sin-sdk/q_shared.c

2952 lines
56 KiB
C
Raw Normal View History

1998-12-20 00:00:00 +00:00
//-----------------------------------------------------------------------------
//
// $Logfile:: /Quake 2 Engine/Sin/code/game/q_shared.c $
1999-03-20 00:00:00 +00:00
// $Revision:: 31 $
// $Author:: Markd $
// $Date:: 1/26/99 5:45p $
1998-12-20 00:00:00 +00:00
//
// Copyright (C) 1998 by Ritual Entertainment, Inc.
// All rights reserved.
//
// This source is may not be distributed and/or modified without
// expressly written permission by Ritual Entertainment, Inc.
//
// $Log:: /Quake 2 Engine/Sin/code/game/q_shared.c $
//
1999-03-20 00:00:00 +00:00
// 31 1/26/99 5:45p Markd
// Added TransformFromTriangle for 2015
//
1998-12-20 00:00:00 +00:00
// 30 10/05/98 12:28a Jimdose
// Added angledist
//
// 29 9/28/98 5:51p Markd
//
// 28 9/03/98 2:11p Aldie
// Added checksums checks to .def files
//
// 27 8/22/98 8:48p Jimdose
// Added support for alternate gravity axis
//
// 26 8/03/98 7:34p Markd
// Added SURFACE_DamageMultiplier func
//
// 25 8/02/98 9:00p Markd
// Merged code 3.17
//
// 24 7/21/98 9:06p Markd
// Music Mood conversion stuff
//
// 23 7/10/98 6:13a Jimdose
// Nearly lost the file because H: was full! :O
//
// 22 6/15/98 5:35p Markd
// put in UnsignedShort stuff
//
// 21 5/27/98 8:06p Aldie
// Made a SIN_Parse and SIN_GetToken, and it works like the old one.
//
// 20 5/26/98 12:34a Markd
// Fixed RotateBounds function
//
// 19 5/24/98 6:49p Markd
// Got rid of unused variables
//
// 18 5/24/98 6:29p Markd
// Added CalculateRotatedBounds2
//
// 17 5/24/98 4:48p Jimdose
// Made char *'s const
//
// 16 5/20/98 11:12a Markd
// made certain functions take const char *'s instead of char *'s.
//
// 15 5/13/98 6:21p Markd
// Added CalculateRotatedBounds
//
// 14 5/12/98 1:15p Aldie
// Made Com_Parse substitute \n in an embedded string.
//
// 13 4/17/98 6:48p Markd
// Put in /* support
//
// 12 3/30/98 11:07p Aldie
// Updated COM_Parse to get strings within strings.
//
// 11 3/30/98 9:38p Markd
// Made COM_GetToken handle Quoted-Double Quotes correctly
//
// 10 3/27/98 6:59p Markd
// Changed Origin From Triangle and Transform From Triangle
//
// 9 3/24/98 9:58a Markd
// Added TransformFromTriangle
//
// 8 3/18/98 9:03p Jimdose
// Fixed assertion in BoxOnPlaneSide
//
// 7 3/04/98 2:08p Markd
// Fixed bug in COM_GetToken it was returning null when it should have returned
// ""
//
// 6 2/28/98 4:43p Aldie
// Added Matrix4TransformVector
//
// 5 2/25/98 4:38p Markd
// Added COM_GetToken
//
// 4 2/16/98 2:10p Jimdose
// Added the following math utility functions: MatrixToEulerAngles,
// TransposeMatrix, MatrixTransformVector, OrthoNormalize, QuatToMat,
// MatToQuat, SlerpQuaternion, AnglesToMat, RotateAxis, MultQuat, EulerToQuat,
// VectorsToEulerAngles
//
// 3 12/30/97 6:04p Jimdose
// Added header text
//
// DESCRIPTION:
1999-11-02 00:00:00 +00:00
//
1998-12-20 00:00:00 +00:00
#include "q_shared.h"
#include "float.h"
#define DEG2RAD( a ) ( a * M_PI ) / 180.0F
vec3_t vec3_origin = {0,0,0};
#ifdef SIN
#define X 0
#define Y 1
#define Z 2
#define W 3
#define QUAT_EPSILON 0.00001
const gravityaxis_t gravity_axis[ GRAVITY_NUM_AXIS ] =
{
{ X, Y, Z, 1 },
{ Y, Z, X, 1 },
{ Z, X, Y, 1 },
{ X, Y, Z, -1 },
{ Y, Z, X, -1 },
{ Z, X, Y, -1 }
};
#endif
//============================================================================
#ifdef _WIN32
#pragma optimize( "", off )
#endif
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees )
{
float m[3][3];
float im[3][3];
float zrot[3][3];
float tmpmat[3][3];
float rot[3][3];
int i;
vec3_t vr, vup, vf;
vf[0] = dir[0];
vf[1] = dir[1];
vf[2] = dir[2];
PerpendicularVector( vr, dir );
CrossProduct( vr, vf, vup );
m[0][0] = vr[0];
m[1][0] = vr[1];
m[2][0] = vr[2];
m[0][1] = vup[0];
m[1][1] = vup[1];
m[2][1] = vup[2];
m[0][2] = vf[0];
m[1][2] = vf[1];
m[2][2] = vf[2];
memcpy( im, m, sizeof( im ) );
im[0][1] = m[1][0];
im[0][2] = m[2][0];
im[1][0] = m[0][1];
im[1][2] = m[2][1];
im[2][0] = m[0][2];
im[2][1] = m[1][2];
memset( zrot, 0, sizeof( zrot ) );
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
zrot[0][0] = cos( DEG2RAD( degrees ) );
zrot[0][1] = sin( DEG2RAD( degrees ) );
zrot[1][0] = -sin( DEG2RAD( degrees ) );
zrot[1][1] = cos( DEG2RAD( degrees ) );
R_ConcatRotations( m, zrot, tmpmat );
R_ConcatRotations( tmpmat, im, rot );
for ( i = 0; i < 3; i++ )
{
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
}
}
#ifdef _WIN32
#pragma optimize( "", on )
#endif
void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
{
float angle;
static float sr, sp, sy, cr, cp, cy;
// static to help MS compiler fp bugs
angle = angles[YAW] * (M_PI*2 / 360);
sy = sin(angle);
cy = cos(angle);
angle = angles[PITCH] * (M_PI*2 / 360);
sp = sin(angle);
cp = cos(angle);
angle = angles[ROLL] * (M_PI*2 / 360);
sr = sin(angle);
cr = cos(angle);
if (forward)
{
forward[0] = cp*cy;
forward[1] = cp*sy;
forward[2] = -sp;
}
if (right)
{
right[0] = (-1*sr*sp*cy+-1*cr*-sy);
right[1] = (-1*sr*sp*sy+-1*cr*cy);
right[2] = -1*sr*cp;
}
if (up)
{
up[0] = (cr*sp*cy+-sr*-sy);
up[1] = (cr*sp*sy+-sr*cy);
up[2] = cr*cp;
}
}
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
{
float d;
vec3_t n;
float inv_denom;
inv_denom = 1.0F / DotProduct( normal, normal );
d = DotProduct( normal, p ) * inv_denom;
n[0] = normal[0] * inv_denom;
n[1] = normal[1] * inv_denom;
n[2] = normal[2] * inv_denom;
dst[0] = p[0] - d * n[0];
dst[1] = p[1] - d * n[1];
dst[2] = p[2] - d * n[2];
}
/*
** assumes "src" is normalized
*/
void PerpendicularVector( vec3_t dst, const vec3_t src )
{
int pos;
int i;
float minelem = 1.0F;
vec3_t tempvec;
/*
** find the smallest magnitude axially aligned vector
*/
for ( pos = 0, i = 0; i < 3; i++ )
{
if ( fabs( src[i] ) < minelem )
{
pos = i;
minelem = fabs( src[i] );
}
}
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
tempvec[pos] = 1.0F;
/*
** project the point onto the plane defined by src
*/
ProjectPointOnPlane( dst, tempvec, src );
/*
** normalize the result
*/
VectorNormalize( dst );
}
/*
================
R_ConcatRotations
================
*/
void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3])
{
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
in1[0][2] * in2[2][0];
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
in1[0][2] * in2[2][1];
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
in1[0][2] * in2[2][2];
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
in1[1][2] * in2[2][0];
