//----------------------------------------------------------------------------- // // $Id$ // //----------------------------------------------------------------------------- // // $Log$ // Revision 1.12 2005/09/08 03:47:35 jbravo // Fixing 'No newline at end of file' warnings // // Revision 1.11 2005/09/07 20:27:42 makro // Entity attachment trees // // Revision 1.10 2005/02/15 16:33:39 makro // Tons of updates (entity tree attachment system, UI vectors) // // Revision 1.9 2002/06/16 20:51:10 niceass // assembly code got messed up // // Revision 1.8 2002/06/16 20:06:14 jbravo // Reindented all the source files with "indent -kr -ut -i8 -l120 -lc120 -sob -bad -bap" // // Revision 1.7 2002/05/27 17:47:19 jbravo // Fixes and cleanups // // Revision 1.6 2002/05/27 06:55:02 niceass // reflection byte function for sparks // // Revision 1.5 2002/01/11 19:48:30 jbravo // Formatted the source in non DOS format. // // Revision 1.4 2001/12/31 16:28:42 jbravo // I made a Booboo with the Log tag. // // //----------------------------------------------------------------------------- // Copyright (C) 1999-2000 Id Software, Inc. // // q_math.c -- stateless support routines that are included in each code module #include "../qcommon/q_shared.h" vec3_t vec3_origin = { 0, 0, 0 }; vec3_t axisDefault[3] = { {1, 0, 0} , {0, 1, 0} , {0, 0, 1} }; vec4_t colorBlack = { 0, 0, 0, 1 }; vec4_t colorRed = { 1, 0, 0, 1 }; vec4_t colorGreen = { 0, 1, 0, 1 }; vec4_t colorBlue = { 0, 0, 1, 1 }; vec4_t colorYellow = { 1, 1, 0, 1 }; vec4_t colorMagenta = { 1, 0, 1, 1 }; vec4_t colorCyan = { 0, 1, 1, 1 }; vec4_t colorWhite = { 1, 1, 1, 1 }; vec4_t colorLtGrey = { 0.75, 0.75, 0.75, 1 }; vec4_t colorMdGrey = { 0.5, 0.5, 0.5, 1 }; vec4_t colorDkGrey = { 0.25, 0.25, 0.25, 1 }; vec4_t g_color_table[8] = { {0.0, 0.0, 0.0, 1.0} , {1.0, 0.0, 0.0, 1.0} , {0.0, 1.0, 0.0, 1.0} , {1.0, 1.0, 0.0, 1.0} , {0.0, 0.0, 1.0, 1.0} , {0.0, 1.0, 1.0, 1.0} , {1.0, 0.0, 1.0, 1.0} , {1.0, 1.0, 1.0, 1.0} , }; //Makro - new table; this allows for a much faster DirToByte function vec3_t bytedirs[NUMVERTEXNORMALS] = { { 1.00000000f, 0.00000000f, 0.00000000f }, { 0.92387950f, 0.38268346f, 0.00000000f }, { 0.70710677f, 0.70710677f, 0.00000000f }, { 0.38268343f, 0.92387950f, 0.00000000f }, { -0.00000004f, 1.00000000f, 0.00000000f }, { -0.38268340f, 0.92387956f, 0.00000000f }, { -0.70710677f, 0.70710677f, 0.00000000f }, { -0.92387950f, 0.38268349f, 0.00000000f }, { -1.00000000f, -0.00000009f, 0.00000000f }, { -0.92387950f, -0.38268343f, 0.00000000f }, { -0.70710683f, -0.70710671f, 0.00000000f }, { -0.38268358f, -0.92387950f, 0.00000000f }, { 0.00000001f, -1.00000000f, 0.00000000f }, { 0.38268360f, -0.92387944f, 0.00000000f }, { 0.70710665f, -0.70710689f, 0.00000000f }, { 0.92387956f, -0.38268343f, 0.00000000f }, { 0.92387950f, 0.00000000f, -0.38268346f }, { 0.85355335f, 0.35355341f, -0.38268346f }, { 0.65328145f, 0.65328145f, -0.38268346f }, { 0.35355338f, 0.85355335f, -0.38268346f }, { -0.00000004f, 0.92387950f, -0.38268346f }, { -0.35355335f, 0.85355341f, -0.38268346f }, { -0.65328145f, 0.65328145f, -0.38268346f }, { -0.85355335f, 0.35355341f, -0.38268346f }, { -0.92387950f, -0.00000008f, -0.38268346f }, { -0.85355335f, -0.35355338f, -0.38268346f }, { -0.65328151f, -0.65328139f, -0.38268346f }, { -0.35355350f, -0.85355335f, -0.38268346f }, { 0.00000001f, -0.92387950f, -0.38268346f }, { 0.35355353f, -0.85355330f, -0.38268346f }, { 0.65328133f, -0.65328157f, -0.38268346f }, { 0.85355341f, -0.35355338f, -0.38268346f }, { 0.70710677f, 0.00000000f, -0.70710677f }, { 0.65328145f, 0.27059805f, -0.70710677f }, { 0.49999997f, 0.49999997f, -0.70710677f }, { 0.27059805f, 0.65328145f, -0.70710677f }, { -0.00000003f, 0.70710677f, -0.70710677f }, { -0.27059802f, 0.65328151f, -0.70710677f }, { -0.49999997f, 0.49999997f, -0.70710677f }, { -0.65328145f, 0.27059808f, -0.70710677f }, { -0.70710677f, -0.00000006f, -0.70710677f }, { -0.65328145f, -0.27059805f, -0.70710677f }, { -0.50000000f, -0.49999994f, -0.70710677f }, { -0.27059814f, -0.65328145f, -0.70710677f }, { 0.00000001f, -0.70710677f, -0.70710677f }, { 0.27059817f, -0.65328139f, -0.70710677f }, { 0.49999991f, -0.50000006f, -0.70710677f }, { 0.65328151f, -0.27059805f, -0.70710677f }, { 0.38268343f, 0.00000000f, -0.92387950f }, { 0.35355338f, 0.14644662f, -0.92387950f }, { 0.27059805f, 0.27059805f, -0.92387950f }, { 0.14644660f, 0.35355338f, -0.92387950f }, { -0.00000002f, 0.38268343f, -0.92387950f }, { -0.14644660f, 0.35355338f, -0.92387950f }, { -0.27059805f, 0.27059805f, -0.92387950f }, { -0.35355338f, 0.14644663f, -0.92387950f }, { -0.38268343f, -0.00000003f, -0.92387950f }, { -0.35355338f, -0.14644660f, -0.92387950f }, { -0.27059805f, -0.27059802f, -0.92387950f }, { -0.14644666f, -0.35355338f, -0.92387950f }, { 0.00000000f, -0.38268343f, -0.92387950f }, { 0.14644668f, -0.35355335f, -0.92387950f }, { 0.27059799f, -0.27059808f, -0.92387950f }, { 0.35355338f, -0.14644660f, -0.92387950f }, { -0.00000004f, 0.00000000f, -1.00000000f }, { -0.00000004f, -0.00000002f, -1.00000000f }, { -0.00000003f, -0.00000003f, -1.00000000f }, { -0.00000002f, -0.00000004f, -1.00000000f }, { 0.00000000f, -0.00000004f, -1.00000000f }, { 0.00000002f, -0.00000004f, -1.00000000f }, { 0.00000003f, -0.00000003f, -1.00000000f }, { 0.00000004f, -0.00000002f, -1.00000000f }, { 0.00000004f, 0.00000000f, -1.00000000f }, { 0.00000004f, 0.00000002f, -1.00000000f }, { 0.00000003f, 0.00000003f, -1.00000000f }, { 0.00000002f, 0.00000004f, -1.00000000f }, { -0.00000000f, 0.00000004f, -1.00000000f }, { -0.00000002f, 0.00000004f, -1.00000000f }, { -0.00000003f, 0.00000003f, -1.00000000f }, { -0.00000004f, 0.00000002f, -1.00000000f }, { -0.38268340f, 0.00000000f, -0.92387956f }, { -0.35355335f, -0.14644660f, -0.92387956f }, { -0.27059802f, -0.27059802f, -0.92387956f }, { -0.14644660f, -0.35355335f, -0.92387956f }, { 0.00000002f, -0.38268340f, -0.92387956f }, { 0.14644659f, -0.35355335f, -0.92387956f }, { 0.27059802f, -0.27059802f, -0.92387956f }, { 0.35355335f, -0.14644662f, -0.92387956f }, { 0.38268340f, 0.00000003f, -0.92387956f }, { 0.35355335f, 0.14644660f, -0.92387956f }, { 0.27059805f, 0.27059799f, -0.92387956f }, { 0.14644665f, 0.35355335f, -0.92387956f }, { -0.00000000f, 0.38268340f, -0.92387956f }, { -0.14644666f, 0.35355332f, -0.92387956f }, { -0.27059796f, 0.27059805f, -0.92387956f }, { -0.35355335f, 0.14644660f, -0.92387956f }, { -0.70710677f, 0.00000000f, -0.70710677f }, { -0.65328145f, -0.27059805f, -0.70710677f }, { -0.49999997f, -0.49999997f, -0.70710677f }, { -0.27059805f, -0.65328145f, -0.70710677f }, { 0.00000003f, -0.70710677f, -0.70710677f }, { 0.27059802f, -0.65328151f, -0.70710677f }, { 0.49999997f, -0.49999997f, -0.70710677f }, { 0.65328145f, -0.27059808f, -0.70710677f }, { 0.70710677f, 0.00000006f, -0.70710677f }, { 0.65328145f, 0.27059805f, -0.70710677f }, { 0.50000000f, 0.49999994f, -0.70710677f }, { 0.27059814f, 0.65328145f, -0.70710677f }, { -0.00000001f, 0.70710677f, -0.70710677f }, { -0.27059817f, 0.65328139f, -0.70710677f }, { -0.49999991f, 0.50000006f, -0.70710677f }, { -0.65328151f, 0.27059805f, -0.70710677f }, { -0.92387950f, 0.00000000f, -0.38268349f }, { -0.85355335f, -0.35355341f, -0.38268349f }, { -0.65328145f, -0.65328145f, -0.38268349f }, { -0.35355338f, -0.85355335f, -0.38268349f }, { 0.00000004f, -0.92387950f, -0.38268349f }, { 0.35355335f, -0.85355341f, -0.38268349f }, { 0.65328145f, -0.65328145f, -0.38268349f }, { 0.85355335f, -0.35355341f, -0.38268349f }, { 0.92387950f, 0.00000008f, -0.38268349f }, { 0.85355335f, 0.35355338f, -0.38268349f }, { 0.65328151f, 0.65328139f, -0.38268349f }, { 0.35355350f, 0.85355335f, -0.38268349f }, { -0.00000001f, 0.92387950f, -0.38268349f }, { -0.35355353f, 0.85355330f, -0.38268349f }, { -0.65328133f, 0.65328157f, -0.38268349f }, { -0.85355341f, 0.35355338f, -0.38268349f }, { -1.00000000f, 0.00000000f, 0.00000009f }, { -0.92387950f, -0.38268346f, 0.00000009f }, { -0.70710677f, -0.70710677f, 0.00000009f }, { -0.38268343f, -0.92387950f, 0.00000009f }, { 0.00000004f, -1.00000000f, 0.00000009f }, { 0.38268340f, -0.92387956f, 0.00000009f }, { 0.70710677f, -0.70710677f, 0.00000009f }, { 0.92387950f, -0.38268349f, 0.00000009f }, { 1.00000000f, 0.00000009f, 0.00000009f }, { 0.92387950f, 0.38268343f, 0.00000009f }, { 0.70710683f, 0.70710671f, 0.00000009f }, { 0.38268358f, 0.92387950f, 0.00000009f }, { -0.00000001f, 1.00000000f, 0.00000009f }, { -0.38268360f, 0.92387944f, 0.00000009f }, { -0.70710665f, 0.70710689f, 0.00000009f }, { -0.92387956f, 0.38268343f, 0.00000009f }, { -0.92387950f, 0.00000000f, 0.38268343f }, { -0.85355335f, -0.35355341f, 0.38268343f }, { -0.65328145f, -0.65328145f, 0.38268343f }, { -0.35355338f, -0.85355335f, 0.38268343f }, { 0.00000004f, -0.92387950f, 0.38268343f }, { 0.35355335f, -0.85355341f, 0.38268343f }, { 0.65328145f, -0.65328145f, 0.38268343f }, { 0.85355335f, -0.35355341f, 0.38268343f }, { 0.92387950f, 0.00000008f, 0.38268343f }, { 0.85355335f, 0.35355338f, 0.38268343f }, { 0.65328151f, 0.65328139f, 0.38268343f }, { 0.35355350f, 0.85355335f, 0.38268343f }, { -0.00000001f, 0.92387950f, 0.38268343f }, { -0.35355353f, 0.85355330f, 0.38268343f }, { -0.65328133f, 0.65328157f, 0.38268343f }, { -0.85355341f, 0.35355338f, 0.38268343f }, { -0.70710683f, 0.00000000f, 0.70710671f }, { -0.65328151f, -0.27059808f, 0.70710671f }, { -0.50000000f, -0.50000000f, 0.70710671f }, { -0.27059805f, -0.65328151f, 0.70710671f }, { 0.00000003f, -0.70710683f, 0.70710671f }, { 0.27059805f, -0.65328157f, 0.70710671f }, { 0.50000000f, -0.50000000f, 0.70710671f }, { 0.65328151f, -0.27059811f, 0.70710671f }, { 0.70710683f, 0.00000006f, 0.70710671f }, { 0.65328151f, 0.27059805f, 0.70710671f }, { 0.50000006f, 0.49999997f, 0.70710671f }, { 0.27059817f, 0.65328151f, 0.70710671f }, { -0.00000001f, 0.70710683f, 0.70710671f }, { -0.27059820f, 0.65328145f, 0.70710671f }, { -0.49999994f, 0.50000012f, 0.70710671f }, { -0.65328157f, 0.27059805f, 0.70710671f }, { -0.38268358f, 0.00000000f, 0.92387950f }, { -0.35355350f, -0.14644668f, 0.92387950f }, { -0.27059814f, -0.27059814f, 0.92387950f }, { -0.14644666f, -0.35355350f, 0.92387950f }, { 0.00000002f, -0.38268358f, 0.92387950f }, { 0.14644665f, -0.35355353f, 0.92387950f }, { 0.27059814f, -0.27059814f, 0.92387950f }, { 0.35355350f, -0.14644669f, 0.92387950f }, { 0.38268358f, 