quake4-sdk/source/game/physics/Physics_RigidBody.cpp
2007-06-15 00:00:00 +00:00

1623 lines
46 KiB
C++

#include "../../idlib/precompiled.h"
#pragma hdrstop
#include "../Game_local.h"
CLASS_DECLARATION( idPhysics_Base, idPhysics_RigidBody )
END_CLASS
const float STOP_SPEED = 10.0f;
#undef RB_TIMINGS
#ifdef RB_TIMINGS
static int lastTimerReset = 0;
static int numRigidBodies = 0;
static idTimer timer_total, timer_collision;
#endif
/*
================
RigidBodyDerivatives
================
*/
void RigidBodyDerivatives( const float t, const void *clientData, const float *state, float *derivatives ) {
const idPhysics_RigidBody *p = (idPhysics_RigidBody *) clientData;
rigidBodyIState_t *s = (rigidBodyIState_t *) state;
// NOTE: this struct should be build conform rigidBodyIState_t
struct rigidBodyDerivatives_s {
idVec3 linearVelocity;
idMat3 angularMatrix;
idVec3 force;
idVec3 torque;
} *d = (struct rigidBodyDerivatives_s *) derivatives;
idVec3 angularVelocity;
idMat3 inverseWorldInertiaTensor;
inverseWorldInertiaTensor = s->orientation * p->inverseInertiaTensor * s->orientation.Transpose();
angularVelocity = inverseWorldInertiaTensor * s->angularMomentum;
// derivatives
d->linearVelocity = p->inverseMass * s->linearMomentum;
d->angularMatrix = SkewSymmetric( angularVelocity ) * s->orientation;
d->force = - p->linearFriction * s->linearMomentum + p->current.externalForce;
d->torque = - p->angularFriction * s->angularMomentum + p->current.externalTorque;
}
/*
================
idPhysics_RigidBody::Integrate
Calculate next state from the current state using an integrator.
================
*/
void idPhysics_RigidBody::Integrate( float deltaTime, rigidBodyPState_t &next ) {
idVec3 position;
position = current.i.position;
current.i.position += centerOfMass * current.i.orientation;
current.i.orientation.TransposeSelf();
integrator->Evaluate( (float *) &current.i, (float *) &next.i, 0, deltaTime );
next.i.orientation.OrthoNormalizeSelf();
// apply gravity
next.i.linearMomentum += deltaTime * gravityVector * mass;
current.i.orientation.TransposeSelf();
next.i.orientation.TransposeSelf();
current.i.position = position;
next.i.position -= centerOfMass * next.i.orientation;
next.atRest = current.atRest;
}
/*
================
idPhysics_RigidBody::CollisionImpulse
Calculates the collision impulse using the velocity relative to the collision object.
The current state should be set to the moment of impact.
================
*/
bool idPhysics_RigidBody::CollisionImpulse( const trace_t &collision, idVec3 &impulse ) {
idVec3 r, linearVelocity, angularVelocity, velocity;
idMat3 inverseWorldInertiaTensor;
float impulseNumerator, impulseDenominator, vel;
impactInfo_t info;
idEntity *ent;
// get info from other entity involved
ent = gameLocal.entities[collision.c.entityNum];
ent->GetImpactInfo( self, collision.c.id, collision.c.point, &info );
// RAVEN BEGIN
// bdube: once in water take out the water flag and increase friction
if ( ent->GetPhysics()->GetContents() & CONTENTS_WATER ) {
clipMask &= ~CONTENTS_WATER;
linearFriction *= 20.0f;
angularFriction *= 20.0f;
}
// RAVEN END
// collision point relative to the body center of mass
r = collision.c.point - (current.i.position + centerOfMass * current.i.orientation);
// the velocity at the collision point
linearVelocity = inverseMass * current.i.linearMomentum;
inverseWorldInertiaTensor = current.i.orientation.Transpose() * inverseInertiaTensor * current.i.orientation;
angularVelocity = inverseWorldInertiaTensor * current.i.angularMomentum;
velocity = linearVelocity + angularVelocity.Cross(r);
// subtract velocity of other entity
velocity -= info.velocity;
// velocity in normal direction
vel = velocity * collision.c.normal;
if ( vel > -STOP_SPEED ) {
impulseNumerator = STOP_SPEED;
}
else {
impulseNumerator = -( 1.0f + bouncyness ) * vel;
}
impulseDenominator = inverseMass + ( ( inverseWorldInertiaTensor * r.Cross( collision.c.normal ) ).Cross( r ) * collision.c.normal );
if ( info.invMass ) {
impulseDenominator += info.invMass + ( ( info.invInertiaTensor * info.position.Cross( collision.c.normal ) ).Cross( info.position ) * collision.c.normal );
}
impulse = (impulseNumerator / impulseDenominator) * collision.c.normal;
// update linear and angular momentum with impulse
current.i.linearMomentum += impulse;
current.i.angularMomentum += r.Cross(impulse);
// if no movement at all don't blow up
if ( collision.fraction < 0.0001f ) {
current.i.linearMomentum *= 0.5f;
current.i.angularMomentum *= 0.5f;
}
// callback to self to let the entity know about the collision
return self->Collide( collision, velocity );
}
/*
================
idPhysics_RigidBody::CheckForCollisions
Check for collisions between the current and next state.
If there is a collision the next state is set to the state at the moment of impact.
================
*/
bool idPhysics_RigidBody::CheckForCollisions( const float deltaTime, rigidBodyPState_t &next, trace_t &collision ) {
//#define TEST_COLLISION_DETECTION
idMat3 axis;
idRotation rotation;
bool collided = false;
#ifdef TEST_COLLISION_DETECTION
bool startsolid;
// RAVEN BEGIN
// ddynerman: multiple collision worlds
if ( gameLocal.Contents( self, current.i.position, clipModel, current.i.orientation, clipMask, self ) ) {
// RAVEN END
startsolid = true;
}
#endif
TransposeMultiply( current.i.orientation, next.i.orientation, axis );
rotation = axis.ToRotation();
rotation.SetOrigin( current.i.position );
// if there was a collision
// RAVEN BEGIN
// ddynerman: multiple clip worlds
if ( gameLocal.Motion( self, collision, current.i.position, next.i.position, rotation, clipModel, current.i.orientation, clipMask, self ) ) {
// RAVEN END
// set the next state to the state at the moment of impact
next.i.position = collision.endpos;
next.i.orientation = collision.endAxis;
next.i.linearMomentum = current.i.linearMomentum;
next.i.angularMomentum = current.i.angularMomentum;
collided = true;
}
#ifdef TEST_COLLISION_DETECTION
// RAVEN BEGIN
// ddynerman: multiple collision worlds
if ( gameLocal.Contents( self, next.i.position, clipModel, next.i.orientation, clipMask, self ) ) {
// RAVEN END
if ( !startsolid ) {
int bah = 1;
}
}
#endif
return collided;
}
/*
================
idPhysics_RigidBody::ContactFriction
Does not solve friction for multiple simultaneous contacts but applies contact friction in isolation.