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
in1[1][2] * in2[2][1];
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
in1[1][2] * in2[2][2];
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
in1[2][2] * in2[2][0];
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
in1[2][2] * in2[2][1];
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
in1[2][2] * in2[2][2];
}
/*
================
R_ConcatTransforms
================
*/
void R_ConcatTransforms (float in1[3][4], float in2[3][4], float out[3][4])
{
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
in1[0][2] * in2[2][0];
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
in1[0][2] * in2[2][1];
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
in1[0][2] * in2[2][2];
out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] +
in1[0][2] * in2[2][3] + in1[0][3];
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
in1[1][2] * in2[2][0];
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
in1[1][2] * in2[2][1];
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
in1[1][2] * in2[2][2];
out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] +
in1[1][2] * in2[2][3] + in1[1][3];
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
in1[2][2] * in2[2][0];
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
in1[2][2] * in2[2][1];
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
in1[2][2] * in2[2][2];
out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] +
in1[2][2] * in2[2][3] + in1[2][3];
}
//============================================================================
float Q_fabs (float f)
{
#if 0
if (f >= 0)
return f;
return -f;
#else
int tmp = * ( int * ) &f;
tmp &= 0x7FFFFFFF;
return * ( float * ) &tmp;
#endif
}
#if defined _M_IX86 && !defined C_ONLY
#pragma warning (disable:4035)
__declspec( naked ) long Q_ftol( float f )
{
static int tmp;
__asm fld dword ptr [esp+4]
__asm fistp tmp
__asm mov eax, tmp
__asm ret
}
#pragma warning (default:4035)
#endif
/*
===============
LerpAngle
===============
*/
float LerpAngle (float a2, float a1, float frac)
{
if (a1 - a2 > 180)
a1 -= 360;
if (a1 - a2 < -180)
a1 += 360;
return a2 + frac * (a1 - a2);
}
float anglemod(float a)
{
#if 0
if (a >= 0)
a -= 360*(int)(a/360);
else
a += 360*( 1 + (int)(-a/360) );
#endif
a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535);
return a;
}
float angledist( float ang )
{
float a;
a = anglemod( ang );
if ( a > 180 )
{
a -= 360;
}
return a;
}
int i;
vec3_t corners[2];
// this is the slow, general version
int BoxOnPlaneSide2 (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
int i;
float dist1, dist2;
int sides;
vec3_t corners[2];
for (i=0 ; i<3 ; i++)
{
if (p->normal[i] < 0)
{
corners[0][i] = emins[i];
corners[1][i] = emaxs[i];
}
else
{
corners[1][i] = emins[i];
corners[0][i] = emaxs[i];
}
}
dist1 = DotProduct (p->normal, corners[0]) - p->dist;
dist2 = DotProduct (p->normal, corners[1]) - p->dist;
sides = 0;
if (dist1 >= 0)
sides = 1;
if (dist2 < 0)
sides |= 2;
return sides;
}
/*
==================
BoxOnPlaneSide
Returns 1, 2, or 1 + 2
==================
*/
#if !id386 || defined __linux__
int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
float dist1, dist2;
int sides;
// fast axial cases
if (p->type < 3)
{
if (p->dist <= emins[p->type])
return 1;
if (p->dist >= emaxs[p->type])
return 2;
return 3;
}
// general case
switch (p->signbits)
{
case 0:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
break;
case 1:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
break;
case 2:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
break;
case 3:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
break;
case 4:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
break;
case 5:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
break;
case 6:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
break;
case 7:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
break;
default:
dist1 = dist2 = 0; // shut up compiler
#ifdef SIN
// assert( 1 ) doesn't do jack shit
assert( 0 );
#else
assert( 1 );
#endif
break;
}
sides = 0;
if (dist1 >= p->dist)
sides = 1;
if (dist2 < p->dist)
sides |= 2;
assert( sides != 0 );
return sides;
}
#else
#pragma warning( disable: 4035 )
__declspec( naked ) int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
static int bops_initialized;
static int Ljmptab[8];
__asm {
push ebx
cmp bops_initialized, 1
je initialized
mov bops_initialized, 1
mov Ljmptab[0*4], offset Lcase0
mov Ljmptab[1*4], offset Lcase1
mov Ljmptab[2*4], offset Lcase2
mov Ljmptab[3*4], offset Lcase3
mov Ljmptab[4*4], offset Lcase4
mov Ljmptab[5*4], offset Lcase5
mov Ljmptab[6*4], offset Lcase6
mov Ljmptab[7*4], offset Lcase7
initialized:
mov edx,ds:dword ptr[4+12+esp]
mov ecx,ds:dword ptr[4+4+esp]
xor eax,eax
mov ebx,ds:dword ptr[4+8+esp]
mov al,ds:byte ptr[17+edx]
cmp al,8
jge Lerror
fld ds:dword ptr[0+edx]
fld st(0)
jmp dword ptr[Ljmptab+eax*4]
Lcase0:
fmul ds:dword ptr[ebx]
fld ds:dword ptr[0+4+edx]
fxch st(2)
fmul ds:dword ptr[ecx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[4+ebx]
fld ds:dword ptr[0+8+edx]
fxch st(2)
fmul ds:dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul ds:dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase1:
fmul ds:dword ptr[ecx]
fld ds:dword ptr[0+4+edx]
fxch st(2)
fmul ds:dword ptr[ebx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[4+ebx]
fld ds:dword ptr[0+8+edx]
fxch st(2)
fmul ds:dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul ds:dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase2:
fmul ds:dword ptr[ebx]
fld ds:dword ptr[0+4+edx]
fxch st(2)
fmul ds:dword ptr[ecx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[4+ecx]
fld ds:dword ptr[0+8+edx]
fxch st(2)
fmul ds:dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul ds:dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase3:
fmul ds:dword ptr[ecx]
fld ds:dword ptr[0+4+edx]
fxch st(2)
fmul ds:dword ptr[ebx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[4+ecx]
fld ds:dword ptr[0+8+edx]
fxch st(2)
fmul ds:dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul ds:dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase4:
fmul ds:dword ptr[ebx]
fld ds:dword ptr[0+4+edx]
fxch st(2)
fmul ds:dword ptr[ecx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[4+ebx]
fld ds:dword ptr[0+8+edx]
fxch st(2)
fmul ds:dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul ds:dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase5:
fmul ds:dword ptr[ecx]