0.00000003f, 0.92387950f }, { 0.35355350f, 0.14644666f, 0.92387950f }, { 0.27059817f, 0.27059811f, 0.92387950f }, { 0.14644672f, 0.35355350f, 0.92387950f }, { -0.00000000f, 0.38268358f, 0.92387950f }, { -0.14644673f, 0.35355350f, 0.92387950f }, { -0.27059811f, 0.27059820f, 0.92387950f }, { -0.35355353f, 0.14644666f, 0.92387950f }, { 0.00000001f, 0.00000000f, 1.00000000f }, { 0.00000001f, 0.00000000f, 1.00000000f }, { 0.00000001f, 0.00000001f, 1.00000000f }, { 0.00000000f, 0.00000001f, 1.00000000f }, { -0.00000000f, 0.00000001f, 1.00000000f }, { -0.00000000f, 0.00000001f, 1.00000000f }, { -0.00000001f, 0.00000001f, 1.00000000f }, { -0.00000001f, 0.00000000f, 1.00000000f }, { -0.00000001f, -0.00000000f, 1.00000000f }, { -0.00000001f, -0.00000000f, 1.00000000f }, { -0.00000001f, -0.00000001f, 1.00000000f }, { -0.00000000f, -0.00000001f, 1.00000000f }, { 0.00000000f, -0.00000001f, 1.00000000f }, { 0.00000000f, -0.00000001f, 1.00000000f }, { 0.00000001f, -0.00000001f, 1.00000000f }, { 0.00000001f, -0.00000000f, 1.00000000f }, { 0.38268360f, 0.00000000f, 0.92387944f }, { 0.35355353f, 0.14644669f, 0.92387944f }, { 0.27059817f, 0.27059817f, 0.92387944f }, { 0.14644668f, 0.35355353f, 0.92387944f }, { -0.00000002f, 0.38268360f, 0.92387944f }, { -0.14644666f, 0.35355356f, 0.92387944f }, { -0.27059817f, 0.27059817f, 0.92387944f }, { -0.35355353f, 0.14644669f, 0.92387944f }, { -0.38268360f, -0.00000003f, 0.92387944f }, { -0.35355353f, -0.14644668f, 0.92387944f }, { -0.27059820f, -0.27059814f, 0.92387944f }, { -0.14644673f, -0.35355353f, 0.92387944f }, { 0.00000000f, -0.38268360f, 0.92387944f }, { 0.14644673f, -0.35355350f, 0.92387944f }, { 0.27059811f, -0.27059820f, 0.92387944f }, { 0.35355356f, -0.14644668f, 0.92387944f }, { 0.70710665f, 0.00000000f, 0.70710689f }, { 0.65328133f, 0.27059802f, 0.70710689f }, { 0.49999991f, 0.49999991f, 0.70710689f }, { 0.27059799f, 0.65328133f, 0.70710689f }, { -0.00000003f, 0.70710665f, 0.70710689f }, { -0.27059796f, 0.65328139f, 0.70710689f }, { -0.49999991f, 0.49999991f, 0.70710689f }, { -0.65328133f, 0.27059802f, 0.70710689f }, { -0.70710665f, -0.00000006f, 0.70710689f }, { -0.65328133f, -0.27059799f, 0.70710689f }, { -0.49999994f, -0.49999985f, 0.70710689f }, { -0.27059811f, -0.65328133f, 0.70710689f }, { 0.00000001f, -0.70710665f, 0.70710689f }, { 0.27059811f, -0.65328127f, 0.70710689f }, { 0.49999982f, -0.49999997f, 0.70710689f }, { 0.65328139f, -0.27059799f, 0.70710689f }, { 0.92387956f, 0.00000000f, 0.38268343f }, { 0.85355341f, 0.35355341f, 0.38268343f }, { 0.65328151f, 0.65328151f, 0.38268343f }, { 0.35355338f, 0.85355341f, 0.38268343f }, { -0.00000004f, 0.92387956f, 0.38268343f }, { -0.35355335f, 0.85355347f, 0.38268343f }, { -0.65328151f, 0.65328151f, 0.38268343f }, { -0.85355341f, 0.35355344f, 0.38268343f }, { -0.92387956f, -0.00000008f, 0.38268343f }, { -0.85355341f, -0.35355338f, 0.38268343f }, { -0.65328157f, -0.65328145f, 0.38268343f }, { -0.35355353f, -0.85355341f, 0.38268343f }, { 0.00000001f, -0.92387956f, 0.38268343f }, { 0.35355356f, -0.85355335f, 0.38268343f }, { 0.65328139f, -0.65328163f, 0.38268343f }, { 0.85355347f, -0.35355338f, 0.38268343f } }; //old table /* vec3_t bytedirs[NUMVERTEXNORMALS] = { {-0.525731f, 0.000000f, 0.850651f} , {-0.442863f, 0.238856f, 0.864188f} , {-0.295242f, 0.000000f, 0.955423f} , {-0.309017f, 0.500000f, 0.809017f} , {-0.162460f, 0.262866f, 0.951056f} , {0.000000f, 0.000000f, 1.000000f} , {0.000000f, 0.850651f, 0.525731f} , {-0.147621f, 0.716567f, 0.681718f} , {0.147621f, 0.716567f, 0.681718f} , {0.000000f, 0.525731f, 0.850651f} , {0.309017f, 0.500000f, 0.809017f} , {0.525731f, 0.000000f, 0.850651f} , {0.295242f, 0.000000f, 0.955423f} , {0.442863f, 0.238856f, 0.864188f} , {0.162460f, 0.262866f, 0.951056f} , {-0.681718f, 0.147621f, 0.716567f} , {-0.809017f, 0.309017f, 0.500000f} , {-0.587785f, 0.425325f, 0.688191f} , {-0.850651f, 0.525731f, 0.000000f} , {-0.864188f, 0.442863f, 0.238856f} , {-0.716567f, 0.681718f, 0.147621f} , {-0.688191f, 0.587785f, 0.425325f} , {-0.500000f, 0.809017f, 0.309017f} , {-0.238856f, 0.864188f, 0.442863f} , {-0.425325f, 0.688191f, 0.587785f} , {-0.716567f, 0.681718f, -0.147621f} , {-0.500000f, 0.809017f, -0.309017f} , {-0.525731f, 0.850651f, 0.000000f} , {0.000000f, 0.850651f, -0.525731f} , {-0.238856f, 0.864188f, -0.442863f} , {0.000000f, 0.955423f, -0.295242f} , {-0.262866f, 0.951056f, -0.162460f} , {0.000000f, 1.000000f, 0.000000f} , {0.000000f, 0.955423f, 0.295242f} , {-0.262866f, 0.951056f, 0.162460f} , {0.238856f, 0.864188f, 0.442863f} , {0.262866f, 0.951056f, 0.162460f} , {0.500000f, 0.809017f, 0.309017f} , {0.238856f, 0.864188f, -0.442863f} , {0.262866f, 0.951056f, -0.162460f} , {0.500000f, 0.809017f, -0.309017f} , {0.850651f, 0.525731f, 0.000000f} , {0.716567f, 0.681718f, 0.147621f} , {0.716567f, 0.681718f, -0.147621f} , {0.525731f, 0.850651f, 0.000000f} , {0.425325f, 0.688191f, 0.587785f} , {0.864188f, 0.442863f, 0.238856f} , {0.688191f, 0.587785f, 0.425325f} , {0.809017f, 0.309017f, 0.500000f} , {0.681718f, 0.147621f, 0.716567f} , {0.587785f, 0.425325f, 0.688191f} , {0.955423f, 0.295242f, 0.000000f} , {1.000000f, 0.000000f, 0.000000f} , {0.951056f, 0.162460f, 