Uses absolute velocity at the contact points instead of the velocity relative to the contact object.
================
*/
void idPhysics_RigidBody::ContactFriction( float deltaTime ) {
int i;
float magnitude, impulseNumerator, impulseDenominator;
idMat3 inverseWorldInertiaTensor;
idVec3 linearVelocity, angularVelocity;
idVec3 massCenter, r, velocity, normal, impulse, normalVelocity;
inverseWorldInertiaTensor = current.i.orientation.Transpose() * inverseInertiaTensor * current.i.orientation;
massCenter = current.i.position + centerOfMass * current.i.orientation;
for ( i = 0; i < contacts.Num(); i++ ) {
r = contacts[i].point - massCenter;
// calculate velocity at contact point
linearVelocity = inverseMass * current.i.linearMomentum;
angularVelocity = inverseWorldInertiaTensor * current.i.angularMomentum;
velocity = linearVelocity + angularVelocity.Cross(r);
// velocity along normal vector
normalVelocity = ( velocity * contacts[i].normal ) * contacts[i].normal;
// calculate friction impulse
normal = -( velocity - normalVelocity );
magnitude = normal.Normalize();
impulseNumerator = contactFriction * magnitude;
impulseDenominator = inverseMass + ( ( inverseWorldInertiaTensor * r.Cross( normal ) ).Cross( r ) * normal );
impulse = (impulseNumerator / impulseDenominator) * normal;
// apply friction impulse
current.i.linearMomentum += impulse;
current.i.angularMomentum += r.Cross(impulse);
// if moving towards the surface at the contact point
if ( normalVelocity * contacts[i].normal < 0.0f ) {
// calculate impulse
normal = -normalVelocity;
impulseNumerator = normal.Normalize();
impulseDenominator = inverseMass + ( ( inverseWorldInertiaTensor * r.Cross( normal ) ).Cross( r ) * normal );
impulse = (impulseNumerator / impulseDenominator) * normal;
// apply impulse
current.i.linearMomentum += impulse;
current.i.angularMomentum += r.Cross( impulse );
}
}
}
/*
================
idPhysics_RigidBody::TestIfAtRest
Returns true if the body is considered at rest.
Does not catch all cases where the body is at rest but is generally good enough.
================
*/
bool idPhysics_RigidBody::TestIfAtRest( void ) const {
int i;
float gv;
idVec3 v, av, normal, point;
idMat3 inverseWorldInertiaTensor;
idFixedWinding contactWinding;
if ( current.atRest >= 0 ) {
return true;
}
// need at least 3 contact points to come to rest
if ( contacts.Num() < 3 ) {
return false;
}
// get average contact plane normal
normal.Zero();
for ( i = 0; i < contacts.Num(); i++ ) {
normal += contacts[i].normal;
}
normal /= (float) contacts.Num();
normal.Normalize();
// if on a too steep surface
if ( (normal * gravityNormal) > -0.7f ) {
return false;
}
// create bounds for contact points
contactWinding.Clear();
for ( i = 0; i < contacts.Num(); i++ ) {
// project point onto plane through origin orthogonal to the gravity
point = contacts[i].point - (contacts[i].point * gravityNormal) * gravityNormal;
contactWinding.AddToConvexHull( point, gravityNormal );
}
// need at least 3 contact points to come to rest
if ( contactWinding.GetNumPoints() < 3 ) {
return false;
}
// center of mass in world space
point = current.i.position + centerOfMass * current.i.orientation;
point -= (point * gravityNormal) * gravityNormal;
// if the point is not inside the winding
if ( !contactWinding.PointInside( gravityNormal, point, 0 ) ) {
return false;
}
// linear velocity of body
v = inverseMass * current.i.linearMomentum;
// linear velocity in gravity direction
gv = v * gravityNormal;
// linear velocity orthogonal to gravity direction
v -= gv * gravityNormal;
// if too much velocity orthogonal to gravity direction
if ( v.Length() > STOP_SPEED ) {
return false;
}
// if too much velocity in gravity direction
if ( gv > 2.0f * STOP_SPEED || gv < -2.0f * STOP_SPEED ) {
return false;
}
// calculate rotational velocity
inverseWorldInertiaTensor = current.i.orientation * inverseInertiaTensor * current.i.orientation.Transpose();
av = inverseWorldInertiaTensor * current.i.angularMomentum;
// if too much rotational velocity
if ( av.LengthSqr() > STOP_SPEED ) {
return false;
}
return true;
}
/*
================
idPhysics_RigidBody::DropToFloorAndRest
Drops the object straight down to the floor and verifies if the object is at rest on the floor.
================
*/
void idPhysics_RigidBody::DropToFloorAndRest( void ) {
idVec3 down;
trace_t tr;
if ( testSolid ) {
testSolid = false;
// RAVEN BEGIN
// ddynerman: multiple collision worlds
if ( gameLocal.Contents( self, current.i.position, clipModel, current.i.orientation, clipMask, self ) ) {
// RAVEN END
gameLocal.DWarning( "rigid body in solid for entity '%s' type '%s' at (%s)",
self->name.c_str(), self->GetType()->classname, current.i.position.ToString(0) );
Rest();
dropToFloor = false;
return;
}
}
// put the body on the floor
down = current.i.position + gravityNormal * 128.0f;
// RAVEN BEGIN
// ddynerman: multiple clip worlds
gameLocal.Translation( self, tr, current.i.position, down, clipModel, current.i.orientation, clipMask, self );
// RAVEN END
current.i.position = tr.endpos;
// RAVEN BEGIN
// ddynerman: multiple clip worlds
clipModel->Link( self, clipModel->GetId(), tr.endpos, current.i.orientation );
// RAVEN END
// if on the floor already
if ( tr.fraction == 0.0f ) {
// test if we are really at rest
EvaluateContacts();
if ( !TestIfAtRest() ) {
gameLocal.DWarning( "rigid body not at rest for entity '%s' type '%s' at (%s)",
self->name.c_str(), self->GetType()->classname, current.i.position.ToString(0) );
}
Rest();
dropToFloor = false;
} else if ( IsOutsideWorld() ) {
gameLocal.Warning( "rigid body outside world bounds for entity '%s' type '%s' at (%s)",
self->name.c_str(), self->GetType()->classname, current.i.position.ToString(0) );
Rest();
dropToFloor = false;
}
}
/*
================
