// tr_surf.c // leave this as first line for PCH reasons... // #include "../server/exe_headers.h" #include "tr_local.h" /* THIS ENTIRE FILE IS BACK END backEnd.currentEntity will be valid. Tess_Begin has already been called for the surface's shader. The modelview matrix will be set. It is safe to actually issue drawing commands here if you don't want to use the shader system. */ //============================================================================ /* ============== RB_CheckOverflow ============== */ void RB_CheckOverflow( int verts, int indexes ) { if ( tess.shader == tr.shadowShader ) { if (tess.numVertexes + verts < SHADER_MAX_VERTEXES/2 && tess.numIndexes + indexes < SHADER_MAX_INDEXES) { return; } } else if (tess.numVertexes + verts < SHADER_MAX_VERTEXES && tess.numIndexes + indexes < SHADER_MAX_INDEXES) { return; } RB_EndSurface(); if ( verts >= SHADER_MAX_VERTEXES ) { ri.Error(ERR_DROP, "RB_CheckOverflow: verts > MAX (%d > %d)", verts, SHADER_MAX_VERTEXES ); } if ( indexes >= SHADER_MAX_INDEXES ) { ri.Error(ERR_DROP, "RB_CheckOverflow: indices > MAX (%d > %d)", indexes, SHADER_MAX_INDEXES ); } RB_BeginSurface(tess.shader, tess.fogNum ); } /* ============== RB_AddQuadStampExt ============== */ void RB_AddQuadStampExt( vec3_t origin, vec3_t left, vec3_t up, byte *color, float s1, float t1, float s2, float t2 ) { vec3_t normal; int ndx; RB_CHECKOVERFLOW( 4, 6 ); ndx = tess.numVertexes; // triangle indexes for a simple quad tess.indexes[ tess.numIndexes ] = ndx; tess.indexes[ tess.numIndexes + 1 ] = ndx + 1; tess.indexes[ tess.numIndexes + 2 ] = ndx + 3; tess.indexes[ tess.numIndexes + 3 ] = ndx + 3; tess.indexes[ tess.numIndexes + 4 ] = ndx + 1; tess.indexes[ tess.numIndexes + 5 ] = ndx + 2; tess.xyz[ndx][0] = origin[0] + left[0] + up[0]; tess.xyz[ndx][1] = origin[1] + left[1] + up[1]; tess.xyz[ndx][2] = origin[2] + left[2] + up[2]; tess.xyz[ndx+1][0] = origin[0] - left[0] + up[0]; tess.xyz[ndx+1][1] = origin[1] - left[1] + up[1]; tess.xyz[ndx+1][2] = origin[2] - left[2] + up[2]; tess.xyz[ndx+2][0] = origin[0] - left[0] - up[0]; tess.xyz[ndx+2][1] = origin[1] - left[1] - up[1]; tess.xyz[ndx+2][2] = origin[2] - left[2] - up[2]; tess.xyz[ndx+3][0] = origin[0] + left[0] - up[0]; tess.xyz[ndx+3][1] = origin[1] + left[1] - up[1]; tess.xyz[ndx+3][2] = origin[2] + left[2] - up[2]; // constant normal all the way around VectorSubtract( vec3_origin, backEnd.viewParms.or.axis[0], normal ); tess.normal[ndx][0] = tess.normal[ndx+1][0] = tess.normal[ndx+2][0] = tess.normal[ndx+3][0] = normal[0]; tess.normal[ndx][1] = tess.normal[ndx+1][1] = tess.normal[ndx+2][1] = tess.normal[ndx+3][1] = normal[1]; tess.normal[ndx][2] = tess.normal[ndx+1][2] = tess.normal[ndx+2][2] = tess.normal[ndx+3][2] = normal[2]; // standard square texture coordinates tess.texCoords[ndx][0][0] = tess.texCoords[ndx][1][0] = s1; tess.texCoords[ndx][0][1] = tess.texCoords[ndx][1][1] = t1; tess.texCoords[ndx+1][0][0] = tess.texCoords[ndx+1][1][0] = s2; tess.texCoords[ndx+1][0][1] = tess.texCoords[ndx+1][1][1] = t1; tess.texCoords[ndx+2][0][0] = tess.texCoords[ndx+2][1][0] = s2; tess.texCoords[ndx+2][0][1] = tess.texCoords[ndx+2][1][1] = t2; tess.texCoords[ndx+3][0][0] = tess.texCoords[ndx+3][1][0] = s1; tess.texCoords[ndx+3][0][1] = tess.texCoords[ndx+3][1][1] = t2; // constant color all the way around // should this be identity and let the shader specify from entity? * ( unsigned int * ) &tess.vertexColors[ndx] = * ( unsigned int * ) &tess.vertexColors[ndx+1] = * ( unsigned int * ) &tess.vertexColors[ndx+2] = * ( unsigned int * ) &tess.vertexColors[ndx+3] = * ( unsigned int * )color; tess.numVertexes += 4; tess.numIndexes += 6; } /* ============== RB_AddQuadStamp ============== */ void RB_AddQuadStamp( vec3_t origin, vec3_t left, vec3_t up, byte *color ) { RB_AddQuadStampExt( origin, left, up, color, 0, 0, 1, 1 ); } /* ============== RB_SurfaceSprite ============== */ static void RB_SurfaceSprite( void ) { vec3_t left, up; float radius; // calculate the xyz locations for the four corners radius = backEnd.currentEntity->e.radius; if ( backEnd.currentEntity->e.rotation == 0 ) { VectorScale( backEnd.viewParms.or.axis[1], radius, left ); VectorScale( backEnd.viewParms.or.axis[2], radius, up ); } else { float s, c; float ang; ang = M_PI * backEnd.currentEntity->e.rotation / 180; s = sin( ang ); c = cos( ang ); VectorScale( backEnd.viewParms.or.axis[1], c * radius, left ); VectorMA( left, -s * radius, backEnd.viewParms.or.axis[2], left ); VectorScale( backEnd.viewParms.or.axis[2], c * radius, up ); VectorMA( up, s * radius, backEnd.viewParms.or.axis[1], up ); } if ( backEnd.viewParms.isMirror ) { VectorSubtract( vec3_origin, left, left ); } RB_AddQuadStamp( backEnd.currentEntity->e.origin, left, up, backEnd.currentEntity->e.shaderRGBA ); } /* ======================= RB_SurfaceOrientedQuad ======================= */ static void RB_SurfaceOrientedQuad( void ) { vec3_t left, up; float radius; // calculate the xyz locations for the four corners radius = backEnd.currentEntity->e.radius; MakeNormalVectors( backEnd.currentEntity->e.axis[0], left, up ); if ( backEnd.currentEntity->e.rotation == 0 ) { VectorScale( left, radius, left ); VectorScale( up, radius, up ); } else { vec3_t tempLeft, tempUp; float s, c; float ang; ang = M_PI * backEnd.currentEntity->e.rotation / 180; s = sin( ang ); c = cos( ang ); // Use a temp so we don't trash the values we'll need later VectorScale( left, c * radius, tempLeft ); VectorMA( tempLeft, -s * radius, up, tempLeft ); VectorScale( up, c * radius, tempUp ); VectorMA( tempUp, s * radius, left, up ); // no need to use the temp anymore, so copy into the dest vector ( up ) // This was copied for safekeeping, we're done, so we can move it back to left VectorCopy( tempLeft, left ); } if ( backEnd.viewParms.isMirror ) { VectorSubtract( vec3_origin, left, left ); } RB_AddQuadStamp( backEnd.currentEntity->e.origin, left, up, backEnd.currentEntity->e.shaderRGBA ); } /* ============== RB_SurfaceLine ============== */ // // Values for a proper line render primitive... // Width // STScale (how many times to loop a texture) // alpha // RGB // // Values for proper line object... // lifetime // dscale // startalpha, endalpha // startRGB, endRGB // static void DoLine( const vec3_t start, const vec3_t end, const vec3_t up, float spanWidth ) { float spanWidth2; int vbase; RB_CHECKOVERFLOW( 4, 6 ); vbase = tess.numVertexes; spanWidth2 = -spanWidth; VectorMA( start, spanWidth, up, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = 0; tess.texCoords[tess.numVertexes][0][1] = 0; tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];// * 0.25;//wtf??not sure why the code would be doing this tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];// * 0.25; tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];// * 0.25; tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3];// * 0.25; tess.numVertexes++; VectorMA( start, spanWidth2, up, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = 1;//backEnd.currentEntity->e.shaderTexCoord[0]; tess.texCoords[tess.numVertexes][0][1] = 0; tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3]; tess.numVertexes++; VectorMA( end, spanWidth, up, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = 0; tess.texCoords[tess.numVertexes][0][1] = 1;//backEnd.currentEntity->e.shaderTexCoord[1]; tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3]; tess.numVertexes++; VectorMA( end, spanWidth2, up, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = 1;//backEnd.currentEntity->e.shaderTexCoord[0]; tess.texCoords[tess.numVertexes][0][1] = 1;//backEnd.currentEntity->e.shaderTexCoord[1]; tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3]; tess.numVertexes++; tess.indexes[tess.numIndexes++] = vbase; tess.indexes[tess.numIndexes++] = vbase + 1; tess.indexes[tess.numIndexes++] = vbase + 2; tess.indexes[tess.numIndexes++] = vbase + 2; tess.indexes[tess.numIndexes++] = vbase + 1; tess.indexes[tess.numIndexes++] = vbase + 3; } static void DoLine2( const vec3_t start, const vec3_t end, const vec3_t up, float spanWidth, float spanWidth2, const float tcStart, const float tcEnd ) { int vbase; RB_CHECKOVERFLOW( 4, 6 ); vbase = tess.numVertexes; VectorMA( start, spanWidth, up, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = 0; tess.texCoords[tess.numVertexes][0][1] = tcStart; tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];// * 0.25;//wtf??not sure why the code would be doing this tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];// * 0.25; tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];// * 0.25; tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3];// * 0.25; tess.numVertexes++; VectorMA( start, -spanWidth, up, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = 1;//backEnd.currentEntity->e.shaderTexCoord[0]; tess.texCoords[tess.numVertexes][0][1] = tcStart; tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3]; tess.numVertexes++; VectorMA( end, spanWidth2, up, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = 0; tess.texCoords[tess.numVertexes][0][1] = tcEnd;//backEnd.currentEntity->e.shaderTexCoord[1]; tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3]; tess.numVertexes++; VectorMA( end, -spanWidth2, up, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = 1;//backEnd.currentEntity->e.shaderTexCoord[0]; tess.texCoords[tess.numVertexes][0][1] = tcEnd;//backEnd.currentEntity->e.shaderTexCoord[1]; tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3]; tess.numVertexes++; tess.indexes[tess.numIndexes++] = vbase; tess.indexes[tess.numIndexes++] = vbase + 1; tess.indexes[tess.numIndexes++] = vbase + 2; tess.indexes[tess.numIndexes++] = vbase + 2; tess.indexes[tess.numIndexes++] = vbase + 1; tess.indexes[tess.numIndexes++] = vbase + 3; } //----------------- // RB_SurfaceLine //----------------- void RB_SurfaceLine( void ) { refEntity_t *e; vec3_t right; vec3_t start, end; vec3_t v1, v2; e = &backEnd.currentEntity->e; VectorCopy( e->oldorigin, end ); VectorCopy( e->origin, start ); // compute side vector VectorSubtract( start, backEnd.viewParms.or.origin, v1 ); VectorSubtract( end, backEnd.viewParms.or.origin, v2 ); CrossProduct( v1, v2, right ); VectorNormalize( right ); DoLine( start, end, right, e->radius); } /* ============== RB_SurfaceCylinder ============== */ #define NUM_CYLINDER_SEGMENTS 40 // e->origin holds the bottom point // e->oldorigin holds the top point // e->radius holds the radius // If a cylinder has a tapered end that has a very small radius, the engine converts it to a cone. Not a huge savings, but the texture mapping is slightly better // and it uses half as many indicies as the cylinder version //------------------------------------- static void RB_SurfaceCone( void ) //------------------------------------- { static vec3_t points[NUM_CYLINDER_SEGMENTS]; vec3_t vr, vu, midpoint; vec3_t tapered, base; float detail, length; int i; int segments; refEntity_t *e; e = &backEnd.currentEntity->e; //Work out the detail level of this cylinder VectorAdd( e->origin, e->oldorigin, midpoint ); VectorScale(midpoint, 0.5, midpoint); // Average start and end VectorSubtract( midpoint, backEnd.viewParms.or.origin, midpoint ); length = VectorNormalize( midpoint ); // this doesn't need to be perfect....just a rough compensation for zoom level is enough length *= (backEnd.viewParms.fovX / 90.0f); detail = 1 - ((float) length / 2048 ); segments = NUM_CYLINDER_SEGMENTS * detail; // 3 is the absolute minimum, but the pop between 3-8 is too noticeable if ( segments < 8 ) { segments = 8; } if ( segments > NUM_CYLINDER_SEGMENTS ) { segments = NUM_CYLINDER_SEGMENTS; } // Get the direction vector MakeNormalVectors( e->axis[0], vr, vu ); // we only need to rotate around the larger radius, the smaller radius get's welded if ( e->radius < e->backlerp ) { VectorScale( vu, e->backlerp, vu ); VectorCopy( e->origin, base ); VectorCopy( e->oldorigin, tapered ); } else { VectorScale( vu, e->radius, vu ); VectorCopy( e->origin, tapered ); VectorCopy( e->oldorigin, base ); } // Calculate the step around the cylinder detail = 360.0f / (float)segments; for ( i = 0; i < segments; i++ ) { // ring RotatePointAroundVector( points[i], e->axis[0], vu, detail * i ); VectorAdd( points[i], base, points[i] ); } // Calculate the texture coords so the texture can wrap around the whole cylinder detail = 1.0f / (float)segments; RB_CHECKOVERFLOW( 2 * (segments+1), 3 * segments ); // this isn't 100% accurate int vbase = tess.numVertexes; for ( i = 0; i < segments; i++ ) { VectorCopy( points[i], tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = detail * i; tess.texCoords[tess.numVertexes][0][1] = 1.0f; tess.vertexColors[tess.numVertexes][0] = e->shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = e->shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = e->shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = e->shaderRGBA[3]; tess.numVertexes++; // We could add this vert once, but using the given texture mapping method, we need to generate different texture coordinates VectorCopy( tapered, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = detail * i + detail * 0.5f; // set the texture coordinates to the point half-way between the untapered ends....but on the other end of the texture tess.texCoords[tess.numVertexes][0][1] = 