fld ds:dword ptr[0+4+edx]
fxch st(2)
fmul ds:dword ptr[ebx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[4+ebx]
fld ds:dword ptr[0+8+edx]
fxch st(2)
fmul ds:dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul ds:dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase6:
fmul ds:dword ptr[ebx]
fld ds:dword ptr[0+4+edx]
fxch st(2)
fmul ds:dword ptr[ecx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[4+ecx]
fld ds:dword ptr[0+8+edx]
fxch st(2)
fmul ds:dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul ds:dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase7:
fmul ds:dword ptr[ecx]
fld ds:dword ptr[0+4+edx]
fxch st(2)
fmul ds:dword ptr[ebx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[4+ecx]
fld ds:dword ptr[0+8+edx]
fxch st(2)
fmul ds:dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul ds:dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
LSetSides:
faddp st(2),st(0)
fcomp ds:dword ptr[12+edx]
xor ecx,ecx
fnstsw ax
fcomp ds:dword ptr[12+edx]
and ah,1
xor ah,1
add cl,ah
fnstsw ax
and ah,1
add ah,ah
add cl,ah
pop ebx
mov eax,ecx
ret
Lerror:
int 3
}
}
#pragma warning( default: 4035 )
#endif
void ClearBounds (vec3_t mins, vec3_t maxs)
{
mins[0] = mins[1] = mins[2] = 99999;
maxs[0] = maxs[1] = maxs[2] = -99999;
}
void AddPointToBounds (vec3_t v, vec3_t mins, vec3_t maxs)
{
int i;
vec_t val;
for (i=0 ; i<3 ; i++)
{
val = v[i];
if (val < mins[i])
mins[i] = val;
if (val > maxs[i])
maxs[i] = val;
}
}
int VectorCompare (vec3_t v1, vec3_t v2)
{
if (v1[0] != v2[0] || v1[1] != v2[1] || v1[2] != v2[2])
return 0;
return 1;
}
vec_t VectorNormalize (vec3_t v)
{
float length, ilength;
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
length = sqrt (length); // FIXME
if (length)
{
ilength = 1/length;
v[0] *= ilength;
v[1] *= ilength;
v[2] *= ilength;
}
return length;
}
vec_t VectorNormalize2 (vec3_t v, vec3_t out)
{
float length, ilength;
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
length = sqrt (length); // FIXME
if (length)
{
ilength = 1/length;
out[0] = v[0]*ilength;
out[1] = v[1]*ilength;
out[2] = v[2]*ilength;
}
return length;
}
void VectorMA (vec3_t veca, float scale, vec3_t vecb, vec3_t vecc)
{
vecc[0] = veca[0] + scale*vecb[0];
vecc[1] = veca[1] + scale*vecb[1];
vecc[2] = veca[2] + scale*vecb[2];
}
vec_t _DotProduct (vec3_t v1, vec3_t v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
void _VectorSubtract (vec3_t veca, vec3_t vecb, vec3_t out)
{
out[0] = veca[0]-vecb[0];
out[1] = veca[1]-vecb[1];
out[2] = veca[2]-vecb[2];
}
void _VectorAdd (vec3_t veca, vec3_t vecb, vec3_t out)
{
out[0] = veca[0]+vecb[0];
out[1] = veca[1]+vecb[1];
out[2] = veca[2]+vecb[2];
}
void _VectorCopy (vec3_t in, vec3_t out)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
}
void CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross)
{
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
double sqrt(double x);
vec_t VectorLength(vec3_t v)
{
int i;
float length;
length = 0;
for (i=0 ; i< 3 ; i++)
length += v[i]*v[i];
length = sqrt (length); // FIXME
return length;
}
void VectorInverse (vec3_t v)
{
v[0] = -v[0];
v[1] = -v[1];
v[2] = -v[2];
}
void VectorScale (vec3_t in, vec_t scale, vec3_t out)
{
out[0] = in[0]*scale;
out[1] = in[1]*scale;
out[2] = in[2]*scale;
}
int Q_log2(int val)
{
int answer=0;
while (val>>=1)
answer++;
return answer;
}
#ifdef SIN
/*
=================
CalculateRotatedBounds
=================
*/
void CalculateRotatedBounds( vec3_t angles, vec3_t mins, vec3_t maxs )
{
int i;
vec3_t forward,right,up;
vec3_t rotmins, rotmaxs;
float trans[3][3];
AngleVectors( angles, forward, right, up );
for (i=0 ; i<3 ; i++)
{
trans[i][0] = forward[i];
trans[i][1] = -right[i];
trans[i][2] = up[i];
}
ClearBounds( rotmins, rotmaxs );
for ( i = 0; i < 8; i++ )
{
vec3_t tmp, rottemp;
if ( i & 1 )
tmp[0] = mins[0];
else
tmp[0] = maxs[0];
if ( i & 2 )
tmp[1] = mins[1];
else
tmp[1] = maxs[1];
if ( i & 4 )
tmp[2] = mins[2];
else
tmp[2] = maxs[2];
MatrixTransformVector( tmp, trans, rottemp );
AddPointToBounds( rottemp, rotmins, rotmaxs );
}
VectorCopy( rotmins, mins );
VectorCopy( rotmaxs, maxs );
}
/*
=================
CalculateRotatedBounds2
=================
*/
void CalculateRotatedBounds2( float trans[3][3], vec3_t mins, vec3_t maxs )
{
int i;
vec3_t rotmins, rotmaxs;
ClearBounds( rotmins, rotmaxs );
for ( i = 0; i < 8; i++ )
{
vec3_t tmp, rottemp;
if ( i & 1 )
tmp[0] = mins[0];
else
tmp[0] = maxs[0];
if ( i & 2 )
tmp[1] = mins[1];
else
tmp[1] = maxs[1];
if ( i & 4 )
tmp[2] = mins[2];
else
tmp[2] = maxs[2];
MatrixTransformVector( tmp, trans, rottemp );
AddPointToBounds( rottemp, rotmins, rotmaxs );
}
VectorCopy( rotmins, mins );
VectorCopy( rotmaxs, maxs );
}
/*
=================
OriginFromTriangle
=================
*/
// coordinate system at center
void OriginFromTriangle( const float tri[3][3], vec3_t pos )
{
int i;
VectorClear( pos );
for (i=0;i<3;i++)
pos[i] = (tri[0][i] + tri[1][i] + tri[2][i])/3;
}
/*
=================
TransformFromTriangle
=================
*/
// 0
// /\
// / \
// 0 / \ 2
// / \
// / \
// /----------\
// 1 1 2
//
// ((type>>2)&0x3)
// 0 - edge 0 is first edge
// 1 - edge 1 is first edge
// 2 - edge 2 is first edge
//
// (type>>4)
// 0 - forward is perpendicular, up is first edge, right is on the same plane as the triangle
// 1 - forward is perpendicular, up is first edge, right is on the same plane as the triangle(inverted)
// 2 - forward is first edge, up is on the same plane as the triangle, up is perpendicular
// 3 - forward is first edge, up is on the same plane as the triangle(inverted), up is perpendicular
// 4 - forward is perpendicular to first edge, up is perpendicular, right is first edge
// 5 - forward is perpendicular to first edge, up is perpendicular, right is first edge(inverted)
// 6 - forward is perpendicular, up is first edge, right is on the same plane as the triangle
// 7 - forward is perpendicular, up is first edge, right is on the same plane as the triangle(inverted)
//
void TransformFromTriangle( const float tri[3][3], float trans[3][3], vec3_t pos )
{
vec3_t edge[2];
vec3_t cross;
vec3_t other;
vec3_t forward, right, up;
OriginFromTriangle( tri, pos );
VectorSubtract( tri[2], tri[0], edge[0] );
VectorSubtract( tri[1], tri[0], edge[1] );
VectorNormalize( edge[0] );
VectorNormalize( edge[1] );
CrossProduct( edge[1], edge[0], cross );
CrossProduct( edge[1], cross, other );
VectorCopy( cross, forward );
VectorCopy( other, right );
VectorNegate( edge[1], up );
