fakk2-sdk/source/utils/max2skl/progmesh.cpp
2000-09-17 00:00:00 +00:00

409 lines
11 KiB
C++

/*
* Progressive Mesh type Polygon Reduction Algorithm
* by Stan Melax (c) 1998
* Permission to use any of this code wherever you want is granted..
* Although, please do acknowledge authorship if appropriate.
*
* See the header file progmesh.h for a description of this module
*/
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <assert.h>
#include <windows.h>
#include "vector.h"
#include "list.h"
#include "progmesh.h"
static int min_resolution;
/*
* For the polygon reduction algorithm we use data structures
* that contain a little bit more information than the usual
* indexed face set type of data structure.
* From a vertex we wish to be able to quickly get the
* neighboring faces and vertices.
*/
class Triangle;
class Vertex;
class Triangle {
public:
Vertex * vertex[3]; // the 3 points that make this tri
Vector normal; // unit vector othogonal to this face
Triangle(Vertex *v0,Vertex *v1,Vertex *v2);
~Triangle();
void ComputeNormal();
void ReplaceVertex(Vertex *vold,Vertex *vnew);
int HasVertex(Vertex *v);
};
class Vertex {
public:
Vector position; // location of point in euclidean space
int id; // place of vertex in original list
List<Vertex *> neighbor; // adjacent vertices
List<Triangle *> face; // adjacent triangles
float objdist; // cached cost of collapsing edge
Vertex * collapse; // candidate vertex for collapse
Vertex(Vector v,int _id);
~Vertex();
void RemoveIfNonNeighbor(Vertex *n);
};
List<Vertex *> vertices;
List<Triangle *> triangles;
Triangle::Triangle(Vertex *v0,Vertex *v1,Vertex *v2){
assert(v0!=v1 && v1!=v2 && v2!=v0);
vertex[0]=v0;
vertex[1]=v1;
vertex[2]=v2;
ComputeNormal();
triangles.Add(this);
for(int i=0;i<3;i++) {
vertex[i]->face.Add(this);
for(int j=0;j<3;j++) if(i!=j) {
vertex[i]->neighbor.AddUnique(vertex[j]);
}
}
}
Triangle::~Triangle(){
int i;
triangles.Remove(this);
for(i=0;i<3;i++) {
if(vertex[i]) vertex[i]->face.Remove(this);
}
for(i=0;i<3;i++) {
int i2 = (i+1)%3;
if(!vertex[i] || !vertex[i2]) continue;
vertex[i ]->RemoveIfNonNeighbor(vertex[i2]);
vertex[i2]->RemoveIfNonNeighbor(vertex[i ]);
}
}
int Triangle::HasVertex(Vertex *v) {
return (v==vertex[0] ||v==vertex[1] || v==vertex[2]);
}
void Triangle::ComputeNormal(){
Vector v0=vertex[0]->position;
Vector v1=vertex[1]->position;
Vector v2=vertex[2]->position;
normal = (v1-v0)*(v2-v1);
if(magnitude(normal)==0)return;
normal = normalize(normal);
}
void Triangle::ReplaceVertex(Vertex *vold,Vertex *vnew) {
assert(vold && vnew);
assert(vold==vertex[0] || vold==vertex[1] || vold==vertex[2]);
assert(vnew!=vertex[0] && vnew!=vertex[1] && vnew!=vertex[2]);
if(vold==vertex[0]){
vertex[0]=vnew;
}
else if(vold==vertex[1]){
vertex[1]=vnew;
}
else {
assert(vold==vertex[2]);
vertex[2]=vnew;
}
int i;
vold->face.Remove(this);
assert(!vnew->face.Contains(this));
vnew->face.Add(this);
for(i=0;i<3;i++) {
vold->RemoveIfNonNeighbor(vertex[i]);
vertex[i]->RemoveIfNonNeighbor(vold);
}
for(i=0;i<3;i++) {
assert(vertex[i]->face.Contains(this)==1);
for(int j=0;j<3;j++) if(i!=j) {
vertex[i]->neighbor.AddUnique(vertex[j]);
}
}
ComputeNormal();
}
Vertex::Vertex(Vector v,int _id) {
position =v;
id=_id;
vertices.Add(this);
}
Vertex::~Vertex(){
assert(face.num==0);
while(neighbor.num) {
neighbor[0]->neighbor.Remove(this);
neighbor.Remove(neighbor[0]);
}
vertices.Remove(this);
}
void Vertex::RemoveIfNonNeighbor(Vertex *n) {
// removes n from neighbor list if n isn't a neighbor.
