quake4-sdk/source/idlib/Heap.h
2007-06-15 00:00:00 +00:00

1168 lines
35 KiB
C++

#ifndef __HEAP_H__
#define __HEAP_H__
/*
===============================================================================
Memory Management
This is a replacement for the compiler heap code (i.e. "C" malloc() and
free() calls). On average 2.5-3.0 times faster than MSVC malloc()/free().
Worst case performance is 1.65 times faster and best case > 70 times.
===============================================================================
*/
// RAVEN BEGIN
// jsinger: attempt to eliminate cross-DLL allocation issues
#ifdef RV_UNIFIED_ALLOCATOR
class Memory
{
public:
static void *Allocate(size_t size)
{
if(mAllocator)
{
return mAllocator(size);
}
else
{
#ifndef _LOAD_DLL
// allocations from the exe are safe no matter what, but allocations from a DLL through
// this path will be unsafe, so we warn about them. Adding a breakpoint here will allow
// allow locating of the specific offending allocation
Error("Unprotected allocations are not allowed. Make sure you've initialized Memory before allocating dynamic memory");
#endif
return malloc(size);
}
}
static void Free(void *ptr)
{
if(mDeallocator)
{
mDeallocator(ptr);
}
else
{
#ifndef _LOAD_DLL
// allocations from the exe are safe no matter what, but allocations from a DLL through
// this path will be unsafe, so we warn about them. Adding a breakpoint here will allow
// allow locating of the specific offending allocation
Error("Unprotected allocations are not allowed. Make sure you've initialized Memory before allocating dynamic memory");
#endif
return free(ptr);
}
}
static size_t MSize(void *ptr)
{
if(mMSize)
{
return mMSize(ptr);
}
else
{
#ifndef _LOAD_DLL
// allocations from the exe are safe no matter what, but allocations from a DLL through
// this path will be unsafe, so we warn about them. Adding a breakpoint here will allow
// allow locating of the specific offending allocation
Error("Unprotected allocations are not allowed. Make sure you've initialized Memory before allocating dynamic memory");
#endif
return _msize(ptr);
}
}
static void InitAllocator(void *(*allocator)(size_t size), void (*deallocator)(void *), size_t (*msize)(void *ptr))
{
// check for errors prior to initialization
if(!sOK)
{
Error("Unprotected allocation in DLL detected prior to initialization of memory system");
}
mAllocator = allocator;
mDeallocator = deallocator;
mMSize = msize;
}
static void DeinitAllocator()
{
mAllocator = NULL;
mDeallocator = NULL;
mMSize = NULL;
}
static void Error(const char *errStr);
private:
static void *(*mAllocator)(size_t size);
static void (*mDeallocator)(void *ptr);
static size_t (*mMSize)(void *ptr);
static bool sOK;
};
#endif
// RAVEN END
typedef struct {
int num;
int minSize;
int maxSize;
int totalSize;
} memoryStats_t;
// RAVEN BEGIN
// amccarthy: tags for memory allocation tracking. When updating this list please update the
// list of discriptions in Heap.cpp as well.
typedef enum {
MA_NONE = 0,
MA_OPNEW,
MA_DEFAULT,
MA_LEXER,
MA_PARSER,
MA_AAS,
MA_CLASS,
MA_SCRIPT,
MA_CM,
MA_CVAR,
MA_DECL,
MA_FILESYS,
MA_IMAGES,
MA_MATERIAL,
MA_MODEL,
MA_FONT,
MA_RENDER,
MA_VERTEX,
MA_SOUND,
MA_WINDOW,
MA_EVENT,
MA_MATH,
MA_ANIM,
MA_DYNAMICBLOCK,
MA_STRING,
MA_GUI,
MA_EFFECT,
MA_ENTITY,
MA_PHYSICS,
MA_AI,
MA_NETWORK,
MA_DO_NOT_USE, // neither of the two remaining enumerated values should be used (no use of MA_DO_NOT_USE prevents the second dword in a memory block from getting the value 0xFFFFFFFF)
MA_MAX // <- this enumerated value is a count and cannot exceed 32 (5 bits are used to encode tag within memory block with rvHeap.cpp)
} Mem_Alloc_Types_t;
#if defined(_DEBUG) || defined(_RV_MEM_SYS_SUPPORT)
const char *GetMemAllocStats(int tag, int &num, int &size, int &peak);
#endif
// RAVEN END
void Mem_Init( void );
void Mem_Shutdown( void );
void Mem_EnableLeakTest( const char *name );
void Mem_ClearFrameStats( void );
void Mem_GetFrameStats( memoryStats_t &allocs, memoryStats_t &frees );
void Mem_GetStats( memoryStats_t &stats );
void Mem_Dump_f( const class idCmdArgs &args );
void Mem_DumpCompressed_f( const class idCmdArgs &args );
void Mem_AllocDefragBlock( void );
// RAVEN BEGIN
// amccarthy command for printing tagged mem_alloc info
void Mem_ShowMemAlloc_f( const idCmdArgs &args );
// jnewquist: Add Mem_Size to query memory allocation size
int Mem_Size( void *ptr );
// jnewquist: memory tag stack for new/delete
#if (defined(_DEBUG) || defined(_RV_MEM_SYS_SUPPORT)) && !defined(ENABLE_INTEL_SMP)
class MemScopedTag {
byte mTag;
MemScopedTag *mPrev;
static MemScopedTag *mTop;
public:
MemScopedTag( byte tag ) {
mTag = tag;
mPrev = mTop;
mTop = this;
}
~MemScopedTag() {
assert( mTop != NULL );
mTop = mTop->mPrev;
}
void SetTag( byte tag ) {
mTag = tag;
}
static byte GetTopTag( void ) {
if ( mTop ) {
return mTop->mTag;
} else {
return MA_OPNEW;
}
}
};
#define MemScopedTag_GetTopTag() MemScopedTag::GetTopTag()
#define MEM_SCOPED_TAG(var, tag) MemScopedTag var(tag)
#define MEM_SCOPED_TAG_SET(var, tag) var.SetTag(tag)
#else
#define MemScopedTag_GetTopTag() MA_OPNEW
#define MEM_SCOPED_TAG(var, tag)
#define MEM_SCOPED_TAG_SET(var, tag)
#endif
// RAVEN END
#ifndef ID_DEBUG_MEMORY
// RAVEN BEGIN
// amccarthy: added tags from memory allocation tracking.