VectorCopy( forward, trans[0] );
VectorCopy( right, trans[1] );
VectorCopy( up, trans[2] );
1999-03-20 00:00:00 +00:00
1998-12-20 00:00:00 +00:00
/*
switch( (type>>2)&0x3 )
{
case 0:
VectorSubtract( tri[2], tri[0], edge[0] );
VectorSubtract( tri[1], tri[0], edge[1] );
break;
case 1:
VectorSubtract( tri[0], tri[1], edge[0] );
VectorSubtract( tri[2], tri[1], edge[1] );
break;
case 2:
VectorSubtract( tri[1], tri[2], edge[0] );
VectorSubtract( tri[0], tri[2], edge[1] );
break;
default:
VectorSubtract( tri[2], tri[0], edge[0] );
VectorSubtract( tri[1], tri[0], edge[1] );
break;
}
VectorNormalize( edge[0] );
VectorNormalize( edge[1] );
CrossProduct( edge[1], edge[0], cross );
CrossProduct( edge[1], cross, other );
switch( type>>4 )
{
case 0:
VectorCopy( cross, forward );
VectorCopy( other, right );
VectorNegate( edge[1], up );
break;
case 1:
VectorCopy( cross, forward );
VectorCopy( other, right );
VectorCopy( edge[1], up );
break;
case 2:
VectorCopy( cross, forward );
VectorCopy( other, right );
VectorNegate( edge[0], up );
break;
case 3:
VectorCopy( cross, forward );
VectorCopy( other, right );
VectorCopy( edge[0], up );
break;
case 4:
VectorCopy( edge[0], forward );
VectorNegate( other, up );
VectorCopy( cross, right );
break;
case 5:
VectorCopy( edge[0], forward );
VectorCopy( other, up );
VectorCopy( cross, right );
break;
case 6:
VectorCopy( other, forward );
VectorNegate( edge[0], right );
VectorCopy( cross, up );
break;
case 7:
VectorCopy( other, forward );
VectorCopy( edge[0], right );
VectorCopy( cross, up );
break;
case 8:
VectorCopy( edge[0], forward );
VectorNegate( other, right );
VectorCopy( cross, up );
break;
case 9:
VectorCopy( edge[0], forward );
VectorCopy( other, right );
VectorCopy( cross, up );
break;
default:
VectorCopy( edge[0], forward );
VectorNegate( other, right );
VectorCopy( cross, up );
break;
}
// fill in the matrix
VectorCopy( forward, trans[0] );
VectorCopy( right, trans[1] );
VectorCopy( up, trans[2] );
*/
}
1999-03-20 00:00:00 +00:00
// 2015 code
void TransformFromTriangle_2015(const float tri[3][3], float trans[3][3], vec3_t pos)
{
vec3_t edge[2];
vec3_t cross;
vec3_t other;
vec3_t forward, right, up;
OriginFromTriangle( tri, pos );
VectorSubtract( tri[2], tri[0], edge[0] );
VectorSubtract( tri[1], tri[0], edge[1] );
VectorNormalize( edge[0] );
VectorNormalize( edge[1] );
CrossProduct( edge[1], edge[0], cross );
VectorNormalize( cross ); //
CrossProduct( edge[1], cross, other );
VectorNormalize( other ); //
VectorCopy( cross, forward );
VectorCopy( other, right );
// VectorNegate( edge[1], up );
VectorCopy( edge[1], up );
VectorCopy( forward, trans[0] );
VectorCopy( right, trans[1] );
VectorCopy( up, trans[2] );
}
1998-12-20 00:00:00 +00:00
static char musicmoods[ mood_totalnumber ][ 16 ] =
{
"none",
"normal",
"action",
"suspense",
"mystery",
"success",
"failure",
"surprise",
"special",
"aux1",
"aux2",
"aux3",
"aux4",
"aux5",
"aux6",
"aux7"
};
/*
=================
MusicMood_NameToNum
=================
*/
int MusicMood_NameToNum( const char * name )
{
int i;
if ( !name )
return -1;
for ( i = 0; i < mood_totalnumber; i++ )
{
if ( !strcmpi( name, musicmoods[ i ] ) )
{
return i;
}
}
return -1;
}
/*
=================
MusicMood_NumToName
=================
*/
const char * MusicMood_NumToName( int num )
{
if ( ( num < 0 ) || ( num >= mood_totalnumber ) )
return "";
else
return musicmoods[ num ];
}
/*
===============
SURFACE_DamageMultiplier
===============
*/
float SURFACE_DamageMultiplier( int flags )
{
float mult;
mult = 0;
switch ( flags )
{
case SURF_TYPE_FLESH:
case SURF_TYPE_FABRIC:
case SURF_TYPE_VEGETATION:
case SURF_TYPE_WATER:
case SURF_TYPE_PAPER:
mult = 0;
break;
case SURF_TYPE_DIRT:
mult = 0.2;
break;
case SURF_TYPE_WOOD:
mult = 0.5;
break;
case SURF_TYPE_METAL:
case SURF_TYPE_DUCT:
case SURF_TYPE_GRILL:
mult = 1;
break;
case SURF_TYPE_GRAVEL:
case SURF_TYPE_STONE:
case SURF_TYPE_CONCRETE:
mult = 1.5;
break;
case SURF_TYPE_GLASS:
case SURF_TYPE_MONITOR:
mult = 3;
break;
default:
break;
}
return mult;
}
#endif
//====================================================================================
/*
============
COM_SkipPath
============
*/
#ifdef SIN
const char *COM_SkipPath (const char *pathname)
{
const char *last;
#else
char *COM_SkipPath (char *pathname)
{
char *last;
#endif
last = pathname;
while (*pathname)
{
if (*pathname=='/')
last = pathname+1;
pathname++;
}
return last;
}
/*
============
COM_ParseHex
============
*/
int COM_ParseHex (const char *hex)
{
const char *str;
int num;
num = 0;
str = hex;
while (*str)
{
num <<= 4;
if (*str >= '0' && *str <= '9')
num += *str-'0';
else if (*str >= 'a' && *str <= 'f')
num += 10 + *str-'a';
else if (*str >= 'A' && *str <= 'F')
num += 10 + *str-'A';
else
Com_Printf("Bad hex number: %s",hex);
str++;
}
return num;
}
/*
============
COM_StripExtension
============
*/
#ifdef SIN
void COM_StripExtension (const char *in, char *out)
#else
void COM_StripExtension (char *in, char *out)
#endif
{
while (*in && *in != '.')
*out++ = *in++;
*out = 0;
}
/*
============
COM_FileExtension
============
*/
#ifdef SIN
char *COM_FileExtension (const char *in)
#else
char *COM_FileExtension (char *in)
#endif
{
static char exten[8];
int i;
while (*in && *in != '.')
in++;
if (!*in)
return "";
in++;
for (i=0 ; i<7 && *in ; i++,in++)
exten[i] = *in;
exten[i] = 0;
return exten;
}
/*
============
COM_FileBase
============
*/
#ifdef SIN
void COM_FileBase (const char *in, char *out)
{
const char *s;
const char *s2;
#else
void COM_FileBase (char *in, char *out)
{
char *s, *s2;
#endif
s = in + strlen(in) - 1;
while (s != in && *s != '.')
s--;
for (s2 = s ; s2 != in && *s2 != '/' ; s2--)
;
if (s-s2 < 2)
out[0] = 0;
else
{
s--;
strncpy (out,s2+1, s-s2);
out[s-s2] = 0;
}
}
/*
============
COM_FilePath
Returns the path up to, but not including the last /
============
*/
#ifdef SIN
void COM_FilePath (const char *in, char *out)
{
const char *s;
#else
void COM_FilePath (char *in, char *out)
{
char *s;
#endif
s = in + strlen(in) - 1;
while (s != in && *s != '/')
s--;
strncpy (out,in, s-in);
out[s-in] = 0;
}
/*
==================
COM_DefaultExtension
==================
*/
#ifdef SIN
void COM_DefaultExtension (char *path, const char *extension)
#else
void COM_DefaultExtension (char *path, char *extension)
#endif
{
char *src;
//
// if path doesn't have a .EXT, append extension
// (extension should include the .)
//
src = path + strlen(path) - 1;
while (*src != '/' && src != path)
{
if (*src == '.')