idPhysics_RigidBody::DebugDraw
================
*/
void idPhysics_RigidBody::DebugDraw( void ) {
if ( rb_showBodies.GetBool() || ( rb_showActive.GetBool() && current.atRest < 0 ) ) {
collisionModelManager->DrawModel( clipModel->GetCollisionModel(), clipModel->GetOrigin(), clipModel->GetAxis(), vec3_origin, mat3_identity, 0.0f );
}
if ( rb_showMass.GetBool() ) {
// RAVEN BEGIN
// bdube: draw center of mass at the center of mass
gameRenderWorld->DrawText( va( "\n%1.2f", mass ), current.i.position + centerOfMass * current.i.orientation, 0.08f, colorCyan, gameLocal.GetLocalPlayer()->viewAngles.ToMat3(), 1 );
// RAVEN END
}
if ( rb_showInertia.GetBool() ) {
idMat3 &I = inertiaTensor;
gameRenderWorld->DrawText( va( "\n\n\n( %.1f %.1f %.1f )\n( %.1f %.1f %.1f )\n( %.1f %.1f %.1f )",
I[0].x, I[0].y, I[0].z,
I[1].x, I[1].y, I[1].z,
I[2].x, I[2].y, I[2].z ),
current.i.position, 0.05f, colorCyan, gameLocal.GetLocalPlayer()->viewAngles.ToMat3(), 1 );
}
if ( rb_showVelocity.GetBool() ) {
DrawVelocity( clipModel->GetId(), 0.1f, 4.0f );
}
// RAVEN BEGIN
// bdube: added more debug info
if ( rb_showContacts.GetBool() ) {
int i;
for ( i = 0; i < contacts.Num(); i ++ ) {
idVec3 x, y;
contacts[i].normal.NormalVectors( x, y );
gameRenderWorld->DebugLine( colorWhite, contacts[i].point, contacts[i].point + 6.0f * contacts[i].normal );
gameRenderWorld->DebugLine( colorWhite, contacts[i].point - 2.0f * x, contacts[i].point + 2.0f * x );
gameRenderWorld->DebugLine( colorWhite, contacts[i].point - 2.0f * y, contacts[i].point + 2.0f * y );
}
}
// RAVEN END
}
/*
================
idPhysics_RigidBody::idPhysics_RigidBody
================
*/
idPhysics_RigidBody::idPhysics_RigidBody( void ) {
// set default rigid body properties
SetClipMask( MASK_SOLID );
SetBouncyness( 0.6f );
SetFriction( 0.6f, 0.6f, 0.0f );
clipModel = NULL;
memset( &current, 0, sizeof( current ) );
current.atRest = -1;
// RAVEN BEGIN
// bdube: use GetMSec access rather than USERCMD_TIME
current.lastTimeStep = gameLocal.GetMSec();
// RAVEN END
current.i.position.Zero();
current.i.orientation.Identity();
current.i.linearMomentum.Zero();
current.i.angularMomentum.Zero();
saved = current;
mass = 1.0f;
inverseMass = 1.0f;
centerOfMass.Zero();
inertiaTensor.Identity();
inverseInertiaTensor.Identity();
// use the least expensive euler integrator
integrator = new idODE_Euler( sizeof(rigidBodyIState_t) / sizeof(float), RigidBodyDerivatives, this );
dropToFloor = false;
noImpact = false;
noContact = false;
hasMaster = false;
isOrientated = false;
#ifdef RB_TIMINGS
lastTimerReset = 0;
#endif
}
/*
================
idPhysics_RigidBody::~idPhysics_RigidBody
================
*/
idPhysics_RigidBody::~idPhysics_RigidBody( void ) {
if ( clipModel ) {
delete clipModel;
clipModel = NULL;
}
delete integrator;
}
/*
================
idPhysics_RigidBody_SavePState
================
*/
void idPhysics_RigidBody_SavePState( idSaveGame *savefile, const rigidBodyPState_t &state ) {
savefile->WriteInt( state.atRest );
savefile->WriteFloat( state.lastTimeStep );
savefile->WriteVec3( state.localOrigin );
savefile->WriteMat3( state.localAxis );
savefile->Write( &state.pushVelocity, sizeof( state.pushVelocity ) );
savefile->WriteVec3( state.externalForce );
savefile->WriteVec3( state.externalTorque );
savefile->WriteVec3( state.i.position );
savefile->WriteMat3( state.i.orientation );
savefile->WriteVec3( state.i.linearMomentum );
savefile->WriteVec3( state.i.angularMomentum );
}
/*
================
idPhysics_RigidBody_RestorePState
================
*/
void idPhysics_RigidBody_RestorePState( idRestoreGame *savefile, rigidBodyPState_t &state ) {
savefile->ReadInt( state.atRest );
savefile->ReadFloat( state.lastTimeStep );
savefile->ReadVec3( state.localOrigin );
savefile->ReadMat3( state.localAxis );
savefile->Read( &state.pushVelocity, sizeof( state.pushVelocity ) );
savefile->ReadVec3( state.externalForce );
savefile->ReadVec3( state.externalTorque );
savefile->ReadVec3( state.i.position );
savefile->ReadMat3( state.i.orientation );
savefile->ReadVec3( state.i.linearMomentum );
savefile->ReadVec3( state.i.angularMomentum );
}
/*
================
idPhysics_RigidBody::Save
================
*/
void idPhysics_RigidBody::Save( idSaveGame *savefile ) const {
idPhysics_RigidBody_SavePState( savefile, current );
idPhysics_RigidBody_SavePState( savefile, saved );
savefile->WriteFloat( linearFriction );
savefile->WriteFloat( angularFriction );
savefile->WriteFloat( contactFriction );
savefile->WriteFloat( bouncyness );
savefile->WriteClipModel( clipModel );
savefile->WriteFloat( mass );
savefile->WriteFloat( inverseMass );
savefile->WriteVec3( centerOfMass );
savefile->WriteMat3( inertiaTensor );
savefile->WriteMat3( inverseInertiaTensor );
savefile->WriteBool( dropToFloor );
savefile->WriteBool( testSolid );
savefile->WriteBool( noImpact );
savefile->WriteBool( noContact );
savefile->WriteBool( hasMaster );
savefile->WriteBool( isOrientated );
}
/*
================
idPhysics_RigidBody::Restore
================
*/
void idPhysics_RigidBody::Restore( idRestoreGame *savefile ) {
idPhysics_RigidBody_RestorePState( savefile, current );
idPhysics_RigidBody_RestorePState( savefile, saved );
savefile->ReadFloat( linearFriction );
savefile->ReadFloat( angularFriction );
savefile->ReadFloat( contactFriction );
savefile->ReadFloat( bouncyness );
savefile->ReadClipModel( clipModel );
savefile->ReadFloat( mass );
savefile->ReadFloat( inverseMass );
savefile->ReadVec3( centerOfMass );
savefile->ReadMat3( inertiaTensor );
savefile->ReadMat3( inverseInertiaTensor );
savefile->ReadBool( dropToFloor );
savefile->ReadBool( testSolid );
savefile->ReadBool( noImpact );
savefile->ReadBool( noContact );
savefile->ReadBool( hasMaster );
savefile->ReadBool( isOrientated );
}
/*
================