0.262866f} , {0.850651f, -0.525731f, 0.000000f} , {0.955423f, -0.295242f, 0.000000f} , {0.864188f, -0.442863f, 0.238856f} , {0.951056f, -0.162460f, 0.262866f} , {0.809017f, -0.309017f, 0.500000f} , {0.681718f, -0.147621f, 0.716567f} , {0.850651f, 0.000000f, 0.525731f} , {0.864188f, 0.442863f, -0.238856f} , {0.809017f, 0.309017f, -0.500000f} , {0.951056f, 0.162460f, -0.262866f} , {0.525731f, 0.000000f, -0.850651f} , {0.681718f, 0.147621f, -0.716567f} , {0.681718f, -0.147621f, -0.716567f} , {0.850651f, 0.000000f, -0.525731f} , {0.809017f, -0.309017f, -0.500000f} , {0.864188f, -0.442863f, -0.238856f} , {0.951056f, -0.162460f, -0.262866f} , {0.147621f, 0.716567f, -0.681718f} , {0.309017f, 0.500000f, -0.809017f} , {0.425325f, 0.688191f, -0.587785f} , {0.442863f, 0.238856f, -0.864188f} , {0.587785f, 0.425325f, -0.688191f} , {0.688191f, 0.587785f, -0.425325f} , {-0.147621f, 0.716567f, -0.681718f} , {-0.309017f, 0.500000f, -0.809017f} , {0.000000f, 0.525731f, -0.850651f} , {-0.525731f, 0.000000f, -0.850651f} , {-0.442863f, 0.238856f, -0.864188f} , {-0.295242f, 0.000000f, -0.955423f} , {-0.162460f, 0.262866f, -0.951056f} , {0.000000f, 0.000000f, -1.000000f} , {0.295242f, 0.000000f, -0.955423f} , {0.162460f, 0.262866f, -0.951056f} , {-0.442863f, -0.238856f, -0.864188f} , {-0.309017f, -0.500000f, -0.809017f} , {-0.162460f, -0.262866f, -0.951056f} , {0.000000f, -0.850651f, -0.525731f} , {-0.147621f, -0.716567f, -0.681718f} , {0.147621f, -0.716567f, -0.681718f} , {0.000000f, -0.525731f, -0.850651f} , {0.309017f, -0.500000f, -0.809017f} , {0.442863f, -0.238856f, -0.864188f} , {0.162460f, -0.262866f, -0.951056f} , {0.238856f, -0.864188f, -0.442863f} , {0.500000f, -0.809017f, -0.309017f} , {0.425325f, -0.688191f, -0.587785f} , {0.716567f, -0.681718f, -0.147621f} , {0.688191f, -0.587785f, -0.425325f} , {0.587785f, -0.425325f, -0.688191f} , {0.000000f, -0.955423f, -0.295242f} , {0.000000f, -1.000000f, 0.000000f} , {0.262866f, -0.951056f, -0.162460f} , {0.000000f, -0.850651f, 0.525731f} , {0.000000f, -0.955423f, 0.295242f} , {0.238856f, -0.864188f, 0.442863f} , {0.262866f, -0.951056f, 0.162460f} , {0.500000f, -0.809017f, 0.309017f} , {0.716567f, -0.681718f, 0.147621f} , {0.525731f, -0.850651f, 0.000000f} , {-0.238856f, -0.864188f, -0.442863f} , {-0.500000f, -0.809017f, -0.309017f} , {-0.262866f, -0.951056f, -0.162460f} , {-0.850651f, -0.525731f, 0.000000f} , {-0.716567f, -0.681718f, -0.147621f} , {-0.716567f, -0.681718f, 0.147621f} , {-0.525731f, -0.850651f, 0.000000f} , {-0.500000f, -0.809017f, 0.309017f} , {-0.238856f, -0.864188f, 0.442863f} , {-0.262866f, -0.951056f, 0.162460f} , {-0.864188f, -0.442863f, 0.238856f} , {-0.809017f, -0.309017f, 0.500000f} , {-0.688191f, -0.587785f, 0.425325f} , {-0.681718f, -0.147621f, 0.716567f} , {-0.442863f, -0.238856f, 0.864188f} , {-0.587785f, -0.425325f, 0.688191f} , {-0.309017f, -0.500000f, 0.809017f} , {-0.147621f, -0.716567f, 0.681718f} , {-0.425325f, -0.688191f, 0.587785f} , {-0.162460f, -0.262866f, 0.951056f} , {0.442863f, -0.238856f, 0.864188f} , {0.162460f, -0.262866f, 0.951056f} , {0.309017f, -0.500000f, 0.809017f} , {0.147621f, -0.716567f, 0.681718f} , {0.000000f, -0.525731f, 0.850651f} , {0.425325f, -0.688191f, 0.587785f} , {0.587785f, -0.425325f, 0.688191f} , {0.688191f, -0.587785f, 0.425325f} , {-0.955423f, 0.295242f, 0.000000f} , {-0.951056f, 0.162460f, 0.262866f} , {-1.000000f, 0.000000f, 0.000000f} , {-0.850651f, 0.000000f, 0.525731f} , {-0.955423f, -0.295242f, 0.000000f} , {-0.951056f, -0.162460f, 0.262866f} , {-0.864188f, 0.442863f, -0.238856f} , {-0.951056f, 0.162460f, -0.262866f} , {-0.809017f, 0.309017f, -0.500000f} , {-0.864188f, -0.442863f, -0.238856f} , {-0.951056f, -0.162460f, -0.262866f} , {-0.809017f, -0.309017f, -0.500000f} , {-0.681718f, 0.147621f, -0.716567f} , {-0.681718f, -0.147621f, -0.716567f} , {-0.850651f, 0.000000f, -0.525731f} , {-0.688191f, 0.587785f, -0.425325f} , {-0.587785f, 0.425325f, -0.688191f} , {-0.425325f, 0.688191f, -0.587785f} , {-0.425325f, -0.688191f, -0.587785f} , {-0.587785f, -0.425325f, -0.688191f} , {-0.688191f, -0.587785f, -0.425325f} }; */ //============================================================== int Q_rand(int *seed) { *seed = (69069 * *seed + 1); return *seed; } float Q_random(int *seed) { return (Q_rand(seed) & 0xffff) / (float) 0x10000; } float Q_crandom(int *seed) { return 2.0 * (Q_random(seed) - 0.5); } #ifdef __LCC__ int VectorCompare(const vec3_t v1, const vec3_t v2) { if (v1[0] != v2[0] || v1[1] != v2[1] || v1[2] != v2[2]) { return 0; } return 1; } vec_t VectorLength(const vec3_t v) { return (vec_t) sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); } vec_t VectorLengthSquared(const vec3_t v) { return (v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); } vec_t Distance(const vec3_t p1, const vec3_t p2) { vec3_t v; VectorSubtract(p2, p1, v); return VectorLength(v); } vec_t DistanceSquared(const vec3_t p1, const vec3_t p2) { vec3_t v; VectorSubtract(p2, p1, v); return v[0] * v[0] + v[1] * v[1] + v[2] * v[2]; } // fast vector normalize routine that does not check to make sure // that length != 0, nor does it return length, uses rsqrt approximation void