return; // it has an extension
src--;
}
strcat (path, extension);
}
/*
============================================================================
BYTE ORDER FUNCTIONS
============================================================================
*/
qboolean bigendien;
// can't just use function pointers, or dll linkage can
// mess up when qcommon is included in multiple places
short (*_BigShort) (short l);
short (*_LittleShort) (short l);
int (*_BigLong) (int l);
int (*_LittleLong) (int l);
float (*_BigFloat) (float l);
float (*_LittleFloat) (float l);
#ifdef SIN
unsigned short (*_BigUnsignedShort) (unsigned short l);
unsigned short (*_LittleUnsignedShort) (unsigned short l);
#endif
short BigShort(short l){return _BigShort(l);}
short LittleShort(short l) {return _LittleShort(l);}
int BigLong (int l) {return _BigLong(l);}
int LittleLong (int l) {return _LittleLong(l);}
float BigFloat (float l) {return _BigFloat(l);}
float LittleFloat (float l) {return _LittleFloat(l);}
#ifdef SIN
unsigned short BigUnsignedShort(unsigned short l){return _BigUnsignedShort(l);}
unsigned short LittleUnsignedShort(unsigned short l) {return _LittleUnsignedShort(l);}
#endif
short ShortSwap (short l)
{
byte b1,b2;
b1 = l&255;
b2 = (l>>8)&255;
return (b1<<8) + b2;
}
short ShortNoSwap (short l)
{
return l;
}
#ifdef SIN
unsigned short UnsignedShortSwap (unsigned short l)
{
byte b1,b2;
b1 = l&255;
b2 = (l>>8)&255;
return (b1<<8) + b2;
}
unsigned short UnsignedShortNoSwap (unsigned short l)
{
return l;
}
#endif
int LongSwap (int l)
{
byte b1,b2,b3,b4;
b1 = l&255;
b2 = (l>>8)&255;
b3 = (l>>16)&255;
b4 = (l>>24)&255;
return ((int)b1<<24) + ((int)b2<<16) + ((int)b3<<8) + b4;
}
int LongNoSwap (int l)
{
return l;
}
float FloatSwap (float f)
{
union
{
float f;
byte b[4];
} dat1, dat2;
dat1.f = f;
dat2.b[0] = dat1.b[3];
dat2.b[1] = dat1.b[2];
dat2.b[2] = dat1.b[1];
dat2.b[3] = dat1.b[0];
return dat2.f;
}
float FloatNoSwap (float f)
{
return f;
}
/*
================
Swap_Init
================
*/
void Swap_Init (void)
{
byte swaptest[2] = {1,0};
// set the byte swapping variables in a portable manner
if ( *(short *)swaptest == 1)
{
bigendien = false;
_BigShort = ShortSwap;
_LittleShort = ShortNoSwap;
_BigLong = LongSwap;
_LittleLong = LongNoSwap;
_BigFloat = FloatSwap;
_LittleFloat = FloatNoSwap;
#ifdef SIN
_BigUnsignedShort = UnsignedShortSwap;
_LittleUnsignedShort = UnsignedShortNoSwap;
#endif
}
else
{
bigendien = true;
_BigShort = ShortNoSwap;
_LittleShort = ShortSwap;
_BigLong = LongNoSwap;
_LittleLong = LongSwap;
_BigFloat = FloatNoSwap;
_LittleFloat = FloatSwap;
#ifdef SIN
_BigUnsignedShort = UnsignedShortNoSwap;
_LittleUnsignedShort = UnsignedShortSwap;
#endif
}
}
/*
============
va
does a varargs printf into a temp buffer, so I don't need to have
varargs versions of all text functions.
FIXME: make this buffer size safe someday
============
*/
#ifdef SIN
const char *va(const char *format, ...)
#else
char *va(char *format, ...)
#endif
{
va_list argptr;
static char string[1024];
va_start (argptr, format);
vsprintf (string, format,argptr);
va_end (argptr);
return string;
}
char com_token[MAX_STRING_CHARS];
#ifdef SIN
/*
==============
COM_GetToken
Parse a token out of a string
==============
*/
const char *COM_GetToken(const char **data_p, qboolean crossline)
{
int c;
int len;
const char *data;
data = *data_p;
len = 0;
com_token[0] = 0;
if (!data)
{
*data_p = NULL;
return "";
}
// skip whitespace
skipwhite:
while ( (c = *data) <= ' ')
{
#ifdef SIN
if (c == '\n' && !crossline)
{
*data_p = data;
return "";
}
#endif
if (c == 0)
{
*data_p = NULL;
return "";
}
data++;
}
// skip // comments
if (c=='/' && data[1] == '/')
{
while (*data && *data != '\n')
data++;
goto skipwhite;
}
// skip /* comments
if (c=='/' && data[1] == '*')
{
data++;
while (*data)
{
if ( (*(data-1)=='*') && (*data == '/') )
break;
data++;
}
while (*data && *data != '\n')
data++;
goto skipwhite;
}
// handle quoted strings specially
if (c == '\"')
{
data++;
while (1)
{
c = *data++;
if (c == '\\' && *data == '\"')
{
if (len < MAX_STRING_CHARS)
{
com_token[len] = '\"';
len++;
}
data++;
}
else if (c=='\"' || !c)
{
com_token[len] = 0;
*data_p = data;
return com_token;
}
else if (len < MAX_STRING_CHARS)
{
#ifdef SIN
if (c == '\\' && *data == 'n')
{
com_token[len] = '\n';
data++;
}
else
{
com_token[len] = c;
}
len++;
#else
com_token[len] = c;
len++;
#endif
}
}
}
// parse a regular word
do
{
if (len < MAX_STRING_CHARS)
{
com_token[len] = c;
len++;
}
data++;
c = *data;
} while (c>32);
if (len == MAX_STRING_CHARS)
{
// Com_Printf ("Token exceeded %i chars, discarded.\n", MAX_STRING_CHARS);
len = 0;
}
com_token[len] = 0;
*data_p = data;
return com_token;
}
#ifdef SIN
/*
==============
SIN_GetToken
Parse a token out of a string
==============
*/
const char *SIN_GetToken(const char **data_p, qboolean crossline)
{
int c;
int len;
const char *data;
data = *data_p;
len = 0;
com_token[0] = 0;
if (!data)
{
*data_p = NULL;
return "";
}
// skip whitespace
skipwhite:
while ( (c = *data) <= ' ')
{
#ifdef SIN
if (c == '\n' && !crossline)
{
*data_p = data;
return "";
}
#endif
if (c == 0)
{
*data_p = NULL;
return "";
}
data++;
}
// skip // comments
if (c=='/' && data[1] == '/')
{
while (*data && *data != '\n')
data++;
goto skipwhite;
}
// skip /* comments
if (c=='/' && data[1] == '*')
{
data++;
while (*data)
{
if ( (*(data-1)=='*') && (*data == '/') )
break;
data++;
}
while (*data && *data != '\n')
data++;
goto skipwhite;
}
// handle quoted strings specially
if (c == '\"')
{
data++;
while (1)
{
c = *data++;
if (c == '\\' && *data == '\"')
{
if (len < MAX_STRING_CHARS)
{
com_token[len] = '\"';
len++;
}
data++;
}
else if (c=='\"' || !c)
{
com_token[len] = 0;
*data_p = data;
return com_token;
}
else if (len < MAX_STRING_CHARS)
{
com_token[len] = c;
len++;
}
}
}
// parse a regular word
do
{
if (len < MAX_STRING_CHARS)
{
com_token[len] = c;
len++;
}
data++;
c = *data;
} while (c>32);
if (len == MAX_STRING_CHARS)
{
// Com_Printf ("Token exceeded %i chars, discarded.\n", MAX_STRING_CHARS);
len = 0;
}
com_token[len] = 0;
*data_p = data;
return com_token;
}
const char *SIN_Parse (const char **data_p)
{
return SIN_GetToken( data_p, true );
}
#endif
/*
==============
COM_Parse
Parse a token out of a string
==============
*/
#ifdef SIN
const char *COM_Parse (const char **data_p)
#else
char *COM_Parse (char **data_p)
#endif
{
return COM_GetToken( data_p, true );
}
#else
/*
==============
COM_Parse
Parse a token out of a string
==============
*/
char *COM_Parse (char **data_p)
{
int c;
int len;
char *data;
data = *data_p;
len = 0;
com_token[0] = 0;
if (!data)
{
*data_p = NULL;
return "";
}
// skip whitespace
skipwhite:
while ( (c = *data) <= ' ')
{
if (c == 0)
{
*data_p = NULL;
return "";
}
data++;
}
// skip // comments
if (c=='/' && data[1] == '/')
{
while (*data && *data != '\n')
data++;
goto skipwhite;
}
// handle quoted strings specially
if (c == '\"')
{
data++;
while (1)
{
c = *data++;
if (c=='\"' || !c)
{
com_token[len] = 0;
*data_p = data;
return com_token;
}
if (len < MAX_TOKEN_CHARS)
{
com_token[len] = c;
len++;
}
}
}
// parse a regular word
do
{
if (len < MAX_TOKEN_CHARS)
{
com_token[len] = c;
len++;
}
data++;
c = *data;
} while (c>32);
if (len == MAX_TOKEN_CHARS)
{
// Com_Printf ("Token exceeded %i chars, discarded.\n", MAX_TOKEN_CHARS);
len = 0;
}
com_token[len] = 0;
*data_p = data;
return com_token;
}
#endif
/*
===============
Com_PageInMemory
===============
*/
int paged_total;
void Com_PageInMemory (byte *buffer, int size)
{
int i;
for (i=size-1 ; i>0 ; i-=4096)
paged_total += buffer[i];
}
/*
============================================================================
LIBRARY REPLACEMENT FUNCTIONS
============================================================================
*/
// FIXME: replace all Q_stricmp with Q_strcasecmp
int Q_stricmp (const char *s1, const char *s2)
{
#if defined(WIN32)
return _stricmp (s1, s2);
#else
return strcasecmp (s1, s2);
#endif
}
int Q_strncasecmp (const char *s1, const char *s2, int n)
{
int c1, c2;
do
{
c1 = *s1++;
c2 = *s2++;
if (!n--)
return 0; // strings are equal until end point
if (c1 != c2)
{
if (c1 >= 'a' && c1 <= 'z')
c1 -= ('a' - 'A');
if (c2 >= 'a' && c2 <= 'z')
c2 -= ('a' - 'A');
if (c1 != c2)
return -1; // strings not equal
}
} while (c1);
return 0; // strings are equal
}
int Q_strcasecmp (const char *s1, const char *s2)
{
return Q_strncasecmp (s1, s2, 99999);
}
#ifdef SIN
void Com_sprintf (char *dest, int size, const char *fmt, ...)