void * Mem_Alloc( const int size, byte tag = MA_DEFAULT );
void * Mem_ClearedAlloc( const int size, byte tag = MA_DEFAULT );
void Mem_Free( void *ptr );
char * Mem_CopyString( const char *in );
void * Mem_Alloc16( const int size, byte tag=MA_DEFAULT );
void Mem_Free16( void *ptr );
// jscott: standardised stack allocation
inline void *Mem_StackAlloc( const int size ) { return( _alloca( size ) ); }
inline void *Mem_StackAlloc16( const int size ) {
byte *addr = ( byte * )_alloca( size + 15 );
addr = ( byte * )( ( int )( addr + 15 ) & 0xfffffff0 );
return( ( void * )addr );
}
// dluetscher: moved the inline new/delete operators to sys_local.cpp and Game_local.cpp so that
// Tools.dll will link.
#if defined(_XBOX) || defined(ID_REDIRECT_NEWDELETE) || defined(_RV_MEM_SYS_SUPPORT)
void *operator new( size_t s );
void operator delete( void *p );
void *operator new[]( size_t s );
void operator delete[]( void *p );
#endif
// RAVEN END
#else /* ID_DEBUG_MEMORY */
// RAVEN BEGIN
// amccarthy: added tags from memory allocation tracking.
void * Mem_Alloc( const int size, const char *fileName, const int lineNumber, byte tag = MA_DEFAULT );
void * Mem_ClearedAlloc( const int size, const char *fileName, const int lineNumber, byte tag = MA_DEFAULT );
void Mem_Free( void *ptr, const char *fileName, const int lineNumber );
char * Mem_CopyString( const char *in, const char *fileName, const int lineNumber );
void * Mem_Alloc16( const int size, const char *fileName, const int lineNumber, byte tag = MA_DEFAULT);
void Mem_Free16( void *ptr, const char *fileName, const int lineNumber );
// jscott: standardised stack allocation
inline void *Mem_StackAlloc( const int size ) { return( _alloca( size ) ); }
inline void *Mem_StackAlloc16( const int size ) {
byte *addr = ( byte * )_alloca( size + 15 );
addr = ( byte * )( ( int )( addr + 15 ) & 0xfffffff0 );
return( ( void * )addr );
}
// dluetscher: moved the inline new/delete operators to sys_local.cpp and Game_local.cpp so that
// the Tools.dll will link.
#if defined(_XBOX) || defined(ID_REDIRECT_NEWDELETE) || defined(_RV_MEM_SYS_SUPPORT)
void *operator new( size_t s, int t1, int t2, char *fileName, int lineNumber );
void operator delete( void *p, int t1, int t2, char *fileName, int lineNumber );
void *operator new[]( size_t s, int t1, int t2, char *fileName, int lineNumber );
void operator delete[]( void *p, int t1, int t2, char *fileName, int lineNumber );
void *operator new( size_t s );
void operator delete( void *p );
void *operator new[]( size_t s );
void operator delete[]( void *p );
// RAVEN END
#define ID_DEBUG_NEW new( 0, 0, __FILE__, __LINE__ )
#undef new
#define new ID_DEBUG_NEW
#endif
#define Mem_Alloc( size, tag ) Mem_Alloc( size, __FILE__, __LINE__ )
#define Mem_ClearedAlloc( size, tag ) Mem_ClearedAlloc( size, __FILE__, __LINE__ )
#define Mem_Free( ptr ) Mem_Free( ptr, __FILE__, __LINE__ )
#define Mem_CopyString( s ) Mem_CopyString( s, __FILE__, __LINE__ )
#define Mem_Alloc16( size, tag ) Mem_Alloc16( size, __FILE__, __LINE__ )
#define Mem_Free16( ptr ) Mem_Free16( ptr, __FILE__, __LINE__ )
// RAVEN END
#endif /* ID_DEBUG_MEMORY */
/*
===============================================================================
Block based allocator for fixed size objects.