VectorNormalizeFast(vec3_t v) { float ilength; ilength = Q_rsqrt(DotProduct(v, v)); v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; } void VectorInverse(vec3_t v) { v[0] = -v[0]; v[1] = -v[1]; v[2] = -v[2]; } void CrossProduct(const vec3_t v1, const vec3_t v2, vec3_t cross) { cross[0] = v1[1] * v2[2] - v1[2] * v2[1]; cross[1] = v1[2] * v2[0] - v1[0] * v2[2]; cross[2] = v1[0] * v2[1] - v1[1] * v2[0]; } #endif //======================================================= signed char ClampChar(int i) { if (i < -128) { return -128; } if (i > 127) { return 127; } return i; } signed short ClampShort(int i) { if (i < -32768) { return -32768; } if (i > 0x7fff) { return 0x7fff; } return i; } //Makro - new function int DirToByte(vec3_t dir) { vec3_t angles; vectoangles(dir, angles); return ((int) (angles[YAW] * 16 / 360.0f) & 15) | ((((int) (angles[PITCH] * 16 / 360.0f)) & 15) << 4); } //old function // this isn't a real cheap function to call! /* int DirToByte(vec3_t dir) { int i, best; float d, bestd; if (!dir) { return 0; } bestd = 0; best = 0; for (i = 0; i < NUMVERTEXNORMALS; i++) { d = DotProduct(dir, bytedirs[i]); if (d > bestd) { bestd = d; best = i; } } return best; } */ void ByteToDir(int b, vec3_t dir) { if (b < 0 || b >= NUMVERTEXNORMALS) { VectorCopy(vec3_origin, dir); return; } VectorCopy(bytedirs[b], dir); } unsigned ColorBytes3(float r, float g, float b) { unsigned i; ((byte *) & i)[0] = r * 255; ((byte *) & i)[1] = g * 255; ((byte *) & i)[2] = b * 255; return i; } unsigned ColorBytes4(float r, float g, float b, float a) { unsigned i; ((byte *) & i)[0] = r * 255; ((byte *) & i)[1] = g * 255; ((byte *) & i)[2] = b * 255; ((byte *) & i)[3] = a * 255; return i; } float NormalizeColor(const vec3_t in, vec3_t out) { float max; max = in[0]; if (in[1] > max) { max = in[1]; } if (in[2] > max) { max = in[2]; } if (!max) { VectorClear(out); } else { out[0] = in[0] / max; out[1] = in[1] / max; out[2] = in[2] / max; } return max; } /* ===================== PlaneFromPoints Returns false if the triangle is degenrate. The normal will point out of the clock for clockwise ordered points ===================== */ qboolean PlaneFromPoints(vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c) { vec3_t d1, d2; VectorSubtract(b, a, d1); VectorSubtract(c, a, d2); CrossProduct(d2, d1, plane); if (VectorNormalize(plane) == 0) { return qfalse; } plane[3] = DotProduct(a, plane); return qtrue; } /* =============== RotatePointAroundVector This is not implemented very well... =============== */ void RotatePointAroundVector(vec3_t dst, const vec3_t dir, const vec3_t point, float degrees) { float m[3][3]; float im[3][3]; float zrot[3][3]; float tmpmat[3][3]; float rot[3][3]; int i; vec3_t vr, vup, vf; float rad; vf[0] = dir[0]; vf[1] = dir[1]; vf[2] = dir[2]; PerpendicularVector(vr, dir); CrossProduct(vr, vf, vup); m[0][0] = vr[0]; m[1][0] = vr[1]; m[2][0] = vr[2]; m[0][1] = vup[0]; m[1][1] = vup[1]; m[2][1] = vup[2]; m[0][2] = vf[0]; m[1][2] = vf[1]; m[2][2] = vf[2]; memcpy(im, m, sizeof(im)); im[0][1] = m[1][0]; im[0][2] = m[2][0]; im[1][0] = m[0][1]; im[1][2] = m[2][1]; im[2][0] = m[0][2]; im[2][1] = m[1][2]; memset(zrot, 0, sizeof(zrot)); zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F; rad = DEG2RAD(degrees); zrot[0][0] = cos(rad); zrot[0][1] = sin(rad); zrot[1][0] = -sin(rad); zrot[1][1] = cos(rad); MatrixMultiply(m, zrot, tmpmat); MatrixMultiply(tmpmat, im, rot); for (i = 0; i < 3; i++) { dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2]; } } /* =============== RotateAroundDirection =============== */ void RotateAroundDirection(vec3_t axis[3], float yaw) { // create an arbitrary axis[1] PerpendicularVector(axis[1], axis[0]); // rotate it around axis[0] by yaw if (yaw) { vec3_t temp; VectorCopy(axis[1], temp); RotatePointAroundVector(axis[1], axis[0], temp, yaw); } // cross to get axis[2] CrossProduct(axis[0], axis[1], axis[2]); } void vectoangles(const vec3_t value1, vec3_t angles) { float forward; float yaw, pitch; if (value1[1] == 0 && value1[0] == 0) { yaw = 0; if (value1[2] > 0) { pitch = 90; } else { pitch = 270; } } else { if (value1[0]) { yaw = (atan2(value1[1], value1[0]) * 180 / M_PI); } else if (value1[1] > 0) { yaw = 90; } else { yaw = 270; } if (yaw < 0) { yaw += 360; } forward = sqrt(value1[0] * value1[0] + value1[1] * value1[1]); pitch = (atan2(value1[2], forward) * 180 / M_PI); if (pitch < 0) { pitch += 360; } } angles[PITCH] = -pitch; angles[YAW] = yaw; angles[ROLL] = 0; } /* ================= AnglesToAxis ================= */ void AnglesToAxis(const vec3_t angles, vec3_t axis[3]) { vec3_t right; // angle vectors returns "right" instead of "y axis" AngleVectors(angles, axis[0], right, axis[2]); VectorSubtract(vec3_origin, right, axis[1]); } void AxisClear(vec3_t axis[3]) { axis[0][0] = 1; axis[0][1] = 0; axis[0][2] = 0; axis[1][0] = 0; axis[1][1] = 1; axis[1][2] = 0; axis[2][0] = 0; axis[2][1] = 0; axis[2][2] = 1; } void AxisCopy(vec3_t in[3], vec3_t out[3]) { VectorCopy(in[0], out[0]); VectorCopy(in[1], out[1]); VectorCopy(in[2], out[2]); } void ProjectPointOnPlane(vec3_t dst, const vec3_t p, const vec3_t normal) { float d; vec3_t n; float