if(!neighbor.Contains(n)) return;
for(int i=0;i<face.num;i++) {
if(face[i]->HasVertex(n)) return;
}
neighbor.Remove(n);
}
int CountTrisOnEdge( Vertex *u, Vertex *v )
{
int i;
int num;
num = 0;
for( i = 0; i < u->face.num; i++ )
{
if(u->face[i]->HasVertex(v))
{
num++;
}
}
return num;
}
int TriHasSilhouetteEdge( Triangle *tri, Vertex *u )
{
int i;
for( i = 0; i < 3; i++ )
{
if ( ( tri->vertex[ i ] != u ) && ( CountTrisOnEdge( u, tri->vertex[ i ] ) == 1 ) )
{
return 1;
}
}
return 0;
}
int HasSilhouetteEdge( Vertex *u )
{
int i;
for( i = 0; i < u->face.num; i++ )
{
if ( TriHasSilhouetteEdge( u->face[i], u ) )
{
return 1;
}
}
return 0;
}
float ComputeEdgeCollapseCost(Vertex *u,Vertex *v) {
// if we collapse edge uv by moving u to v then how
// much different will the model change, i.e. how much "error".
// Texture, vertex normal, and border vertex code was removed
// to keep this demo as simple as possible.
// The method of determining cost was designed in order
// to exploit small and coplanar regions for
// effective polygon reduction.
// Is is possible to add some checks here to see if "folds"
// would be generated. i.e. normal of a remaining face gets
// flipped. I never seemed to run into this problem and
// therefore never added code to detect this case.
int i;
float edgelength = magnitude(v->position - u->position);
float curvature=0;
// find the "sides" triangles that are on the edge uv
List<Triangle *> sides;
for(i=0;i<u->face.num;i++) {
if(u->face[i]->HasVertex(v)){
sides.Add(u->face[i]);
}
}
// use the triangle facing most away from the sides
// to determine our curvature term
for(i=0;i<u->face.num;i++) {
float mincurv=1; // curve for face i and closer side to it
for(int j=0;j<sides.num;j++) {
// use dot product of face normals. '^' defined in vector
float dotprod = u->face[i]->normal ^ sides[j]->normal;
mincurv = min(mincurv,(1-dotprod)/2.0f);
}
curvature = max(curvature,mincurv);
}
// the more coplanar the lower the curvature term
return edgelength * curvature + ( HasSilhouetteEdge( u ) ? 100000:0);
// + (sides.num>1?0:1000);
}
void ComputeEdgeCostAtVertex(Vertex *v) {
// compute the edge collapse cost for all edges that start
// from vertex v. Since we are only interested in reducing
// the object by selecting the min cost edge at each step, we
// only cache the cost of the least cost edge at this vertex
// (in member variable collapse) as well as the value of the
// cost (in member variable objdist).
if(v->neighbor.num==0) {
// v doesn't have neighbors so it costs nothing to collapse
v->collapse=NULL;
v->objdist=-0.01f;
return;
}
v->objdist = 1000000;
v->collapse=NULL;
// search all neighboring edges for "least cost" edge
for(int i=0;i<v->neighbor.num;i++) {
float dist;
dist = ComputeEdgeCollapseCost(v,v->neighbor[i]);
if(dist<v->objdist) {
v->collapse=v->neighbor[i]; // candidate for edge collapse
v->objdist=dist; // cost of the collapse
}
}
}
void ComputeAllEdgeCollapseCosts() {
// For all the edges, compute the difference it would make
// to the model if it was collapsed. The least of these
// per vertex is cached in each vertex object.