#else
void Com_sprintf (char *dest, int size, char *fmt, ...)
#endif
{
char bigbuffer[0x10000];
int len;
va_list argptr;
va_start (argptr,fmt);
len = vsprintf (bigbuffer,fmt,argptr);
va_end (argptr);
if (len >= size)
Com_Printf ("Com_sprintf: overflow of %i in %i\n", len, size);
strncpy (dest, bigbuffer, size-1);
}
/*
=====================================================================
INFO STRINGS
=====================================================================
*/
/*
===============
Info_ValueForKey
Searches the string for the given
key and returns the associated value, or an empty string.
===============
*/
#ifdef SIN
const char *Info_ValueForKey (const char *s, const char *key)
#else
char *Info_ValueForKey (char *s, char *key)
#endif
{
char pkey[512];
static char value[2][512]; // use two buffers so compares
// work without stomping on each other
static int valueindex;
char *o;
valueindex ^= 1;
if (*s == '\\')
s++;
while (1)
{
o = pkey;
while (*s != '\\')
{
if (!*s)
return "";
*o++ = *s++;
}
*o = 0;
s++;
o = value[valueindex];
while (*s != '\\' && *s)
{
if (!*s)
return "";
*o++ = *s++;
}
*o = 0;
if (!strcmp (key, pkey) )
return value[valueindex];
if (!*s)
return "";
s++;
}
}
#ifdef SIN
void Info_RemoveKey (char *s, const char *key)
#else
void Info_RemoveKey (char *s, char *key)
#endif
{
char *start;
char pkey[512];
char value[512];
char *o;
if (strstr (key, "\\"))
{
// Com_Printf ("Can't use a key with a \\\n");
return;
}
while (1)
{
start = s;
if (*s == '\\')
s++;
o = pkey;
while (*s != '\\')
{
if (!*s)
return;
*o++ = *s++;
}
*o = 0;
s++;
o = value;
while (*s != '\\' && *s)
{
if (!*s)
return;
*o++ = *s++;
}
*o = 0;
if (!strcmp (key, pkey) )
{
strcpy (start, s); // remove this part
return;
}
if (!*s)
return;
}
}
/*
==================
Info_Validate
Some characters are illegal in info strings because they
can mess up the server's parsing
==================
*/
#ifdef SIN
qboolean Info_Validate (const char *s)
#else
qboolean Info_Validate (char *s)
#endif
{
if (strstr (s, "\""))
return false;
if (strstr (s, ";"))
return false;
return true;
}
#ifdef SIN
void Info_SetValueForKey (char *s, const char *key, const char *value)
#else
void Info_SetValueForKey (char *s, char *key, char *value)
#endif
{
char newi[MAX_INFO_STRING], *v;
int c;
int maxsize = MAX_INFO_STRING;
if (strstr (key, "\\") || strstr (value, "\\") )
{
Com_Printf ("Can't use keys or values with a \\\n");
return;
}
if (strstr (key, ";") )
{
Com_Printf ("Can't use keys or values with a semicolon\n");
return;
}
if (strstr (key, "\"") || strstr (value, "\"") )
{
Com_Printf ("Can't use keys or values with a \"\n");
return;
}
if (strlen(key) > MAX_INFO_KEY-1 || strlen(value) > MAX_INFO_KEY-1)
{
Com_Printf ("Keys and values must be < 64 characters.\n");
return;
}
Info_RemoveKey (s, key);
if (!value || !strlen(value))
return;
Com_sprintf (newi, sizeof(newi), "\\%s\\%s", key, value);
if (strlen(newi) + strlen(s) > maxsize)
{
Com_Printf ("Info string length exceeded\n");
return;
}
// only copy ascii values
s += strlen(s);
v = newi;
while (*v)
{
c = *v++;
c &= 127; // strip high bits
if (c >= 32 && c < 127)
*s++ = c;
}
*s = 0;
}
//====================================================================
void MatrixTransformVector
(
vec3_t in,
float mat[ 3 ][ 3 ],
vec3_t out
)
{
out[ 0 ] = in[ 0 ] * mat[ 0 ][ 0 ] + in[ 1 ] * mat[ 1 ][ 0 ] + in[ 2 ] * mat[ 2 ][ 0 ];
out[ 1 ] = in[ 0 ] * mat[ 0 ][ 1 ] + in[ 1 ] * mat[ 1 ][ 1 ] + in[ 2 ] * mat[ 2 ][ 1 ];
out[ 2 ] = in[ 0 ] * mat[ 0 ][ 2 ] + in[ 1 ] * mat[ 1 ][ 2 ] + in[ 2 ] * mat[ 2 ][ 2 ];
}
void Matrix4TransformVector
(
vec3_t in,
float mat[ 4 ][ 4 ],
vec3_t out
)
{
out[ 0 ] = in[ 0 ] * mat[ 0 ][ 0 ] + in[ 1 ] * mat[ 1 ][ 0 ] + in[ 2 ] * mat[ 2 ][ 0 ] + mat[ 3 ][ 0 ];
out[ 1 ] = in[ 0 ] * mat[ 0 ][ 1 ] + in[ 1 ] * mat[ 1 ][ 1 ] + in[ 2 ] * mat[ 2 ][ 1 ] + mat[ 3 ][ 1 ];
out[ 2 ] = in[ 0 ] * mat[ 0 ][ 2 ] + in[ 1 ] * mat[ 1 ][ 2 ] + in[ 2 ] * mat[ 2 ][ 2 ] + mat[ 3 ][ 2 ];
}
void VectorsToEulerAngles
(
vec3_t forward,
vec3_t right,
vec3_t up,
vec3_t ang
)
{
double theta;
double cp;
double sp;
sp = forward[ 2 ];
// cap off our sin value so that we don't get any NANs
if ( sp > 1.0 )
{
sp = 1.0;
}
if ( sp < -1.0 )
{
sp = -1.0;
}
theta = -asin( sp );
cp = cos( theta );
if ( cp > 8192 * FLT_EPSILON )
{
ang[ 0 ] = theta * 180 / M_PI;
ang[ 1 ] = atan2( forward[ 1 ], forward[ 0 ] ) * 180 / M_PI;
ang[ 2 ] = atan2( -right[ 2 ], up[ 2 ] ) * 180 / M_PI;
}
else
{
ang[ 0 ] = theta * 180 / M_PI;
ang[ 1 ] = -atan2( right[ 0 ], right[ 1 ] ) * 180 / M_PI;