idPhysics_RigidBody::SetClipModel
================
*/
#define MAX_INERTIA_SCALE 10.0f
void idPhysics_RigidBody::SetClipModel( idClipModel *model, const float density, int id, bool freeOld ) {
int minIndex;
idMat3 inertiaScale;
assert( self );
assert( model ); // we need a clip model
assert( model->IsTraceModel() ); // and it should be a trace model
assert( density > 0.0f ); // density should be valid
if ( clipModel && clipModel != model && freeOld ) {
delete clipModel;
}
clipModel = model;
// RAVEN BEGIN
// ddynerman: multiple clip worlds
clipModel->Link( self, 0, current.i.position, current.i.orientation );
// RAVEN END
// get mass properties from the trace model
clipModel->GetMassProperties( density, mass, centerOfMass, inertiaTensor );
// check whether or not the clip model has valid mass properties
if ( mass <= 0.0f || FLOAT_IS_NAN( mass ) ) {
gameLocal.Warning( "idPhysics_RigidBody::SetClipModel: invalid mass for entity '%s' type '%s'",
self->name.c_str(), self->GetType()->classname );
mass = 1.0f;
centerOfMass.Zero();
inertiaTensor.Identity();
}
// check whether or not the inertia tensor is balanced
minIndex = Min3Index( inertiaTensor[0][0], inertiaTensor[1][1], inertiaTensor[2][2] );
inertiaScale.Identity();
inertiaScale[0][0] = inertiaTensor[0][0] / inertiaTensor[minIndex][minIndex];
inertiaScale[1][1] = inertiaTensor[1][1] / inertiaTensor[minIndex][minIndex];
inertiaScale[2][2] = inertiaTensor[2][2] / inertiaTensor[minIndex][minIndex];
if ( inertiaScale[0][0] > MAX_INERTIA_SCALE || inertiaScale[1][1] > MAX_INERTIA_SCALE || inertiaScale[2][2] > MAX_INERTIA_SCALE ) {
gameLocal.DWarning( "idPhysics_RigidBody::SetClipModel: unbalanced inertia tensor for entity '%s' type '%s'",
self->name.c_str(), self->GetType()->classname );
float min = inertiaTensor[minIndex][minIndex] * MAX_INERTIA_SCALE;
inertiaScale[(minIndex+1)%3][(minIndex+1)%3] = min / inertiaTensor[(minIndex+1)%3][(minIndex+1)%3];
inertiaScale[(minIndex+2)%3][(minIndex+2)%3] = min / inertiaTensor[(minIndex+2)%3][(minIndex+2)%3];
inertiaTensor *= inertiaScale;
}
inverseMass = 1.0f / mass;
inverseInertiaTensor = inertiaTensor.Inverse() * ( 1.0f / 6.0f );
current.i.linearMomentum.Zero();
current.i.angularMomentum.Zero();
}
/*
================
idPhysics_RigidBody::GetClipModel
================
*/
idClipModel *idPhysics_RigidBody::GetClipModel( int id ) const {
return clipModel;
}
/*
================
idPhysics_RigidBody::GetNumClipModels
================
*/
int idPhysics_RigidBody::GetNumClipModels( void ) const {
return 1;
}
/*
================
idPhysics_RigidBody::SetMass
================
*/
void idPhysics_RigidBody::SetMass( float mass, int id ) {
assert( mass > 0.0f );
inertiaTensor *= mass / this->mass;
inverseInertiaTensor = inertiaTensor.Inverse() * (1.0f / 6.0f);
this->mass = mass;
inverseMass = 1.0f / mass;
}
/*
================
idPhysics_RigidBody::GetMass
================
*/
float idPhysics_RigidBody::GetMass( int id ) const {
return mass;
}
// RAVEN BEGIN
// bdube: means of getting center of mass
/*
================
idPhysics_RigidBody::GetCenterMass
================
*/
idVec3 idPhysics_RigidBody::GetCenterMass( int id ) const
{
return (current.i.position + centerOfMass * current.i.orientation);
}
// RAVEN END
/*
================
idPhysics_RigidBody::SetFriction
================
*/
void idPhysics_RigidBody::SetFriction( const float linear, const float angular, const float contact ) {
if ( linear < 0.0f || linear > 1.0f ||
angular < 0.0f || angular > 1.0f ||
contact < 0.0f || contact > 1.0f ) {
return;
}
linearFriction = linear;
angularFriction = angular;
contactFriction = contact;
}
/*
================
idPhysics_RigidBody::SetBouncyness
================
*/
void idPhysics_RigidBody::SetBouncyness( const float b ) {
if ( b < 0.0f || b > 1.0f ) {
return;
}
bouncyness = b;
}
/*
================
idPhysics_RigidBody::Rest
================
*/
void idPhysics_RigidBody::Rest( void ) {
current.atRest = gameLocal.time;
current.i.linearMomentum.Zero();
current.i.angularMomentum.Zero();
self->BecomeInactive( TH_PHYSICS );
}
/*
================
idPhysics_RigidBody::DropToFloor
================
*/
void idPhysics_RigidBody::DropToFloor( void ) {
dropToFloor = true;
testSolid = true;
}
/*
================
idPhysics_RigidBody::NoContact
================
*/
void idPhysics_RigidBody::NoContact( void ) {
noContact = true;
}
/*
================
idPhysics_RigidBody::Activate
================
*/
void idPhysics_RigidBody::Activate( void ) {
current.atRest = -1;
self->BecomeActive( TH_PHYSICS );
}
/*
================
idPhysics_RigidBody::PutToRest
put to rest untill something collides with this physics object
================
*/
void idPhysics_RigidBody::PutToRest( void ) {
Rest();
}
/*
================
idPhysics_RigidBody::EnableImpact
================
*/
void idPhysics_RigidBody::EnableImpact( void ) {
noImpact = false;
}
/*
================
idPhysics_RigidBody::DisableImpact
================
*/
void idPhysics_RigidBody::DisableImpact( void ) {
noImpact = true;
}
/*
================
idPhysics_RigidBody::SetContents
================
*/
void idPhysics_RigidBody::SetContents( int contents, int id ) {
clipModel->SetContents( contents );
}
/*
================
idPhysics_RigidBody::GetContents
================
*/
int idPhysics_RigidBody::GetContents( int id ) const {
return clipModel->GetContents();
}
/*
================
idPhysics_RigidBody::GetBounds
================
*/
const idBounds &idPhysics_RigidBody::GetBounds( int id ) const {
return clipModel->GetBounds();
}
/*
================
idPhysics_RigidBody::GetAbsBounds
================
*/
const idBounds &idPhysics_RigidBody::GetAbsBounds( int id ) const {
return clipModel->GetAbsBounds();
}
/*
================
idPhysics_RigidBody::Evaluate
Evaluate the impulse based rigid body physics.