inv_denom; inv_denom = DotProduct(normal, normal); #ifndef Q3_VM assert(Q_fabs(inv_denom) != 0.0f); // bk010122 - zero vectors get here #endif inv_denom = 1.0f / inv_denom; d = DotProduct(normal, p) * inv_denom; n[0] = normal[0] * inv_denom; n[1] = normal[1] * inv_denom; n[2] = normal[2] * inv_denom; dst[0] = p[0] - d * n[0]; dst[1] = p[1] - d * n[1]; dst[2] = p[2] - d * n[2]; } /* ================ MakeNormalVectors Given a normalized forward vector, create two other perpendicular vectors ================ */ void MakeNormalVectors(const vec3_t forward, vec3_t right, vec3_t up) { float d; // this rotate and negate guarantees a vector // not colinear with the original right[1] = -forward[0]; right[2] = forward[1]; right[0] = forward[2]; d = DotProduct(right, forward); VectorMA(right, -d, forward, right); VectorNormalize(right); CrossProduct(right, forward, up); } void VectorRotate(vec3_t in, vec3_t matrix[3], vec3_t out) { out[0] = DotProduct(in, matrix[0]); out[1] = DotProduct(in, matrix[1]); out[2] = DotProduct(in, matrix[2]); } //============================================================================ #if !idppc /* ** float q_rsqrt( float number ) */ float Q_rsqrt(float number) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = *(long *) &y; // evil floating point bit level hacking i = 0x5f3759df - (i >> 1); // what the fuck? y = *(float *) &i; y = y * (threehalfs - (x2 * y * y)); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed #ifndef Q3_VM #ifdef __linux__ assert(!isnan(y)); // bk010122 - FPE? #endif #endif return y; } float Q_fabs(float f) { int tmp = *(int *) &f; tmp &= 0x7FFFFFFF; return *(float *) &tmp; } #endif //============================================================ /* =============== LerpAngle =============== */ float LerpAngle(float from, float to, float frac) { float a; if (to - from > 180) { to -= 360; } if (to - from < -180) { to += 360; } a = from + frac * (to - from); return a; } /* ================= AngleSubtract Always returns a value from -180 to 180 ================= */ float AngleSubtract(float a1, float a2) { float a; a = a1 - a2; while (a > 180) { a -= 360; } while (a < -180) { a += 360; } return a; } void AnglesSubtract(vec3_t v1, vec3_t v2, vec3_t v3) { v3[0] = AngleSubtract(v1[0], v2[0]); v3[1] = AngleSubtract(v1[1], v2[1]); v3[2] = AngleSubtract(v1[2], v2[2]); } float AngleMod(float a) { a = (360.0 / 65536) * ((int) (a * (65536 / 360.0)) & 65535); return a; } /* ================= AngleNormalize360 returns angle normalized to the range [0 <= angle < 360] ================= */ float AngleNormalize360(float angle) { return (360.0 / 65536) * ((int) (angle * (65536 / 360.0)) & 65535); } /* ================= AngleNormalize180 returns angle normalized to the range [-180 < angle <= 180] ================= */ float AngleNormalize180(float angle) { angle = AngleNormalize360(angle); if (angle > 180.0) { angle -= 360.0; } return angle; } /* ================= AngleDelta returns the normalized delta from angle1 to angle2 ================= */ float AngleDelta(float angle1, float angle2) { return AngleNormalize180(angle1 - angle2); } //============================================================ /* ================= SetPlaneSignbits ================= */ void SetPlaneSignbits(cplane_t * out) { int bits, j; // for fast box on planeside test bits = 0; for (j = 0; j < 3; j++) { if (out->normal[j] < 0) { bits |= 1 << j; } } out->signbits = bits; } /* ================== BoxOnPlaneSide Returns 1, 2, or 1 + 2 // this is the slow, general version int BoxOnPlaneSide2 (vec3_t emins, vec3_t emaxs, struct cplane_s *p) { int i; float dist1, dist2; int sides; vec3_t corners[2]; for (i=0 ; i<3 ; i++) { if (p->normal[i] < 0) { corners[0][i] = emins[i]; corners[1][i] = emaxs[i]; } else { corners[1][i] = emins[i]; corners[0][i] = emaxs[i]; } } dist1 = DotProduct (p->normal, corners[0]) - p->dist; dist2 = DotProduct (p->normal, corners[1]) - p->dist; sides = 0; if (dist1 >= 0) sides = 1; if (dist2 < 0) sides |= 2; return sides; } ================== */ #if !( (defined __linux__ || __FreeBSD__) && (defined __i386__) && (!defined C_ONLY)) // rb010123 #if defined __LCC__ || defined C_ONLY || !id386 || defined __VECTORC int BoxOnPlaneSide(vec3_t emins, vec3_t emaxs, struct cplane_s *p) { float dist1, dist2; int sides; // fast axial cases if (p->type < 3) { if (p->dist <= emins[p->type]) return 1; if (p->dist >= emaxs[p->type]) return 2; return 3; } // general case switch (p->signbits) { case 0: dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]; dist2 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]; break; case 1: dist1 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]; dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]; break; case 2: dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]; dist2 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]; break; case 3: dist1 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]; dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]; break; case 4: dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]; dist2 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]; break; case 5: dist1 