp(startptr, "T")) { cg_atmFx.numDrops = 0; CG_Printf("Atmospheric effect must start with a type.\n"); return; } if (!Q_stricmp(eqptr, "RAIN")) { type = "rain"; cg_atmFx.ParticleCheckVisible = &CG_RainParticleCheckVisible; cg_atmFx.ParticleGenerate = &CG_RainParticleGenerate; cg_atmFx.ParticleRender = &CG_RainParticleRender; cg_atmFx.baseVec[2] = cg_atmFx.gustVec[2] = -ATMOSPHERIC_RAIN_SPEED; } else if (!Q_stricmp(eqptr, "SNOW")) { type = "snow"; cg_atmFx.ParticleCheckVisible = &CG_RainParticleCheckVisible; cg_atmFx.ParticleGenerate = &CG_SnowParticleGenerate; cg_atmFx.ParticleRender = &CG_SnowParticleRender; cg_atmFx.baseVec[2] = cg_atmFx.gustVec[2] = -ATMOSPHERIC_SNOW_SPEED; } else { cg_atmFx.numDrops = 0; CG_Printf("Only effect type 'rain' and 'snow' are supported.\n"); return; } } else { if (!Q_stricmp(startptr, "B")) CG_EP_ParseFloats(eqptr, &bmin, &bmax); else if (!Q_stricmp(startptr, "C")) CG_EP_ParseFloats(eqptr, &cmin, &cmax); else if (!Q_stricmp(startptr, "G")) CG_EP_ParseFloats(eqptr, &gmin, &gmax); else if (!Q_stricmp(startptr, "BV")) CG_EP_ParseFloats(eqptr, &cg_atmFx.baseVec[0], &cg_atmFx.baseVec[1]); else if (!Q_stricmp(startptr, "GV")) CG_EP_ParseFloats(eqptr, &cg_atmFx.gustVec[0], &cg_atmFx.gustVec[1]); else if (!Q_stricmp(startptr, "W")) CG_EP_ParseFloats(eqptr, &cg_atmFx.baseWeight, &cg_atmFx.gustWeight); else if (!Q_stricmp(startptr, "S")) CG_EP_ParseFloats(eqptr, &wsplash, &lsplash); else if (!Q_stricmp(startptr, "D")) CG_EP_ParseFloats(eqptr, &bdrop, &gdrop); else CG_Printf("Unknown effect key '%s'.\n", startptr); } startptr = endptr; } if (!type) { // No effects cg_atmFx.numDrops = -1; return; } cg_atmFx.baseMinTime = 1000 * bmin; cg_atmFx.baseMaxTime = 1000 * bmax; cg_atmFx.changeMinTime = 1000 * cmin; cg_atmFx.changeMaxTime = 1000 * cmax; cg_atmFx.gustMinTime = 1000 * gmin; cg_atmFx.gustMaxTime = 1000 * gmax; cg_atmFx.baseDrops = bdrop; cg_atmFx.gustDrops = gdrop; cg_atmFx.waterSplash = wsplash; cg_atmFx.landSplash = lsplash; cg_atmFx.numDrops = (cg_atmFx.baseDrops > cg_atmFx.gustDrops) ? cg_atmFx.baseDrops : cg_atmFx.gustDrops; if (cg_atmFx.numDrops > MAX_ATMOSPHERIC_PARTICLES) cg_atmFx.numDrops = MAX_ATMOSPHERIC_PARTICLES; // Load graphics // Rain if (!Q_stricmp(type, "rain")) { cg_atmFx.numEffectShaders = 1; if (!(cg_atmFx.effectshaders[0] = trap_R_RegisterShader("gfx/atmosphere/raindrop"))) cg_atmFx.effectshaders[0] = -1; if (cg_atmFx.waterSplash) cg_atmFx.effectwatershader = trap_R_RegisterShader("gfx/atmosphere/raindropwater"); if (cg_atmFx.landSplash) cg_atmFx.effectlandshader = trap_R_RegisterShader("gfx/atmosphere/raindropsolid"); // Snow } else if (!Q_stricmp(type, "snow")) { for (cg_atmFx.numEffectShaders = 0; cg_atmFx.numEffectShaders < 6; cg_atmFx.numEffectShaders++) { if (! (cg_atmFx.effectshaders[cg_atmFx.numEffectShaders] = trap_R_RegisterShader(va("gfx/atmosphere/snowflake0%i", cg_atmFx.numEffectShaders)))) cg_atmFx.effectshaders[cg_atmFx.numEffectShaders] = -1; // we had some kind of a problem } cg_atmFx.waterSplash = 0; cg_atmFx.landSplash = 0; // This really should never happen } else cg_atmFx.numEffectShaders = 0; // Initialise atmospheric effect to prevent all particles falling at the start for (count = 0; count < cg_atmFx.numDrops; count++) cg_atmFx.particles[count].nextDropTime = ATMOSPHERIC_DROPDELAY + (rand() % ATMOSPHERIC_DROPDELAY); CG_EffectGust(); } /* ** Main render loop */ void CG_AddAtmosphericEffects() { // Add atmospheric effects (e.g. rain, snow etc.) to view int curr, max, currnum; cg_atmosphericParticle_t *particle; vec3_t currvec; float currweight; if (cg_atmFx.numDrops <= 0 || cg_atmFx.numEffectShaders == 0) return; max = cg_lowEffects.integer ? (cg_atmFx.numDrops >> 1) : cg_atmFx.numDrops; if (CG_EffectGustCurrent(currvec, &currweight, &currnum)) CG_EffectGust(); // Recalculate gust parameters for (curr = 0; curr < max; curr++) { particle = &cg_atmFx.particles[curr]; if (!cg_atmFx.ParticleCheckVisible(particle)) { // Effect has terminated / fallen from screen view if (!particle->nextDropTime) { // Stop rain being synchronized particle->nextDropTime = rand() % ATMOSPHERIC_DROPDELAY; } else if (currnum < curr || particle->nextDropTime > cg.time) continue; if (!cg_atmFx.ParticleGenerate(particle, currvec, currweight)) { // Ensure it doesn't attempt to generate every frame, to prevent // 'clumping' when there's only a small sky area available. particle->nextDropTime = cg.time + ATMOSPHERIC_DROPDELAY; continue; } } cg_atmFx.ParticleRender(particle); } cg_atmFx.lastRainTime = cg.time; } /* ** G_AtmosphericKludge */ static qboolean kludgeChecked, kludgeResult; qboolean CG_AtmosphericKludge() { // Activate effects for specified kludge maps that don't // have it specified for them. if (kludgeChecked) return (kludgeResult); kludgeChecked = qtrue; kludgeResult = qfalse; // NiceAss: apparently example code: // T=RAIN and T=SNOW are the two options /* if( !Q_stricmp( cgs.mapname, "maps/bank.bsp" ) ) { CG_EffectParse( "T=RAIN" ); return ( kludgeResult = qtrue ); } */ return (kludgeResult = qfalse); }