When a collision occurs an impulse is applied at the moment of impact but
the remaining time after the collision is ignored.
================
*/
bool idPhysics_RigidBody::Evaluate( int timeStepMSec, int endTimeMSec ) {
rigidBodyPState_t next;
idAngles angles;
trace_t collision;
idVec3 impulse;
idEntity *ent;
idVec3 oldOrigin, masterOrigin;
idMat3 oldAxis, masterAxis;
float timeStep;
bool collided, cameToRest = false;
timeStep = MS2SEC( timeStepMSec );
current.lastTimeStep = timeStep;
if ( hasMaster ) {
oldOrigin = current.i.position;
oldAxis = current.i.orientation;
self->GetMasterPosition( masterOrigin, masterAxis );
current.i.position = masterOrigin + current.localOrigin * masterAxis;
if ( isOrientated ) {
current.i.orientation = current.localAxis * masterAxis;
}
else {
current.i.orientation = current.localAxis;
}
// RAVEN BEGIN
// ddynerman: multiple clip worlds
clipModel->Link( self, clipModel->GetId(), current.i.position, current.i.orientation );
// RAVEN END
current.i.linearMomentum = mass * ( ( current.i.position - oldOrigin ) / timeStep );
current.i.angularMomentum = inertiaTensor * ( ( current.i.orientation * oldAxis.Transpose() ).ToAngularVelocity() / timeStep );
current.externalForce.Zero();
current.externalTorque.Zero();
return ( current.i.position != oldOrigin || current.i.orientation != oldAxis );
}
// if the body is at rest
if ( current.atRest >= 0 || timeStep <= 0.0f ) {
DebugDraw();
return false;
}
// if putting the body to rest
if ( dropToFloor ) {
DropToFloorAndRest();
current.externalForce.Zero();
current.externalTorque.Zero();
return true;
}
#ifdef RB_TIMINGS
if ( rb_showTimings->integer != 0 ) {
timer_total.Start();
}
#endif
// move the rigid body velocity into the frame of a pusher
// current.i.linearMomentum -= current.pushVelocity.SubVec3( 0 ) * mass;
// current.i.angularMomentum -= current.pushVelocity.SubVec3( 1 ) * inertiaTensor;
clipModel->Unlink();
next = current;
// calculate next position and orientation
Integrate( timeStep, next );
#ifdef RB_TIMINGS
if ( rb_showTimings->integer != 0 ) {
timer_collision.Start();
}
#endif
// check for collisions from the current to the next state
collided = CheckForCollisions( timeStep, next, collision );
#ifdef RB_TIMINGS
if ( rb_showTimings->integer != 0 ) {
timer_collision.Stop();
}
#endif
// set the new state
current = next;
// trace_t pushResults;
// gameLocal.push.ClipPush( pushResults, self, PUSHFL_CRUSH | PUSHFL_CLIP, saved.localOrigin, saved.localAxis, current.localOrigin, current.localAxis );
if ( collided ) {
// apply collision impulse
if ( CollisionImpulse( collision, impulse ) ) {
current.atRest = gameLocal.time;
}
}
// update the position of the clip model
// RAVEN BEGIN
// ddynerman: multiple clip worlds
clipModel->Link( self, clipModel->GetId(), current.i.position, current.i.orientation );
// RAVEN END
DebugDraw();
if ( !noContact ) {
#ifdef RB_TIMINGS
if ( rb_showTimings->integer != 0 ) {
timer_collision.Start();
}
#endif
// get contacts
EvaluateContacts();
#ifdef RB_TIMINGS
if ( rb_showTimings->integer != 0 ) {
timer_collision.Stop();
}
#endif
// check if the body has come to rest
if ( TestIfAtRest() ) {
// put to rest
Rest();
cameToRest = true;
} else {
// apply contact friction
ContactFriction( timeStep );
}
}
if ( current.atRest < 0 ) {
ActivateContactEntities();
}
if ( collided ) {
// if the rigid body didn't come to rest or the other entity is not at rest
ent = gameLocal.entities[collision.c.entityNum];
if ( ent && ( !cameToRest || !ent->IsAtRest() ) ) {
// apply impact to other entity
ent->ApplyImpulse( self, collision.c.id, collision.c.point, -impulse );
}
}
// move the rigid body velocity back into the world frame
// current.i.linearMomentum += current.pushVelocity.SubVec3( 0 ) * mass;
// current.i.angularMomentum += current.pushVelocity.SubVec3( 1 ) * inertiaTensor;
current.pushVelocity.Zero();
current.lastTimeStep = timeStep;
current.externalForce.Zero();
current.externalTorque.Zero();
if ( IsOutsideWorld() ) {
gameLocal.Warning( "rigid body moved outside world bounds for entity '%s' type '%s' at (%s)",
self->name.c_str(), self->GetType()->classname, current.i.position.ToString(0) );
Rest();
}
#ifdef RB_TIMINGS
if ( rb_showTimings->integer != 0 ) {
timer_total.Stop();
if ( rb_showTimings->integer == 1 ) {
gameLocal.Printf( "%12s: t %1.4f cd %1.4f\n",
self->name.c_str(),
timer_total.Milliseconds(), timer_collision.Milliseconds() );
lastTimerReset = 0;
}
else if ( rb_showTimings->integer == 2 ) {
numRigidBodies++;
if ( endTimeMSec > lastTimerReset ) {
gameLocal.Printf( "rb %d: t %1.4f cd %1.4f\n",
numRigidBodies,
timer_total.Milliseconds(), timer_collision.Milliseconds() );
}
}
if ( endTimeMSec > lastTimerReset ) {
lastTimerReset = endTimeMSec;
numRigidBodies = 0;
timer_total.Clear();
timer_collision.Clear();
}
}
#endif
return true;
}
/*
================
idPhysics_RigidBody::UpdateTime
================
*/
void idPhysics_RigidBody::UpdateTime( int endTimeMSec ) {
}
/*
================
idPhysics_RigidBody::GetTime
================
*/
int idPhysics_RigidBody::GetTime( void ) const {
return gameLocal.time;
}
/*
================
idPhysics_RigidBody::GetImpactInfo
================
*/
void idPhysics_RigidBody::GetImpactInfo( const int id, const idVec3 &point, impactInfo_t *info ) const {
idVec3 linearVelocity, angularVelocity;
idMat3 inverseWorldInertiaTensor;
linearVelocity = inverseMass * current.i.linearMomentum;