All objects of the 'type' are properly constructed.
However, the constructor is not called for re-used objects.
===============================================================================
*/
// RAVEN BEGIN
// jnewquist: Mark memory tags for idBlockAlloc
template<class type, int blockSize, byte memoryTag>
class idBlockAlloc {
public:
idBlockAlloc( void );
~idBlockAlloc( void );
void Shutdown( void );
type * Alloc( void );
void Free( type *element );
int GetTotalCount( void ) const { return total; }
int GetAllocCount( void ) const { return active; }
int GetFreeCount( void ) const { return total - active; }
// RAVEN BEGIN
// jscott: get the amount of memory used
size_t Allocated( void ) const { return( total * sizeof( type ) ); }
// RAVEN END
private:
typedef struct element_s {
struct element_s * next;
type t;
} element_t;
typedef struct block_s {
element_t elements[blockSize];
struct block_s * next;
} block_t;
block_t * blocks;
element_t * free;
int total;
int active;
};
template<class type, int blockSize, byte memoryTag>
idBlockAlloc<type,blockSize,memoryTag>::idBlockAlloc( void ) {
blocks = NULL;
free = NULL;
total = active = 0;
}
template<class type, int blockSize, byte memoryTag>
idBlockAlloc<type,blockSize,memoryTag>::~idBlockAlloc( void ) {
Shutdown();
}
template<class type, int blockSize, byte memoryTag>
type *idBlockAlloc<type,blockSize,memoryTag>::Alloc( void ) {
if ( !free ) {
MEM_SCOPED_TAG(tag, memoryTag);
block_t *block = new block_t;
block->next = blocks;
blocks = block;
for ( int i = 0; i < blockSize; i++ ) {
block->elements[i].next = free;
free = &block->elements[i];
}
total += blockSize;
}
active++;
element_t *element = free;
free = free->next;
element->next = NULL;
return &element->t;
}
template<class type, int blockSize, byte memoryTag>
void idBlockAlloc<type,blockSize,memoryTag>::Free( type *t ) {
element_t *element = (element_t *)( ( (unsigned char *) t ) - ( (int) &((element_t *)0)->t ) );
element->next = free;
free = element;
active--;
}
template<class type, int blockSize, byte memoryTag>
void idBlockAlloc<type,blockSize,memoryTag>::Shutdown( void ) {
while( blocks ) {
block_t *block = blocks;
blocks = blocks->next;
delete block;
}
blocks = NULL;
free = NULL;
total = active = 0;
}
// RAVEN END
/*
==============================================================================
Dynamic allocator, simple wrapper for normal allocations which can
be interchanged with idDynamicBlockAlloc.
No constructor is called for the 'type'.
Allocated blocks are always 16 byte aligned.
==============================================================================
*/
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
class idDynamicAlloc {
public:
idDynamicAlloc( void );
~idDynamicAlloc( void );
void Init( void );
void Shutdown( void );
void SetFixedBlocks( int numBlocks ) {}
void SetLockMemory( bool lock ) {}
void FreeEmptyBaseBlocks( void ) {}
type * Alloc( const int num );
type * Resize( type *ptr, const int num );
void Free( type *ptr );
const char * CheckMemory( const type *ptr ) const;
int GetNumBaseBlocks( void ) const { return 0; }
int GetBaseBlockMemory( void ) const { return 0; }
int GetNumUsedBlocks( void ) const { return numUsedBlocks; }
int GetUsedBlockMemory( void ) const { return usedBlockMemory; }
int GetNumFreeBlocks( void ) const { return 0; }
int GetFreeBlockMemory( void ) const { return 0; }
int GetNumEmptyBaseBlocks( void ) const { return 0; }
private:
int numUsedBlocks; // number of used blocks
int usedBlockMemory; // total memory in used blocks
int numAllocs;
int numResizes;
int numFrees;
void Clear( void );
};
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
idDynamicAlloc<type, baseBlockSize, minBlockSize, memoryTag>::idDynamicAlloc( void ) {
Clear();
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
idDynamicAlloc<type, baseBlockSize, minBlockSize, memoryTag>::~idDynamicAlloc( void ) {
Shutdown();
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
void idDynamicAlloc<type, baseBlockSize, minBlockSize, memoryTag>::Init( void ) {
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
void idDynamicAlloc<type, baseBlockSize, minBlockSize, memoryTag>::Shutdown( void ) {
Clear();
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
type *idDynamicAlloc<type, baseBlockSize, minBlockSize, memoryTag>::Alloc( const int num ) {
numAllocs++;
if ( num <= 0 ) {
return NULL;
}
numUsedBlocks++;
usedBlockMemory += num * sizeof( type );
// RAVEN BEGIN
// jscott: to make it build
// mwhitlock: to make it build on Xenon
return (type *) ( (byte *) Mem_Alloc16( num * sizeof( type ), memoryTag ) );
// RAVEN BEGIN
}
#include "math/Simd.h"
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
type *idDynamicAlloc<type, baseBlockSize, minBlockSize, memoryTag>::Resize( type *ptr, const int num ) {
numResizes++;
// RAVEN BEGIN
// jnewquist: provide a real implementation of resize
if ( num <= 0 ) {
Free( ptr );
return NULL;
}
type *newptr = Alloc( num );