ang[ 2 ] = 0;
}
}
void MatrixToEulerAngles
(
float mat[ 3 ][ 3 ],
vec3_t ang
)
{
double theta;
double cp;
double sp;
sp = mat[ 0 ][ 2 ];
// cap off our sin value so that we don't get any NANs
if ( sp > 1.0 )
{
sp = 1.0;
}
if ( sp < -1.0 )
{
sp = -1.0;
}
theta = -asin( sp );
cp = cos( theta );
if ( cp > 8192 * FLT_EPSILON )
{
ang[ 0 ] = theta * 180 / M_PI;
ang[ 1 ] = atan2( mat[ 0 ][ 1 ], mat[ 0 ][ 0 ] ) * 180 / M_PI;
ang[ 2 ] = atan2( mat[ 1 ][ 2 ], mat[ 2 ][ 2 ] ) * 180 / M_PI;
}
else
{
ang[ 0 ] = theta * 180 / M_PI;
ang[ 1 ] = -atan2( mat[ 1 ][ 0 ], mat[ 1 ][ 1 ] ) * 180 / M_PI;
ang[ 2 ] = 0;
}
}
void TransposeMatrix
(
float in[ 3 ][ 3 ],
float out[ 3 ][ 3 ]
)
{
out[ 0 ][ 0 ] = in[ 0 ][ 0 ];
out[ 0 ][ 1 ] = in[ 1 ][ 0 ];
out[ 0 ][ 2 ] = in[ 2 ][ 0 ];
out[ 1 ][ 0 ] = in[ 0 ][ 1 ];
out[ 1 ][ 1 ] = in[ 1 ][ 1 ];
out[ 1 ][ 2 ] = in[ 2 ][ 1 ];
out[ 2 ][ 0 ] = in[ 0 ][ 2 ];
out[ 2 ][ 1 ] = in[ 1 ][ 2 ];
out[ 2 ][ 2 ] = in[ 2 ][ 2 ];
}
void OrthoNormalize
(
float mat[3][3]
)
{
VectorNormalize( mat[ 0 ] );
CrossProduct( mat[ 0 ], mat[ 1 ], mat[ 2 ] );
VectorNormalize( mat[ 2 ] );
CrossProduct( mat[ 2 ], mat[ 0 ], mat[ 1 ] );
VectorNormalize( mat[ 1 ] );
}
float NormalizeQuat
(
float q[ 4 ]
)
{
float length, ilength;
length = q[ 0 ] * q[ 0 ] + q[ 1 ] * q[ 1 ] + q[ 2 ] * q[ 2 ] + q[ 3 ] * q[ 3 ];
length = sqrt( length );
if ( length )
{
ilength = 1 / length;
q[ 0 ] *= ilength;
q[ 1 ] *= ilength;
q[ 2 ] *= ilength;
q[ 3 ] *= ilength;
}
return length;
}
void MatToQuat
(
float srcMatrix[ 3 ][ 3 ],
float destQuat[ 4 ]
)
{
double trace, s;
int i, j, k;
static int next[3] = {Y, Z, X};
trace = srcMatrix[X][X] + srcMatrix[Y][Y]+ srcMatrix[Z][Z];
if (trace > 0.0)
{
s = sqrt(trace + 1.0);
destQuat[W] = s * 0.5;
s = 0.5 / s;
destQuat[X] = (srcMatrix[Z][Y] - srcMatrix[Y][Z]) * s;
destQuat[Y] = (srcMatrix[X][Z] - srcMatrix[Z][X]) * s;
destQuat[Z] = (srcMatrix[Y][X] - srcMatrix[X][Y]) * s;
}
else
{
i = X;
if (srcMatrix[Y][Y] > srcMatrix[X][X])
i = Y;
if (srcMatrix[Z][Z] > srcMatrix[i][i])
i = Z;
j = next[i];
k = next[j];
s = sqrt( (srcMatrix[i][i] - (srcMatrix[j][j]+srcMatrix[k][k])) + 1.0 );
destQuat[i] = s * 0.5;
s = 0.5 / s;
destQuat[W] = (srcMatrix[k][j] - srcMatrix[j][k]) * s;
destQuat[j] = (srcMatrix[j][i] + srcMatrix[i][j]) * s;
destQuat[k] = (srcMatrix[k][i] + srcMatrix[i][k]) * s;
}
}
void AnglesToMat
(
float ang[ 3 ],
float mat[ 3 ][ 3 ]
)
{
AngleVectors( ang, mat[ 0 ], mat[ 1 ], mat[ 2 ] );
VectorNegate( mat[ 1 ], mat[ 1 ] );
}
void RotateAxis
(
float axis[ 3 ],
float angle,
float q[ 4 ]
)
{
float sin_a;
float inv_sin_a;
float cos_a;
float r;
r = angle * M_PI / 360;
sin_a = sin( r );
if ( fabs( sin_a ) > 0.00000001 )
{
inv_sin_a = 1 / sin_a;
}
else
{
inv_sin_a = 0;
}
cos_a = cos( r );
q[ X ] = axis[ 0 ] * inv_sin_a;
q[ Y ] = axis[ 1 ] * inv_sin_a;
q[ Z ] = axis[ 2 ] * inv_sin_a;
q[ W ] = cos_a;
}
void MultQuat
(
float q1[ 4 ],
float q2[ 4 ],
float out[ 4 ]
)
{
out[ 0 ] = q1[X]*q2[X] - q1[Y]*q2[Y] - q1[Z]*q2[Z] - q1[W]*q2[W];
out[ 1 ] = q1[X]*q2[Y] + q1[Y]*q2[X] + q1[Z]*q2[W] - q1[W]*q2[Z];
out[ 2 ] = q1[X]*q2[Z] - q1[Y]*q2[W] + q1[Z]*q2[X] + q1[W]*q2[Y];
out[ 3 ] = q1[X]*q2[W] + q1[Y]*q2[Z] - q1[Z]*q2[Y] + q1[W]*q2[X];
}
void QuatToMat
(
float q[ 4 ],
float m[ 3 ][ 3 ]
)
{
float wx, wy, wz;
float xx, yy, yz;
float xy, xz, zz;
float x2, y2, z2;
x2 = q[ X ] + q[ X ];
y2 = q[ Y ] + q[ Y ];
z2 = q[ Z ] + q[ Z ];
xx = q[ X ] * x2;
xy = q[ X ] * y2;
xz = q[ X ] * z2;
yy = q[ Y ] * y2;
yz = q[ Y ] * z2;
zz = q[ Z ] * z2;
wx = q[ W ] * x2;
wy = q[ W ] * y2;
wz = q[ W ] * z2;
m[ 0 ][ 0 ] = 1.0 - ( yy + zz );
m[ 0 ][ 1 ] = xy - wz;
m[ 0 ][ 2 ] = xz + wy;
m[ 1 ][ 0 ] = xy + wz;
m[ 1 ][ 1 ] = 1.0 - ( xx + zz );
m[ 1 ][ 2 ] = yz - wx;
m[ 2 ][ 0 ] = xz - wy;
m[ 2 ][ 1 ] = yz + wx;
m[ 2 ][ 2 ] = 1.0 - ( xx + yy );
}
#define DELTA 1e-6
void SlerpQuaternion
(
float from[ 4 ],
float to[ 4 ],
float t,
float res[ 4 ]
)
{
float to1[ 4 ];
double omega, cosom, sinom, scale0, scale1;
cosom = from[ X ] * to[ X ] + from[ Y ] * to[ Y ] + from[ Z ] * to[ Z ] + from[ W ] * to [ W ];
if ( cosom < 0.0 )
{
cosom = -cosom;
to1[ X ] = -to[ X ];
to1[ Y ] = -to[ Y ];
to1[ Z ] = -to[ Z ];
to1[ W ] = -to[ W ];
}
else if
(
( from[ X ] == to[ X ] ) &&
( from[ Y ] == to[ Y ] ) &&
( from[ Z ] == to[ Z ] ) &&
( from[ W ] == to[ W ] )
)
{
// equal case, early exit
res[ X ] = to[ X ];
res[ Y ] = to[ Y ];
res[ Z ] = to[ Z ];
res[ W ] = to[ W ];
return;
}
else
{
to1[ X ] = to[ X ];
to1[ Y ] = to[ Y ];
to1[ Z ] = to[ Z ];
to1[ W ] = to[ W ];
}