inverseWorldInertiaTensor = current.i.orientation.Transpose() * inverseInertiaTensor * current.i.orientation;
angularVelocity = inverseWorldInertiaTensor * current.i.angularMomentum;
info->invMass = inverseMass;
info->invInertiaTensor = inverseWorldInertiaTensor;
info->position = point - ( current.i.position + centerOfMass * current.i.orientation );
info->velocity = linearVelocity + angularVelocity.Cross( info->position );
}
/*
================
idPhysics_RigidBody::ApplyImpulse
================
*/
void idPhysics_RigidBody::ApplyImpulse( const int id, const idVec3 &point, const idVec3 &impulse ) {
if ( noImpact ) {
return;
}
current.i.linearMomentum += impulse;
current.i.angularMomentum += ( point - ( current.i.position + centerOfMass * current.i.orientation ) ).Cross( impulse );
Activate();
}
/*
================
idPhysics_RigidBody::AddForce
================
*/
void idPhysics_RigidBody::AddForce( const int id, const idVec3 &point, const idVec3 &force ) {
if ( noImpact ) {
return;
}
current.externalForce += force;
current.externalTorque += ( point - ( current.i.position + centerOfMass * current.i.orientation ) ).Cross( force );
Activate();
}
/*
================
idPhysics_RigidBody::IsAtRest
================
*/
bool idPhysics_RigidBody::IsAtRest( void ) const {
return current.atRest >= 0;
}
/*
================
idPhysics_RigidBody::GetRestStartTime
================
*/
int idPhysics_RigidBody::GetRestStartTime( void ) const {
return current.atRest;
}
/*
================
idPhysics_RigidBody::IsPushable
================
*/
bool idPhysics_RigidBody::IsPushable( void ) const {
return ( !noImpact && !hasMaster );
}
/*
================
idPhysics_RigidBody::SaveState
================
*/
void idPhysics_RigidBody::SaveState( void ) {
saved = current;
}
/*
================
idPhysics_RigidBody::RestoreState
================
*/
void idPhysics_RigidBody::RestoreState( void ) {
current = saved;
// RAVEN BEGIN
// ddynerman: multiple clip worlds
clipModel->Link( self, clipModel->GetId(), current.i.position, current.i.orientation );
// RAVEN END
EvaluateContacts();
}
/*
================
idPhysics::SetOrigin
================
*/
void idPhysics_RigidBody::SetOrigin( const idVec3 &newOrigin, int id ) {
idVec3 masterOrigin;
idMat3 masterAxis;
current.localOrigin = newOrigin;
if ( hasMaster ) {
self->GetMasterPosition( masterOrigin, masterAxis );
current.i.position = masterOrigin + newOrigin * masterAxis;
}
else {
current.i.position = newOrigin;
}
// RAVEN BEGIN
// ddynerman: multiple clip worlds
clipModel->Link( self, clipModel->GetId(), current.i.position, clipModel->GetAxis() );
// RAVEN END
Activate();
}
/*
================
idPhysics::SetAxis
================
*/
void idPhysics_RigidBody::SetAxis( const idMat3 &newAxis, int id ) {
idVec3 masterOrigin;
idMat3 masterAxis;
current.localAxis = newAxis;
if ( hasMaster && isOrientated ) {
self->GetMasterPosition( masterOrigin, masterAxis );
current.i.orientation = newAxis * masterAxis;
}
else {
current.i.orientation = newAxis;
}
// RAVEN BEGIN
// ddynerman: multiple clip worlds
clipModel->Link( self, clipModel->GetId(), clipModel->GetOrigin(), current.i.orientation );
// RAVEN END
Activate();
}
/*
================
idPhysics::Move
================
*/
void idPhysics_RigidBody::Translate( const idVec3 &translation, int id ) {
current.localOrigin += translation;
current.i.position += translation;
// RAVEN BEGIN
// ddynerman: multiple clip worlds
clipModel->Link( self, clipModel->GetId(), current.i.position, clipModel->GetAxis() );
// RAVEN END
Activate();
}
/*
================
idPhysics::Rotate
================
*/
void idPhysics_RigidBody::Rotate( const idRotation &rotation, int id ) {
idVec3 masterOrigin;
idMat3 masterAxis;
current.i.orientation *= rotation.ToMat3();
current.i.position *= rotation;
if ( hasMaster ) {
self->GetMasterPosition( masterOrigin, masterAxis );
current.localAxis *= rotation.ToMat3();
current.localOrigin = ( current.i.position - masterOrigin ) * masterAxis.Transpose();
}
else {
current.localAxis = current.i.orientation;
current.localOrigin = current.i.position;
}
// RAVEN BEGIN
// ddynerman: multiple clip worlds
clipModel->Link( self, clipModel->GetId(), current.i.position, current.i.orientation );
// RAVEN END
Activate();
}
/*
================
idPhysics_RigidBody::GetOrigin
================
*/
const idVec3 &idPhysics_RigidBody::GetOrigin( int id ) const {
return current.i.position;
}
/*
================
idPhysics_RigidBody::GetAxis
================
*/
const idMat3 &idPhysics_RigidBody::GetAxis( int id ) const {
return current.i.orientation;
}
/*
================
idPhysics_RigidBody::SetLinearVelocity
================
*/
void idPhysics_RigidBody::SetLinearVelocity( const idVec3 &newLinearVelocity, int id ) {
current.i.linearMomentum = newLinearVelocity * mass;
Activate();
}
/*
================
idPhysics_RigidBody::SetAngularVelocity
================
*/
void idPhysics_RigidBody::SetAngularVelocity( const idVec3 &newAngularVelocity, int id ) {
current.i.angularMomentum = newAngularVelocity * inertiaTensor;
Activate();
}
/*
================
idPhysics_RigidBody::GetLinearVelocity
================
*/
const idVec3 &idPhysics_RigidBody::GetLinearVelocity( int id ) const {
static idVec3 curLinearVelocity;
curLinearVelocity = current.i.linearMomentum * inverseMass;
return curLinearVelocity;
}
/*
================
idPhysics_RigidBody::GetAngularVelocity
================
*/