if ( ptr != NULL ) {
const int oldSize = Mem_Size(ptr);
const int newSize = num*sizeof(type);
SIMDProcessor->Memcpy( newptr, ptr, (newSize<oldSize)?newSize:oldSize );
Free(ptr);
}
return newptr;
// RAVEN END
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
void idDynamicAlloc<type, baseBlockSize, minBlockSize, memoryTag>::Free( type *ptr ) {
numFrees++;
if ( ptr == NULL ) {
return;
}
Mem_Free16( ptr );
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
const char *idDynamicAlloc<type, baseBlockSize, minBlockSize, memoryTag>::CheckMemory( const type *ptr ) const {
return NULL;
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
void idDynamicAlloc<type, baseBlockSize, minBlockSize, memoryTag>::Clear( void ) {
numUsedBlocks = 0;
usedBlockMemory = 0;
numAllocs = 0;
numResizes = 0;
numFrees = 0;
}
/*
==============================================================================
Fast dynamic block allocator.
No constructor is called for the 'type'.
Allocated blocks are always 16 byte aligned.
==============================================================================
*/
#include "containers/BTree.h"
// RAVEN BEGIN
// jnewquist: Fast sanity checking of idDynamicBlockAlloc
//#ifdef _DEBUG
//#define DYNAMIC_BLOCK_ALLOC_CHECK
#define DYNAMIC_BLOCK_ALLOC_FASTCHECK
#define DYNAMIC_BLOCK_ALLOC_CHECK_IS_FATAL
//#endif
// RAVEN END
template<class type>
class idDynamicBlock {
public:
type * GetMemory( void ) const { return (type *)( ( (byte *) this ) + sizeof( idDynamicBlock<type> ) ); }
int GetSize( void ) const { return abs( size ); }
void SetSize( int s, bool isBaseBlock ) { size = isBaseBlock ? -s : s; }
bool IsBaseBlock( void ) const { return ( size < 0 ); }
// RAVEN BEGIN
// jnewquist: Fast sanity checking of idDynamicBlockAlloc
#if defined(DYNAMIC_BLOCK_ALLOC_CHECK) || defined(DYNAMIC_BLOCK_ALLOC_FASTCHECK)
// RAVEN END
int identifier[3];
void * allocator;
#endif
int size; // size in bytes of the block
idDynamicBlock<type> * prev; // previous memory block
idDynamicBlock<type> * next; // next memory block
idBTreeNode<idDynamicBlock<type>,int> *node; // node in the B-Tree with free blocks
};
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
class idDynamicBlockAlloc {
public:
idDynamicBlockAlloc( void );
~idDynamicBlockAlloc( void );
void Init( void );
void Shutdown( void );
void SetFixedBlocks( int numBlocks );
void SetLockMemory( bool lock );
void FreeEmptyBaseBlocks( void );
type * Alloc( const int num );
type * Resize( type *ptr, const int num );
void Free( type *ptr );
const char * CheckMemory( const type *ptr ) const;
int GetNumBaseBlocks( void ) const { return numBaseBlocks; }
int GetBaseBlockMemory( void ) const { return baseBlockMemory; }
int GetNumUsedBlocks( void ) const { return numUsedBlocks; }
int GetUsedBlockMemory( void ) const { return usedBlockMemory; }
int GetNumFreeBlocks( void ) const { return numFreeBlocks; }
int GetFreeBlockMemory( void ) const { return freeBlockMemory; }
int GetNumEmptyBaseBlocks( void ) const;
private:
idDynamicBlock<type> * firstBlock; // first block in list in order of increasing address
idDynamicBlock<type> * lastBlock; // last block in list in order of increasing address
idBTree<idDynamicBlock<type>,int,4>freeTree; // B-Tree with free memory blocks
bool allowAllocs; // allow base block allocations
bool lockMemory; // lock memory so it cannot get swapped out
// RAVEN BEGIN
// jnewquist: Fast sanity checking of idDynamicBlockAlloc
#if defined(DYNAMIC_BLOCK_ALLOC_CHECK) || defined(DYNAMIC_BLOCK_ALLOC_FASTCHECK)
// RAVEN END
int blockId[3];
#endif
int numBaseBlocks; // number of base blocks
int baseBlockMemory; // total memory in base blocks
int numUsedBlocks; // number of used blocks
int usedBlockMemory; // total memory in used blocks
int numFreeBlocks; // number of free blocks
int freeBlockMemory; // total memory in free blocks
int numAllocs;
int numResizes;
int numFrees;
void Clear( void );
idDynamicBlock<type> * AllocInternal( const int num );
idDynamicBlock<type> * ResizeInternal( idDynamicBlock<type> *block, const int num );
void FreeInternal( idDynamicBlock<type> *block );
void LinkFreeInternal( idDynamicBlock<type> *block );
void UnlinkFreeInternal( idDynamicBlock<type> *block );
void CheckMemory( void ) const;
// RAVEN BEGIN
// jnewquist: Fast sanity checking of idDynamicBlockAlloc
const char * CheckMemory( const idDynamicBlock<type> *block ) const;
// RAVEN END
};
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
idDynamicBlockAlloc<type, baseBlockSize, minBlockSize, memoryTag>::idDynamicBlockAlloc( void ) {
Clear();
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
idDynamicBlockAlloc<type, baseBlockSize, minBlockSize, memoryTag>::~idDynamicBlockAlloc( void ) {
Shutdown();
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
void idDynamicBlockAlloc<type, baseBlockSize, minBlockSize, memoryTag>::Init( void ) {
// RAVEN BEGIN
// jnewquist: Tag scope and callees to track allocations using "new".