if ( ( 1.0 - cosom ) > DELTA )
{
omega = acos( cosom );
sinom = sin( omega );
scale0 = sin( ( 1.0 - t ) * omega ) / sinom;
scale1 = sin( t * omega ) / sinom;
}
else
{
scale0 = 1.0 - t;
scale1 = t;
}
res[ X ] = scale0 * from[ X ] + scale1 * to1[ X ];
res[ Y ] = scale0 * from[ Y ] + scale1 * to1[ Y ];
res[ Z ] = scale0 * from[ Z ] + scale1 * to1[ Z ];
res[ W ] = scale0 * from[ W ] + scale1 * to1[ W ];
}
#if 0
void EulerToQuat
(
float ang[ 3 ],
float q[ 4 ]
)
{
float cr, cp, cy;
float sr, sp, sy;
float cpcy, spsy;
float spcy, cpsy;
float r;
r = M_PI / 360;
// calculate trig identities
cr = cos( -ang[ ROLL ] * r );
cp = cos( -ang[ PITCH ] * r );
cy = cos( -ang[ YAW ] * r );
sr = sin( -ang[ ROLL ] * r );
sp = sin( -ang[ PITCH ] * r );
sy = sin( -ang[ YAW ] * r );
cpcy = cp * cy;
spsy = sp * sy;
spcy = sp * cy;
cpsy = cp * sy;
q[ W ] = cr * cpcy + sr * spsy;
q[ X ] = sr * cpcy - cr * spsy;
q[ Y ] = cr * spcy + sr * cpsy;
q[ Z ] = cr * cpsy - sr * spcy;
}
#endif
#if 0
float x_axis[ 3 ] = { 1, 0, 0 };
float y_axis[ 3 ] = { 0, 1, 0 };
float z_axis[ 3 ] = { 0, 0, 1 };
void EulerToQuat
(
float ang[ 3 ],
float q[ 4 ]
)
{
float qx[ 4 ];
float qy[ 4 ];
float qz[ 4 ];
RotateAxis( x_axis, ang[ 0 ], qx );
RotateAxis( y_axis, ang[ 1 ], qy );
RotateAxis( z_axis, ang[ 2 ], qz );
//MultQuat( qx, qy, q );
//MultQuat( qz, q, q );
NormalizeQuat( q );
RotateAxis( y_axis, ang[ 0 ], q );
NormalizeQuat( q );
}
#endif
#if 0
#define EulFrmS 0
#define EulFrmR 1
#define EulFrm(ord) ( ( unsigned )( ord ) & 1 )
#define EulRepNo 0
#define EulRepYes 1
#define EulRep(ord) ( ( ( unsigned )( ord ) >> 1 ) & 1 )
#define EulParEven 0
#define EulParOdd 1
#define EulPar(ord) ( ( ( unsigned )( ord ) >> 2 ) & 1 )
#define EulSafe "\000\001\002\000"
#define EulNext "\001\002\000\001"
#define EulGetOrd( ord, i, j, k, h, n, s, f ) \
{ \
unsigned o = ord; \
\
f = o & 1; \
o >>=1; \
s = o & 1; \
o >>= 1; \
n = o & 1; \
o >>= 1; \
i = EulSafe[ o & 3 ]; \
j = EulNext[ i + n ]; \
k = EulNext[ i + 1 - n ]; \
h = s ? k : i; \
}
#define EulOrd( i, p, r, f ) (((((((i)<<1)+(p))<<1)+(r))<<1)+(f))
void EulFromMatrix
(
float m[ 3 ][ 3 ],
vec3_t ea
)
{
int i, j, k, h, n, s, f;
int order;
order = EulOrd( X, EulParOdd, EulRepYES, EulFrmS );
EulGetOrd( order, i, j, k, h, n, s, f );
if ( s == EulRepYes )
{
double sy;
sy = sqrt( m[ i ][ j ] * m[ i ][ j ] + m[ i ][ k ] * m[ i ][ k ] );
if ( sy > 16 * FLT_EPSILON )
{
ea[ 0 ] = atan2( m[ i ][ j ], m[ i ][ k ] );
ea[ 1 ] = atan2( sy, m[ i ][ i ] );
ea[ 2 ] = atan2( m[ j ][ i ], -m[ k ][ i ] );
}
else
{
ea[ 0 ] = atan2( -m[ j ][ k ], m[ j ][ j ] );
ea[ 1 ] = atan2( sy, m[ i ][ i ] );
ea[ 2 ] = 0;
}
}
else
{
double cy;
cy = sqrt( m[ i ][ i ] * m[ i ][ i ] + m[ j ][ i ] * m[ j ][ i ] );
if ( cy > 16 * FLT_EPSILON )
{
ea[ 0 ] = atan2( m[ k ][ j ], m[ k ][ k ] );
ea[ 1 ] = atan2( -m[ k ][ i ], cy );
ea[ 2 ] = atan2( m[ j ][ i ], m[ i ][ i ] );
}
else
{
ea[ 0 ] = atan2( -m[ j ][ k ], m[ j ][ j ] );
ea[ 1 ] = atan2( -m[ k ][ i ], cy );
ea[ 2 ] = 0;
}
}
if ( n == EulParOdd )
{
ea[ 0 ] = -ea[ 0 ];
ea[ 1 ] = -ea[ 1 ];
ea[ 2 ] = -ea[ 2 ];
}
if ( f = EulFrmR )
{
float t;
t = ea[ 0 ];
ea[ 0 ] = ea[ 2 ];
ea[ 2 ] = t;
}
ea[ 0 ] *= 180 / M_PI;
ea[ 1 ] *= 180 / M_PI;
ea[ 2 ] *= 180 / M_PI;
}
void EulerToQuat
(
float angles[ 3 ],
float q[ 4 ]
)
{
float ang[ 3 ];
float ti, tj, th;
float ci, cj, ch;
float si, sj, sh;
float cc, cs, sc, ss;
float r;
int i, j, k, h, n, s, f, w;
//w = EulOrd( X, EulParOdd, EulRepNo, EulFrmR );
//w = EulOrd( Y, EulParOdd, EulRepNo, EulFrmR );
w = EulOrd( Z, EulParOdd, EulRepNo, EulFrmR );
//w = EulOrd( Z, EulParOdd, EulRepNo, EulFrmS );
EulGetOrd( w, i, j, k, h, n, s, f );
ang[ 0 ] = angles[ 0 ];
ang[ 1 ] = angles[ 1 ];
ang[ 2 ] = angles[ 2 ];
if ( f == EulFrmR )
{
float t;
t = ang[ X ];
ang[ X ] = ang[ Z ];
ang[ Z ] = t;
}
if ( n == EulParOdd )
{
ang[ Y ] = -ang[ Y ];
}
r = M_PI / 360;
ti = ang[ 0 ] * r;
tj = ang[ 1 ] * r;
th = ang[ 2 ] * r;
ci = cos( ti ); cj = cos( tj ); ch = cos( th );
si = sin( ti ); sj = sin( tj ); sh = sin( th );
cc = ci * ch; cs = ci * sh; sc = si * sh; ss = si * sh;
if ( s == EulRepYes )
{
q[ X ] = cj * ( cs + sc );
q[ Y ] = cj * ( cc + ss );
q[ Z ] = cj * ( cs - sc );
q[ W ] = cj * ( cc - ss );
}
else
{
q[ X ] = cj * sc - sj * cs;
q[ Y ] = cj * ss + sj * cc;
q[ Z ] = cj * cs - sj * sc;
q[ W ] = cj * cc + sj * ss;
}
if ( n == EulParOdd )
{
q[ j ] = -q[ j ];
}
NormalizeQuat( q );
}
#endif
#if 1
void EulerToQuat
(
float ang[ 3 ],
float q[ 4 ]
)
{
float mat[ 3 ][ 3 ];
AnglesToMat( ang, mat );
MatToQuat( mat, q );
}
#endif