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]; dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]; break; case 6: dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]; dist2 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]; break; case 7: dist1 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]; dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]; break; default: dist1 = dist2 = 0; // shut up compiler break; } sides = 0; if (dist1 >= p->dist) sides = 1; if (dist2 < p->dist) sides |= 2; return sides; } #else #pragma warning( disable: 4035 ) __declspec(naked) int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p) { static int bops_initialized; static int Ljmptab[8]; __asm { push ebx cmp bops_initialized, 1 je initialized mov bops_initialized, 1 mov Ljmptab[0*4], offset Lcase0 mov Ljmptab[1*4], offset Lcase1 mov Ljmptab[2*4], offset Lcase2 mov Ljmptab[3*4], offset Lcase3 mov Ljmptab[4*4], offset Lcase4 mov Ljmptab[5*4], offset Lcase5 mov Ljmptab[6*4], offset Lcase6 mov Ljmptab[7*4], offset Lcase7 initialized: mov edx,dword ptr[4+12+esp] mov ecx,dword ptr[4+4+esp] xor eax,eax mov ebx,dword ptr[4+8+esp] mov al,byte ptr[17+edx] cmp al,8 jge Lerror fld dword ptr[0+edx] fld st(0) jmp dword ptr[Ljmptab+eax*4] Lcase0: fmul dword ptr[ebx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ecx] fxch st(2) fld st(0) fmul dword ptr[4+ebx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ecx] fxch st(2) fld st(0) fmul dword ptr[8+ebx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ecx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase1: fmul dword ptr[ecx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ebx] fxch st(2) fld st(0) fmul dword ptr[4+ebx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ecx] fxch st(2) fld st(0) fmul dword ptr[8+ebx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ecx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase2: fmul dword ptr[ebx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ecx] fxch st(2) fld st(0) fmul dword ptr[4+ecx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ebx] fxch st(2) fld st(0) fmul dword ptr[8+ebx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ecx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase3: fmul dword ptr[ecx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ebx] fxch st(2) fld st(0) fmul dword ptr[4+ecx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ebx] fxch st(2) fld st(0) fmul dword ptr[8+ebx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ecx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase4: fmul dword ptr[ebx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ecx] fxch st(2) fld st(0) fmul dword ptr[4+ebx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ecx] fxch st(2) fld st(0) fmul dword ptr[8+ecx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ebx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase5: fmul dword ptr[ecx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ebx] fxch st(2) fld st(0) fmul dword ptr[4+ebx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ecx] fxch st(2) fld st(0) fmul dword ptr[8+ecx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ebx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase6: fmul dword ptr[ebx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ecx] fxch st(2) fld st(0) fmul dword ptr[4+ecx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ebx] fxch st(2) fld st(0) fmul dword ptr[8+ecx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ebx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase7: fmul dword ptr[ecx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ebx] fxch st(2) fld st(0) fmul dword ptr[4+ecx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ebx] fxch st(2) fld st(0) fmul dword ptr[8+ecx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ebx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) LSetSides: faddp st(2),st(0) fcomp dword ptr[12+edx] xor ecx,ecx fnstsw ax fcomp dword ptr[12+edx] and ah,1 xor ah,1 add cl,ah fnstsw ax and ah,1 add ah,ah add cl,ah pop ebx mov eax,ecx ret Lerror: int 3 } } #pragma warning( default: 4035 ) #endif #endif /* ================= RadiusFromBounds ================= */ float RadiusFromBounds(const vec3_t mins, const vec3_t maxs) { int i; vec3_t corner; float a, b; for (i = 0; i < 3; i++) { a = fabs(mins[i]); b = fabs(maxs[i]); corner[i] = a > b ? a : b; } return VectorLength(corner); } void ClearBounds(vec3_t mins, vec3_t maxs) { mins[0] = mins[1] = mins[2] = 99999; maxs[0] = maxs[1] = maxs[2] = -99999; } void AddPointToBounds(const vec3_t v, vec3_t mins, vec3_t maxs) { if (v[0] < mins[0]) { mins[0] = v[0]; } if (v[0] > maxs[0]) { maxs[0] = v[0]; } if (v[1] < mins[1]) { mins[1] = v[1]; } if (v[1] > maxs[1]) { maxs[1] = v[1]; } if (v[2] < mins[2]) { mins[2] = v[2]; } if (v[2] > maxs[2]) { maxs[2] = v[2]; } } vec_t VectorNormalize(vec3_t v) { float length, ilength; length = v[0] * v[0] + v[1] * v[1] + v[2] * v[2]; length = sqrt(length); if (length) { ilength = 1 / length; v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; } return length; } vec_t VectorNormalize2(const vec3_t v, vec3_t out) { float length, ilength; length = v[0] * v[0] + v[1] * v[1] + v[2] * v[2]; length = sqrt(length); if (length) { #ifndef Q3_VM // bk0101022 - FPE related // assert( ((Q_fabs(v[0])!