MEM_SCOPED_TAG(tag,memoryTag);
// RAVEN END
freeTree.Init();
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
void idDynamicBlockAlloc<type, baseBlockSize, minBlockSize, memoryTag>::Shutdown( void ) {
idDynamicBlock<type> *block;
for ( block = firstBlock; block != NULL; block = block->next ) {
if ( block->node == NULL ) {
FreeInternal( block );
}
}
for ( block = firstBlock; block != NULL; block = firstBlock ) {
firstBlock = block->next;
assert( block->IsBaseBlock() );
if ( lockMemory ) {
idLib::sys->UnlockMemory( block, block->GetSize() + (int)sizeof( idDynamicBlock<type> ) );
}
Mem_Free16( block );
}
freeTree.Shutdown();
Clear();
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
void idDynamicBlockAlloc<type, baseBlockSize, minBlockSize, memoryTag>::SetFixedBlocks( int numBlocks ) {
int i;
idDynamicBlock<type> *block;
for ( i = numBaseBlocks; i < numBlocks; i++ ) {
//RAVEN BEGIN
//amccarthy: Added allocation tag
block = ( idDynamicBlock<type> * ) Mem_Alloc16( baseBlockSize, memoryTag );
//RAVEN END
if ( lockMemory ) {
idLib::sys->LockMemory( block, baseBlockSize );
}
// RAVEN BEGIN
// jnewquist: Fast sanity checking of idDynamicBlockAlloc
#if defined(DYNAMIC_BLOCK_ALLOC_CHECK) || defined(DYNAMIC_BLOCK_ALLOC_FASTCHECK)
// RAVEN END
memcpy( block->identifier, blockId, sizeof( block->identifier ) );
block->allocator = (void*)this;
#endif
block->SetSize( baseBlockSize - (int)sizeof( idDynamicBlock<type> ), true );
block->next = NULL;
block->prev = lastBlock;
if ( lastBlock ) {
lastBlock->next = block;
} else {
firstBlock = block;
}
lastBlock = block;
block->node = NULL;
FreeInternal( block );
numBaseBlocks++;
baseBlockMemory += baseBlockSize;
}
allowAllocs = false;
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
void idDynamicBlockAlloc<type, baseBlockSize, minBlockSize, memoryTag>::SetLockMemory( bool lock ) {
lockMemory = lock;
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
void idDynamicBlockAlloc<type, baseBlockSize, minBlockSize, memoryTag>::FreeEmptyBaseBlocks( void ) {
idDynamicBlock<type> *block, *next;
for ( block = firstBlock; block != NULL; block = next ) {
next = block->next;
if ( block->IsBaseBlock() && block->node != NULL && ( next == NULL || next->IsBaseBlock() ) ) {
UnlinkFreeInternal( block );
if ( block->prev ) {
block->prev->next = block->next;
} else {
firstBlock = block->next;
}
if ( block->next ) {
block->next->prev = block->prev;
} else {
lastBlock = block->prev;
}
if ( lockMemory ) {
idLib::sys->UnlockMemory( block, block->GetSize() + (int)sizeof( idDynamicBlock<type> ) );
}
numBaseBlocks--;
baseBlockMemory -= block->GetSize() + (int)sizeof( idDynamicBlock<type> );
Mem_Free16( block );
}
}
#ifdef DYNAMIC_BLOCK_ALLOC_CHECK
CheckMemory();
#endif
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
int idDynamicBlockAlloc<type, baseBlockSize, minBlockSize, memoryTag>::GetNumEmptyBaseBlocks( void ) const {
int numEmptyBaseBlocks;
idDynamicBlock<type> *block;
numEmptyBaseBlocks = 0;
for ( block = firstBlock; block != NULL; block = block->next ) {
if ( block->IsBaseBlock() && block->node != NULL && ( block->next == NULL || block->next->IsBaseBlock() ) ) {
numEmptyBaseBlocks++;
}
}
return numEmptyBaseBlocks;
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
type *idDynamicBlockAlloc<type, baseBlockSize, minBlockSize, memoryTag>::Alloc( const int num ) {
idDynamicBlock<type> *block;
numAllocs++;
if ( num <= 0 ) {
return NULL;
}
block = AllocInternal( num );
if ( block == NULL ) {
return NULL;
}
block = ResizeInternal( block, num );
if ( block == NULL ) {
return NULL;
}
#ifdef DYNAMIC_BLOCK_ALLOC_CHECK
CheckMemory();
#endif
numUsedBlocks++;
usedBlockMemory += block->GetSize();
return block->GetMemory();
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