for(int i=0;i<vertices.num;i++) {
ComputeEdgeCostAtVertex(vertices[i]);
}
}
void Collapse(Vertex *u,Vertex *v){
// Collapse the edge uv by moving vertex u onto v
// Actually remove tris on uv, then update tris that
// have u to have v, and then remove u.
if(!v) {
// u is a vertex all by itself so just delete it
delete u;
return;
}
int i;
List<Vertex *>tmp;
// make tmp a list of all the neighbors of u
for(i=0;i<u->neighbor.num;i++) {
tmp.Add(u->neighbor[i]);
}
// delete triangles on edge uv:
for(i=u->face.num-1;i>=0;i--) {
if(u->face[i]->HasVertex(v)) {
delete(u->face[i]);
}
}
// update remaining triangles to have v instead of u
for(i=u->face.num-1;i>=0;i--) {
u->face[i]->ReplaceVertex(u,v);
}
delete u;
// recompute the edge collapse costs for neighboring vertices
for(i=0;i<tmp.num;i++) {
ComputeEdgeCostAtVertex(tmp[i]);
}
}
void AddVertex(List<Vector> &vert){
for(int i=0;i<vert.num;i++) {
Vertex *v = new Vertex(vert[i],i);
}
}
void AddFaces(List<tridata> &tri){
for(int i=0;i<tri.num;i++) {
Triangle *t=new Triangle(
vertices[tri[i].v[0]],
vertices[tri[i].v[1]],
vertices[tri[i].v[2]] );
}
}
Vertex *MinimumCostEdge(){
// Find the edge that when collapsed will affect model the least.
// This funtion actually returns a Vertex, the second vertex
// of the edge (collapse candidate) is stored in the vertex data.
// Serious optimization opportunity here: this function currently
// does a sequential search through an unsorted list :-(
// Our algorithm could be O(n*lg(n)) instead of O(n*n)
//Vertex *mn=vertices[0];
Vertex *mn=NULL;
int i;
for(i=0;i<vertices.num;i++)
{
if( !vertices[i]->collapse )
{
return vertices[i];
}
}
for(i=0;i<vertices.num;i++)
{
if(!mn || (vertices[i]->objdist < mn->objdist) )
{
if ( HasSilhouetteEdge( vertices[i] ) )
{
continue;
}
mn = vertices[i];
}
}
if ( mn )
{
return mn;
}
if ( min_resolution == -1 )
{
min_resolution = vertices.num;
}
mn=vertices[0];
for(i=0;i<vertices.num;i++) {
if(vertices[i]->objdist < mn->objdist) {
mn = vertices[i];
}
}
return mn;
}
void ProgressiveMesh(List<Vector> &vert, List<tridata> &tri,
List<int> &map, List<int> &permutation, int *minresolution)
{
int num;
AddVertex(vert); // put input data into our data structures
AddFaces(tri);
ComputeAllEdgeCollapseCosts(); // cache all edge collapse costs
permutation.SetSize(vertices.num); // allocate space
map.SetSize(vertices.num); // allocate space
min_resolution = -1;
// reduce the object down to nothing:
for( num = vertices.num; num > 0; num-- )
{
// get the next vertex to collapse
Vertex *mn = MinimumCostEdge();
// keep track of this vertex, i.e. the collapse ordering
permutation[mn->id]=num-1;
// keep track of vertex to which we collapse to
map[num-1] = (mn->collapse)?mn->collapse->id:-1;
// Collapse this edge
Collapse(mn,mn->collapse);
}
// reorder the map list based on the collapse ordering
for(int i=0;i<map.num;i++) {
map[i] = (map[i]==-1)?0:permutation[map[i]];
}
// The caller of this function should reorder their vertices
// according to the returned "permutation".
if ( min_resolution == -1 )
{
min_resolution = 0;
}
*minresolution = min_resolution;
}