const idVec3 &idPhysics_RigidBody::GetAngularVelocity( int id ) const {
static idVec3 curAngularVelocity;
idMat3 inverseWorldInertiaTensor;
inverseWorldInertiaTensor = current.i.orientation.Transpose() * inverseInertiaTensor * current.i.orientation;
curAngularVelocity = inverseWorldInertiaTensor * current.i.angularMomentum;
return curAngularVelocity;
}
/*
================
idPhysics_RigidBody::ClipTranslation
================
*/
void idPhysics_RigidBody::ClipTranslation( trace_t &results, const idVec3 &translation, const idClipModel *model ) const {
if ( model ) {
// RAVEN BEGIN
// ddynerman: multiple clip worlds
gameLocal.TranslationModel( self, results, clipModel->GetOrigin(), clipModel->GetOrigin() + translation,
clipModel, clipModel->GetAxis(), clipMask,
model->GetCollisionModel(), model->GetOrigin(), model->GetAxis() );
}
else {
gameLocal.Translation( self, results, clipModel->GetOrigin(), clipModel->GetOrigin() + translation,
clipModel, clipModel->GetAxis(), clipMask, self );
// RAVEN END
}
}
/*
================
idPhysics_RigidBody::ClipRotation
================
*/
void idPhysics_RigidBody::ClipRotation( trace_t &results, const idRotation &rotation, const idClipModel *model ) const {
if ( model ) {
// RAVEN BEGIN
// ddynerman: multiple clip worlds
gameLocal.RotationModel( self, results, clipModel->GetOrigin(), rotation,
clipModel, clipModel->GetAxis(), clipMask,
model->GetCollisionModel(), model->GetOrigin(), model->GetAxis() );
}
else {
gameLocal.Rotation( self, results, clipModel->GetOrigin(), rotation,
clipModel, clipModel->GetAxis(), clipMask, self );
// RAVEN END
}
}
/*
================
idPhysics_RigidBody::ClipContents
================
*/
int idPhysics_RigidBody::ClipContents( const idClipModel *model ) const {
if ( model ) {
// RAVEN BEGIN
// ddynerman: multiple collision worlds
return gameLocal.ContentsModel( self, clipModel->GetOrigin(), clipModel, clipModel->GetAxis(), -1,
model->GetCollisionModel(), model->GetOrigin(), model->GetAxis() );
}
else {
return gameLocal.Contents( self, clipModel->GetOrigin(), clipModel, clipModel->GetAxis(), -1, NULL );
// RAVEN END
}
}
/*
================
idPhysics_RigidBody::DisableClip
================
*/
void idPhysics_RigidBody::DisableClip( void ) {
clipModel->Disable();
}
/*
================
idPhysics_RigidBody::EnableClip
================
*/
void idPhysics_RigidBody::EnableClip( void ) {
clipModel->Enable();
}
/*
================
idPhysics_RigidBody::UnlinkClip
================
*/
void idPhysics_RigidBody::UnlinkClip( void ) {
clipModel->Unlink();
}
/*
================
idPhysics_RigidBody::LinkClip
================
*/
void idPhysics_RigidBody::LinkClip( void ) {
// RAVEN BEGIN
// ddynerman: multiple clip worlds
clipModel->Link( self, clipModel->GetId(), current.i.position, current.i.orientation );
// RAVEN END
}
/*
================
idPhysics_RigidBody::EvaluateContacts
================
*/
bool idPhysics_RigidBody::EvaluateContacts( void ) {
idVec6 dir;
int num;
ClearContacts();
contacts.SetNum( 10, false );
dir.SubVec3(0) = current.i.linearMomentum + current.lastTimeStep * gravityVector * mass;
dir.SubVec3(1) = current.i.angularMomentum;
dir.SubVec3(0).Normalize();
dir.SubVec3(1).Normalize();
// RAVEN BEGIN
// ddynerman: multiple clip worlds
num = gameLocal.Contacts( self, &contacts[0], 10, clipModel->GetOrigin(),
dir, CONTACT_EPSILON, clipModel, clipModel->GetAxis(), clipMask, self );
// RAVEN END
contacts.SetNum( num, false );
AddContactEntitiesForContacts();
return ( contacts.Num() != 0 );
}
/*
================
idPhysics_RigidBody::SetPushed
================
*/
void idPhysics_RigidBody::SetPushed( int deltaTime ) {
idRotation rotation;
rotation = ( saved.i.orientation * current.i.orientation ).ToRotation();
// velocity with which the af is pushed
current.pushVelocity.SubVec3(0) += ( current.i.position - saved.i.position ) / ( deltaTime * idMath::M_MS2SEC );
current.pushVelocity.SubVec3(1) += rotation.GetVec() * -DEG2RAD( rotation.GetAngle() ) / ( deltaTime * idMath::M_MS2SEC );
}
/*
================
idPhysics_RigidBody::GetPushedLinearVelocity
================
*/
const idVec3 &idPhysics_RigidBody::GetPushedLinearVelocity( const int id ) const {
return current.pushVelocity.SubVec3(0);
}
/*
================
idPhysics_RigidBody::GetPushedAngularVelocity
================
*/
const idVec3 &idPhysics_RigidBody::GetPushedAngularVelocity( const int id ) const {
return current.pushVelocity.SubVec3(1);
}
/*
================
idPhysics_RigidBody::SetMaster
================
*/
void idPhysics_RigidBody::SetMaster( idEntity *master, const bool orientated ) {
idVec3 masterOrigin;
idMat3 masterAxis;
if ( master ) {
if ( !hasMaster ) {
// transform from world space to master space
self->GetMasterPosition( masterOrigin, masterAxis );
current.localOrigin = ( current.i.position - masterOrigin ) * masterAxis.Transpose();
if ( orientated ) {
current.localAxis = current.i.orientation * masterAxis.Transpose();
}
else {
current.localAxis = current.i.orientation;
}
hasMaster = true;
isOrientated = orientated;
ClearContacts();
}
}
else {
if ( hasMaster ) {
hasMaster = false;
Activate();
}
}
}
const float RB_VELOCITY_MAX = 16000;
const int RB_VELOCITY_TOTAL_BITS = 16;
const int RB_VELOCITY_EXPONENT_BITS = idMath::BitsForInteger( idMath::BitsForFloat( RB_VELOCITY_MAX ) ) + 1;
const int RB_VELOCITY_MANTISSA_BITS = RB_VELOCITY_TOTAL_BITS - 1 - RB_VELOCITY_EXPONENT_BITS;
const float RB_MOMENTUM_MAX = 1e20f;
const int RB_MOMENTUM_TOTAL_BITS = 16;