type *idDynamicBlockAlloc<type, baseBlockSize, minBlockSize, memoryTag>::Resize( type *ptr, const int num ) {
numResizes++;
if ( ptr == NULL ) {
return Alloc( num );
}
if ( num <= 0 ) {
Free( ptr );
return NULL;
}
idDynamicBlock<type> *block = ( idDynamicBlock<type> * ) ( ( (byte *) ptr ) - (int)sizeof( idDynamicBlock<type> ) );
usedBlockMemory -= block->GetSize();
block = ResizeInternal( block, num );
if ( block == NULL ) {
return NULL;
}
#ifdef DYNAMIC_BLOCK_ALLOC_CHECK
CheckMemory();
#endif
usedBlockMemory += block->GetSize();
return block->GetMemory();
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
void idDynamicBlockAlloc<type, baseBlockSize, minBlockSize, memoryTag>::Free( type *ptr ) {
numFrees++;
if ( ptr == NULL ) {
return;
}
idDynamicBlock<type> *block = ( idDynamicBlock<type> * ) ( ( (byte *) ptr ) - (int)sizeof( idDynamicBlock<type> ) );
numUsedBlocks--;
usedBlockMemory -= block->GetSize();
FreeInternal( block );
#ifdef DYNAMIC_BLOCK_ALLOC_CHECK
CheckMemory();
#endif
}
// RAVEN BEGIN
// jnewquist: Fast sanity checking of idDynamicBlockAlloc
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
const char *idDynamicBlockAlloc<type, baseBlockSize, minBlockSize, memoryTag>::CheckMemory( const idDynamicBlock<type> *block ) const {
if ( block->node != NULL ) {
return "memory has been freed";
}
#if defined(DYNAMIC_BLOCK_ALLOC_CHECK) || defined(DYNAMIC_BLOCK_ALLOC_FASTCHECK)
// RAVEN END
if ( block->identifier[0] != 0x11111111 || block->identifier[1] != 0x22222222 || block->identifier[2] != 0x33333333 ) {
return "memory has invalid identifier";
}
// RAVEN BEGIN
// jsinger: attempt to eliminate cross-DLL allocation issues
#ifndef RV_UNIFIED_ALLOCATOR
if ( block->allocator != (void*)this ) {
return "memory was allocated with different allocator";
}
#endif // RV_UNIFIED_ALLOCATOR
// RAVEN END
#endif
/* base blocks can be larger than baseBlockSize which can cause this code to fail
idDynamicBlock<type> *base;
for ( base = firstBlock; base != NULL; base = base->next ) {
if ( base->IsBaseBlock() ) {
if ( ((int)block) >= ((int)base) && ((int)block) < ((int)base) + baseBlockSize ) {
break;
}
}
}
if ( base == NULL ) {
return "no base block found for memory";
}
*/
return NULL;
}
// RAVEN BEGIN
// jnewquist: Fast sanity checking of idDynamicBlockAlloc
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
const char *idDynamicBlockAlloc<type, baseBlockSize, minBlockSize, memoryTag>::CheckMemory( const type *ptr ) const {
idDynamicBlock<type> *block;
if ( ptr == NULL ) {
return NULL;
}
block = ( idDynamicBlock<type> * ) ( ( (byte *) ptr ) - (int)sizeof( idDynamicBlock<type> ) );
return CheckMemory( block );
}
// RAVEN END
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
void idDynamicBlockAlloc<type, baseBlockSize, minBlockSize, memoryTag>::Clear( void ) {
firstBlock = lastBlock = NULL;
allowAllocs = true;
lockMemory = false;
numBaseBlocks = 0;
baseBlockMemory = 0;
numUsedBlocks = 0;
usedBlockMemory = 0;
numFreeBlocks = 0;
freeBlockMemory = 0;
numAllocs = 0;
numResizes = 0;
numFrees = 0;
// RAVEN BEGIN
// jnewquist: Fast sanity checking of idDynamicBlockAlloc
#if defined(DYNAMIC_BLOCK_ALLOC_CHECK) || defined(DYNAMIC_BLOCK_ALLOC_FASTCHECK)
// RAVEN END
blockId[0] = 0x11111111;
blockId[1] = 0x22222222;
blockId[2] = 0x33333333;
#endif
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
idDynamicBlock<type> *idDynamicBlockAlloc<type, baseBlockSize, minBlockSize, memoryTag>::AllocInternal( const int num ) {
idDynamicBlock<type> *block;
int alignedBytes = ( num * sizeof( type ) + 15 ) & ~15;
block = freeTree.FindSmallestLargerEqual( alignedBytes );
if ( block != NULL ) {
UnlinkFreeInternal( block );
} else if ( allowAllocs ) {
int allocSize = Max( baseBlockSize, alignedBytes + (int)sizeof( idDynamicBlock<type> ) );