=0.0f) || (Q_fabs(v[1])!=0.0f) || (Q_fabs(v[2])!=0.0f)) ); #endif ilength = 1 / length; out[0] = v[0] * ilength; out[1] = v[1] * ilength; out[2] = v[2] * ilength; } else { #ifndef Q3_VM // bk0101022 - FPE related // assert( ((Q_fabs(v[0])==0.0f) && (Q_fabs(v[1])==0.0f) && (Q_fabs(v[2])==0.0f)) ); #endif VectorClear(out); } return length; } void _VectorMA(const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc) { vecc[0] = veca[0] + scale * vecb[0]; vecc[1] = veca[1] + scale * vecb[1]; vecc[2] = veca[2] + scale * vecb[2]; } vec_t _DotProduct(const vec3_t v1, const vec3_t v2) { return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2]; } void _VectorSubtract(const vec3_t veca, const vec3_t vecb, vec3_t out) { out[0] = veca[0] - vecb[0]; out[1] = veca[1] - vecb[1]; out[2] = veca[2] - vecb[2]; } void _VectorAdd(const vec3_t veca, const vec3_t vecb, vec3_t out) { out[0] = veca[0] + vecb[0]; out[1] = veca[1] + vecb[1]; out[2] = veca[2] + vecb[2]; } void _VectorCopy(const vec3_t in, vec3_t out) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } void _VectorScale(const vec3_t in, vec_t scale, vec3_t out) { out[0] = in[0] * scale; out[1] = in[1] * scale; out[2] = in[2] * scale; } void Vector4Scale(const vec4_t in, vec_t scale, vec4_t out) { out[0] = in[0] * scale; out[1] = in[1] * scale; out[2] = in[2] * scale; out[3] = in[3] * scale; } int Q_log2(int val) { int answer; answer = 0; while ((val >>= 1) != 0) { answer++; } return answer; } /* ================= PlaneTypeForNormal ================= */ /* int PlaneTypeForNormal (vec3_t normal) { if ( normal[0] == 1.0 ) return PLANE_X; if ( normal[1] == 1.0 ) return PLANE_Y; if ( normal[2] == 1.0 ) return PLANE_Z; return PLANE_NON_AXIAL; } */ /* ================ MatrixMultiply ================ */ void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; } void AngleVectors(const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) { float angle; static float sr, sp, sy, cr, cp, cy; // static to help MS compiler fp bugs angle = angles[YAW] * (M_PI * 2 / 360); sy = sin(angle); cy = cos(angle); angle = angles[PITCH] * (M_PI * 2 / 360); sp = sin(angle); cp = cos(angle); angle = angles[ROLL] * (M_PI * 2 / 360); sr = sin(angle); cr = cos(angle); if (forward) { forward[0] = cp * cy; forward[1] = cp * sy; forward[2] = -sp; } if (right) { right[0] = (-1 * sr * sp * cy + -1 * cr * -sy); right[1] = (-1 * sr * sp * sy + -1 * cr * cy); right[2] = -1 * sr * cp; } if (up) { up[0] = (cr * sp * cy + -sr * -sy); up[1] = (cr * sp * sy + -sr * cy); up[2] = cr * cp; } } /* ** assumes "src" is normalized */ void PerpendicularVector(vec3_t dst, const vec3_t src) { int pos; int i; float minelem = 1.0F; vec3_t tempvec; /* ** find the smallest magnitude axially aligned vector */ for (pos = 0, i = 0; i < 3; i++) { if (fabs(src[i]) < minelem) { pos = i; minelem = fabs(src[i]); } } tempvec[0] = tempvec[1] = tempvec[2] = 0.0F; tempvec[pos] = 1.0F; /* ** project the point onto the plane defined by src */ ProjectPointOnPlane(dst, tempvec, src); /* ** normalize the result */ VectorNormalize(dst); } // By NiceAss. Used for reflection of sparks on metal surfaces int ReflectVectorByte(vec3_t dir, vec3_t plane) { vec3_t final; float dot; dot = DotProduct(dir, plane); VectorMA(dir, -2 * dot, plane, final); return DirToByte(final); } //Makro - added void ChangeRefSystem(vec3_t in, vec3_t neworg, vec3_t newaxis[], vec3_t out) { vec3_t result; VectorScale(newaxis[0], in[0], result); VectorMA(result, in[1], newaxis[1], result); VectorMA(result, in[2], newaxis[2], result); if (neworg) VectorAdd(result, neworg, result); VectorCopy(result, out); } //Makro - added void ChangeBackRefSystem(vec3_t in, vec3_t neworg, vec3_t newaxis[], vec3_t out) { vec3_t dif; if (neworg) VectorSubtract(in, neworg, dif); else VectorCopy(in, dif); out[0] = DotProduct(dif, newaxis[0]); out[1] = DotProduct(dif, newaxis[1]); out[2] = DotProduct(dif, newaxis[2]); } void ChangeAngleRefSystem(vec3_t in, vec3_t newaxis[], vec3_t out) { vec3_t result; /* result[YAW_AXIS] = in[YAW]; result[PITCH_AXIS] = in[PITCH]; result[ROLL_AXIS] = in[ROLL]; VectorCopy(result, in); */ VectorMA(vec3_origin, in[YAW], newaxis[YAW_AXIS], result); VectorMA(result, in[PITCH], newaxis[PITCH_AXIS], result); VectorMA(result, in[ROLL], newaxis[ROLL_AXIS], result); //VectorCopy(result, out); out[YAW] = result[YAW_AXIS]; out[PITCH] = result[PITCH_AXIS]; out[ROLL] = result[ROLL_AXIS]; //VectorCopy(in, out); } void ToAxisAngles(vec3_t in, vec3_t out) { vec3_t angles, result, forward; VectorClear(result); //yaw - around the Z axis result[YAW_AXIS] = in[YAW]; //pitch - around the new Y axis angles[YAW] = in[YAW]; angles[PITCH] = angles[ROLL] = 0; AngleVectors(angles, NULL, forward, NULL); VectorMA(result, -in[PITCH], forward, result); result[PITCH_AXIS] = in[PITCH]; //roll - around the new X axis angles[PITCH] = in[PITCH]; AngleVectors(angles, forward, NULL, NULL); VectorMA(result, in[ROLL], forward, result); VectorCopy(result, out); }