const int RB_MOMENTUM_EXPONENT_BITS = idMath::BitsForInteger( idMath::BitsForFloat( RB_MOMENTUM_MAX ) ) + 1;
const int RB_MOMENTUM_MANTISSA_BITS = RB_MOMENTUM_TOTAL_BITS - 1 - RB_MOMENTUM_EXPONENT_BITS;
const float RB_FORCE_MAX = 1e20f;
const int RB_FORCE_TOTAL_BITS = 16;
const int RB_FORCE_EXPONENT_BITS = idMath::BitsForInteger( idMath::BitsForFloat( RB_FORCE_MAX ) ) + 1;
const int RB_FORCE_MANTISSA_BITS = RB_FORCE_TOTAL_BITS - 1 - RB_FORCE_EXPONENT_BITS;
/*
================
idPhysics_RigidBody::WriteToSnapshot
================
*/
void idPhysics_RigidBody::WriteToSnapshot( idBitMsgDelta &msg ) const {
idCQuat quat, localQuat;
quat = current.i.orientation.ToCQuat();
localQuat = current.localAxis.ToCQuat();
msg.WriteLong( current.atRest );
msg.WriteFloat( current.i.position[0] );
msg.WriteFloat( current.i.position[1] );
msg.WriteFloat( current.i.position[2] );
msg.WriteFloat( quat.x );
msg.WriteFloat( quat.y );
msg.WriteFloat( quat.z );
msg.WriteFloat( current.i.linearMomentum[0], RB_MOMENTUM_EXPONENT_BITS, RB_MOMENTUM_MANTISSA_BITS );
msg.WriteFloat( current.i.linearMomentum[1], RB_MOMENTUM_EXPONENT_BITS, RB_MOMENTUM_MANTISSA_BITS );
msg.WriteFloat( current.i.linearMomentum[2], RB_MOMENTUM_EXPONENT_BITS, RB_MOMENTUM_MANTISSA_BITS );
msg.WriteFloat( current.i.angularMomentum[0], RB_MOMENTUM_EXPONENT_BITS, RB_MOMENTUM_MANTISSA_BITS );
msg.WriteFloat( current.i.angularMomentum[1], RB_MOMENTUM_EXPONENT_BITS, RB_MOMENTUM_MANTISSA_BITS );
msg.WriteFloat( current.i.angularMomentum[2], RB_MOMENTUM_EXPONENT_BITS, RB_MOMENTUM_MANTISSA_BITS );
msg.WriteDeltaFloat( current.i.position[0], current.localOrigin[0] );
msg.WriteDeltaFloat( current.i.position[1], current.localOrigin[1] );
msg.WriteDeltaFloat( current.i.position[2], current.localOrigin[2] );
msg.WriteDeltaFloat( quat.x, localQuat.x );
msg.WriteDeltaFloat( quat.y, localQuat.y );
msg.WriteDeltaFloat( quat.z, localQuat.z );
msg.WriteDeltaFloat( 0.0f, current.pushVelocity[0], RB_VELOCITY_EXPONENT_BITS, RB_VELOCITY_MANTISSA_BITS );
msg.WriteDeltaFloat( 0.0f, current.pushVelocity[1], RB_VELOCITY_EXPONENT_BITS, RB_VELOCITY_MANTISSA_BITS );
msg.WriteDeltaFloat( 0.0f, current.pushVelocity[2], RB_VELOCITY_EXPONENT_BITS, RB_VELOCITY_MANTISSA_BITS );
msg.WriteDeltaFloat( 0.0f, current.externalForce[0], RB_FORCE_EXPONENT_BITS, RB_FORCE_MANTISSA_BITS );
msg.WriteDeltaFloat( 0.0f, current.externalForce[1], RB_FORCE_EXPONENT_BITS, RB_FORCE_MANTISSA_BITS );
msg.WriteDeltaFloat( 0.0f, current.externalForce[2], RB_FORCE_EXPONENT_BITS, RB_FORCE_MANTISSA_BITS );
msg.WriteDeltaFloat( 0.0f, current.externalTorque[0], RB_FORCE_EXPONENT_BITS, RB_FORCE_MANTISSA_BITS );
msg.WriteDeltaFloat( 0.0f, current.externalTorque[1], RB_FORCE_EXPONENT_BITS, RB_FORCE_MANTISSA_BITS );
msg.WriteDeltaFloat( 0.0f, current.externalTorque[2], RB_FORCE_EXPONENT_BITS, RB_FORCE_MANTISSA_BITS );
}
/*
================
idPhysics_RigidBody::ReadFromSnapshot
================
*/
void idPhysics_RigidBody::ReadFromSnapshot( const idBitMsgDelta &msg ) {
idCQuat quat, localQuat;
current.atRest = msg.ReadLong();
current.i.position[0] = msg.ReadFloat();
current.i.position[1] = msg.ReadFloat();
current.i.position[2] = msg.ReadFloat();
quat.x = msg.ReadFloat();
quat.y = msg.ReadFloat();
quat.z = msg.ReadFloat();
current.i.linearMomentum[0] = msg.ReadFloat( RB_MOMENTUM_EXPONENT_BITS, RB_MOMENTUM_MANTISSA_BITS );
current.i.linearMomentum[1] = msg.ReadFloat( RB_MOMENTUM_EXPONENT_BITS, RB_MOMENTUM_MANTISSA_BITS );
current.i.linearMomentum[2] = msg.ReadFloat( RB_MOMENTUM_EXPONENT_BITS, RB_MOMENTUM_MANTISSA_BITS );
current.i.angularMomentum[0] = msg.ReadFloat( RB_MOMENTUM_EXPONENT_BITS, RB_MOMENTUM_MANTISSA_BITS );
current.i.angularMomentum[1] = msg.ReadFloat( RB_MOMENTUM_EXPONENT_BITS, RB_MOMENTUM_MANTISSA_BITS );
current.i.angularMomentum[2] = msg.ReadFloat( RB_MOMENTUM_EXPONENT_BITS, RB_MOMENTUM_MANTISSA_BITS );
current.localOrigin[0] = msg.ReadDeltaFloat( current.i.position[0] );
current.localOrigin[1] = msg.ReadDeltaFloat( current.i.position[1] );
current.localOrigin[2] = msg.ReadDeltaFloat( current.i.position[2] );
localQuat.x = msg.ReadDeltaFloat( quat.x );
localQuat.y = msg.ReadDeltaFloat( quat.y );
localQuat.z = msg.ReadDeltaFloat( quat.z );
current.pushVelocity[0] = msg.ReadDeltaFloat( 0.0f, RB_VELOCITY_EXPONENT_BITS, RB_VELOCITY_MANTISSA_BITS );
current.pushVelocity[1] = msg.ReadDeltaFloat( 0.0f, RB_VELOCITY_EXPONENT_BITS, RB_VELOCITY_MANTISSA_BITS );
current.pushVelocity[2] = msg.ReadDeltaFloat( 0.0f, RB_VELOCITY_EXPONENT_BITS, RB_VELOCITY_MANTISSA_BITS );
current.externalForce[0] = msg.ReadDeltaFloat( 0.0f, RB_FORCE_EXPONENT_BITS, RB_FORCE_MANTISSA_BITS );
current.externalForce[1] = msg.ReadDeltaFloat( 0.0f, RB_FORCE_EXPONENT_BITS, RB_FORCE_MANTISSA_BITS );
current.externalForce[2] = msg.ReadDeltaFloat( 0.0f, RB_FORCE_EXPONENT_BITS, RB_FORCE_MANTISSA_BITS );
current.externalTorque[0] = msg.ReadDeltaFloat( 0.0f, RB_FORCE_EXPONENT_BITS, RB_FORCE_MANTISSA_BITS );
current.externalTorque[1] = msg.ReadDeltaFloat( 0.0f, RB_FORCE_EXPONENT_BITS, RB_FORCE_MANTISSA_BITS );
current.externalTorque[2] = msg.ReadDeltaFloat( 0.0f, RB_FORCE_EXPONENT_BITS, RB_FORCE_MANTISSA_BITS );
current.i.orientation = quat.ToMat3();
current.localAxis = localQuat.ToMat3();
if ( clipModel ) {
// RAVEN BEGIN
// ddynerman: multiple clip worlds
clipModel->Link( self, clipModel->GetId(), current.i.position, current.i.orientation );
// RAVEN END
}
}