//RAVEN BEGIN
//amccarthy: Added allocation tag
block = ( idDynamicBlock<type> * ) Mem_Alloc16( allocSize, memoryTag );
//RAVEN END
if ( lockMemory ) {
idLib::sys->LockMemory( block, baseBlockSize );
}
// RAVEN BEGIN
// jnewquist: Fast sanity checking of idDynamicBlockAlloc
#if defined(DYNAMIC_BLOCK_ALLOC_CHECK) || defined(DYNAMIC_BLOCK_ALLOC_FASTCHECK)
// RAVEN END
memcpy( block->identifier, blockId, sizeof( block->identifier ) );
block->allocator = (void*)this;
#endif
block->SetSize( allocSize - (int)sizeof( idDynamicBlock<type> ), true );
block->next = NULL;
block->prev = lastBlock;
if ( lastBlock ) {
lastBlock->next = block;
} else {
firstBlock = block;
}
lastBlock = block;
block->node = NULL;
numBaseBlocks++;
baseBlockMemory += allocSize;
}
return block;
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
idDynamicBlock<type> *idDynamicBlockAlloc<type, baseBlockSize, minBlockSize, memoryTag>::ResizeInternal( idDynamicBlock<type> *block, const int num ) {
int alignedBytes = ( num * sizeof( type ) + 15 ) & ~15;
// RAVEN BEGIN
// jnewquist: Fast sanity checking of idDynamicBlockAlloc
#if defined(DYNAMIC_BLOCK_ALLOC_CHECK) || defined(DYNAMIC_BLOCK_ALLOC_FASTCHECK)
#if defined(DYNAMIC_BLOCK_ALLOC_CHECK_IS_FATAL)
const char *chkstr = CheckMemory( block );
if ( chkstr ) {
throw idException( chkstr );
}
#endif
// jsinger: attempt to eliminate cross-DLL allocation issues
#ifdef RV_UNIFIED_ALLOCATOR
assert( block->identifier[0] == 0x11111111 && block->identifier[1] == 0x22222222 && block->identifier[2] == 0x33333333); // && block->allocator == (void*)this );
#else
assert( block->identifier[0] == 0x11111111 && block->identifier[1] == 0x22222222 && block->identifier[2] == 0x33333333 && block->allocator == (void*)this );
#endif
// RAVEN END
#endif
// if the new size is larger
if ( alignedBytes > block->GetSize() ) {
idDynamicBlock<type> *nextBlock = block->next;
// try to annexate the next block if it's free
if ( nextBlock && !nextBlock->IsBaseBlock() && nextBlock->node != NULL &&
block->GetSize() + (int)sizeof( idDynamicBlock<type> ) + nextBlock->GetSize() >= alignedBytes ) {
UnlinkFreeInternal( nextBlock );
block->SetSize( block->GetSize() + (int)sizeof( idDynamicBlock<type> ) + nextBlock->GetSize(), block->IsBaseBlock() );
block->next = nextBlock->next;
if ( nextBlock->next ) {
nextBlock->next->prev = block;
} else {
lastBlock = block;
}
} else {
// allocate a new block and copy
idDynamicBlock<type> *oldBlock = block;
block = AllocInternal( num );
if ( block == NULL ) {
return NULL;
}
memcpy( block->GetMemory(), oldBlock->GetMemory(), oldBlock->GetSize() );
FreeInternal( oldBlock );
}
}
// if the unused space at the end of this block is large enough to hold a block with at least one element
if ( block->GetSize() - alignedBytes - (int)sizeof( idDynamicBlock<type> ) < Max( minBlockSize, (int)sizeof( type ) ) ) {
return block;
}
idDynamicBlock<type> *newBlock;
newBlock = ( idDynamicBlock<type> * ) ( ( (byte *) block ) + (int)sizeof( idDynamicBlock<type> ) + alignedBytes );
// RAVEN BEGIN
// jnewquist: Fast sanity checking of idDynamicBlockAlloc
#if defined(DYNAMIC_BLOCK_ALLOC_CHECK) || defined(DYNAMIC_BLOCK_ALLOC_FASTCHECK)
// RAVEN END
memcpy( newBlock->identifier, blockId, sizeof( newBlock->identifier ) );
newBlock->allocator = (void*)this;
#endif
newBlock->SetSize( block->GetSize() - alignedBytes - (int)sizeof( idDynamicBlock<type> ), false );
newBlock->next = block->next;
newBlock->prev = block;
if ( newBlock->next ) {
newBlock->next->prev = newBlock;
} else {
lastBlock = newBlock;
}
newBlock->node = NULL;
block->next = newBlock;
block->SetSize( alignedBytes, block->IsBaseBlock() );
FreeInternal( newBlock );
return block;
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
void idDynamicBlockAlloc<type, baseBlockSize, minBlockSize, memoryTag>::FreeInternal( idDynamicBlock<type> *block ) {
assert( block->node == NULL );
// RAVEN BEGIN
// jnewquist: Fast sanity checking of idDynamicBlockAlloc
#if defined(DYNAMIC_BLOCK_ALLOC_CHECK) || defined(DYNAMIC_BLOCK_ALLOC_FASTCHECK)
#if defined(DYNAMIC_BLOCK_ALLOC_CHECK_IS_FATAL)
const char *chkstr = CheckMemory( block );
if ( chkstr ) {
throw idException( chkstr );
}
#endif
// jsinger: attempt to eliminate cross-DLL allocation issues
#ifdef RV_UNIFIED_ALLOCATOR
assert( block->identifier[0] == 0x11111111 && block->identifier[1] == 0x22222222 && block->identifier[2] == 0x33333333 );//&& block->allocator == (void*)this );
#else
assert( block->identifier[0] == 0x11111111 && block->identifier[1] == 0x22222222 && block->identifier[2] == 0x33333333 && block->allocator == (void*)this );
#endif // RV_UNIFIED_ALLOCATOR
// RAVEN END
#endif
// try to merge with a next free block
idDynamicBlock<type> *nextBlock = block->next;
if ( nextBlock && !nextBlock->IsBaseBlock() && nextBlock->node != NULL ) {
UnlinkFreeInternal( nextBlock );
block->SetSize( block->GetSize() + (int)sizeof( idDynamicBlock<type> ) + nextBlock->GetSize(), block->IsBaseBlock() );
block->next = nextBlock->next;
if ( nextBlock->next ) {
nextBlock->next->prev = block;
} else {
lastBlock = block;
}
}
// try to merge with a previous free block
idDynamicBlock<type> *prevBlock = block->prev;
if ( prevBlock && !block->IsBaseBlock() && prevBlock->node != NULL ) {
UnlinkFreeInternal( prevBlock );
prevBlock->SetSize( prevBlock->GetSize() + (int)sizeof( idDynamicBlock<type> ) + block->GetSize(), prevBlock->IsBaseBlock() );
prevBlock->next = block->next;
if ( block->next ) {
block->next->prev = prevBlock;
} else {
lastBlock = prevBlock;
}
LinkFreeInternal( prevBlock );
} else {
LinkFreeInternal( block );
}
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
ID_INLINE void idDynamicBlockAlloc<type, baseBlockSize, minBlockSize, memoryTag>::LinkFreeInternal( idDynamicBlock<type> *block ) {
block->node = freeTree.Add( block, block->GetSize() );
numFreeBlocks++;
freeBlockMemory += block->GetSize();
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
ID_INLINE void idDynamicBlockAlloc<type, baseBlockSize, minBlockSize, memoryTag>::UnlinkFreeInternal( idDynamicBlock<type> *block ) {
freeTree.Remove( block->node );
block->node = NULL;
numFreeBlocks--;
freeBlockMemory -= block->GetSize();
}
template<class type, int baseBlockSize, int minBlockSize, byte memoryTag>
void idDynamicBlockAlloc<type, baseBlockSize, minBlockSize, memoryTag>::CheckMemory( void ) const {
idDynamicBlock<type> *block;
for ( block = firstBlock; block != NULL; block = block->next ) {
// RAVEN BEGIN
// jnewquist: Fast sanity checking of idDynamicBlockAlloc
#if defined(DYNAMIC_BLOCK_ALLOC_CHECK) || defined(DYNAMIC_BLOCK_ALLOC_FASTCHECK)
#if defined(DYNAMIC_BLOCK_ALLOC_CHECK_IS_FATAL)
const char *chkstr = CheckMemory( block );
if ( chkstr ) {
throw idException( chkstr );
}
#endif
// jsinger: attempt to eliminate cross-DLL allocation issues
#ifdef RV_UNIFIED_ALLOCATOR
assert( block->identifier[0] == 0x11111111 && block->identifier[1] == 0x22222222 && block->identifier[2] == 0x33333333); // && block->allocator == (void*)this );
#else
assert( block->identifier[0] == 0x11111111 && block->identifier[1] == 0x22222222 && block->identifier[2] == 0x33333333 && block->allocator == (void*)this );
#endif
// RAVEN END
#endif
// make sure the block is properly linked
if ( block->prev == NULL ) {
assert( firstBlock == block );
} else {
assert( block->prev->next == block );
}
if ( block->next == NULL ) {
assert( lastBlock == block );
} else {
assert( block->next->prev == block );
}
}
}
#endif /* !__HEAP_H__ */