0.0f; tess.vertexColors[tess.numVertexes][0] = e->shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = e->shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = e->shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = e->shaderRGBA[3]; tess.numVertexes++; } // last point has the same verts as the first, but does not share the same tex coords, so we have to duplicate it VectorCopy( points[0], tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = detail * i; tess.texCoords[tess.numVertexes][0][1] = 1.0f; tess.vertexColors[tess.numVertexes][0] = e->shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = e->shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = e->shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = e->shaderRGBA[3]; tess.numVertexes++; VectorCopy( tapered, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = detail * i + detail * 0.5f; tess.texCoords[tess.numVertexes][0][1] = 0.0f; tess.vertexColors[tess.numVertexes][0] = e->shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = e->shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = e->shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = e->shaderRGBA[3]; tess.numVertexes++; // do the welding for ( i = 0; i < segments; i++ ) { tess.indexes[tess.numIndexes++] = vbase; tess.indexes[tess.numIndexes++] = vbase + 1; tess.indexes[tess.numIndexes++] = vbase + 2; vbase += 2; } } //------------------------------------- static void RB_SurfaceCylinder( void ) //------------------------------------- { static vec3_t lower_points[NUM_CYLINDER_SEGMENTS], upper_points[NUM_CYLINDER_SEGMENTS]; vec3_t vr, vu, midpoint, v1; float detail, length; int i; int segments; refEntity_t *e; e = &backEnd.currentEntity->e; // check for tapering if ( !( e->radius < 0.3f && e->backlerp < 0.3f) && ( e->radius < 0.3f || e->backlerp < 0.3f )) { // One end is sufficiently tapered to consider changing it to a cone RB_SurfaceCone(); return; } //Work out the detail level of this cylinder VectorAdd( e->origin, e->oldorigin, midpoint ); VectorScale(midpoint, 0.5, midpoint); // Average start and end VectorSubtract( midpoint, backEnd.viewParms.or.origin, midpoint ); length = VectorNormalize( midpoint ); // this doesn't need to be perfect....just a rough compensation for zoom level is enough length *= (backEnd.viewParms.fovX / 90.0f); detail = 1 - ((float) length / 2048 ); segments = NUM_CYLINDER_SEGMENTS * detail; // 3 is the absolute minimum, but the pop between 3-8 is too noticeable if ( segments < 8 ) { segments = 8; } if ( segments > NUM_CYLINDER_SEGMENTS ) { segments = NUM_CYLINDER_SEGMENTS; } //Get the direction vector MakeNormalVectors( e->axis[0], vr, vu ); VectorScale( vu, e->radius, v1 ); // size1 VectorScale( vu, e->backlerp, vu ); // size2 // Calculate the step around the cylinder detail = 360.0f / (float)segments; for ( i = 0; i < segments; i++ ) { //Upper ring RotatePointAroundVector( upper_points[i], e->axis[0], vu, detail * i ); VectorAdd( upper_points[i], e->origin, upper_points[i] ); //Lower ring RotatePointAroundVector( lower_points[i], e->axis[0], v1, detail * i ); VectorAdd( lower_points[i], e->oldorigin, lower_points[i] ); } // Calculate the texture coords so the texture can wrap around the whole cylinder detail = 1.0f / (float)segments; RB_CHECKOVERFLOW( 2 * (segments+1), 6 * segments ); // this isn't 100% accurate int vbase = tess.numVertexes; for ( i = 0; i < segments; i++ ) { VectorCopy( upper_points[i], tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = detail * i; tess.texCoords[tess.numVertexes][0][1] = 1.0f; tess.vertexColors[tess.numVertexes][0] = e->shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = e->shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = e->shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = e->shaderRGBA[3]; tess.numVertexes++; VectorCopy( lower_points[i], tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = detail * i; tess.texCoords[tess.numVertexes][0][1] = 0.0f; tess.vertexColors[tess.numVertexes][0] = e->shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = e->shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = e->shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = e->shaderRGBA[3]; tess.numVertexes++; } // last point has the same verts as the first, but does not share the same tex coords, so we have to duplicate it VectorCopy( upper_points[0], tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = detail * i; tess.texCoords[tess.numVertexes][0][1] = 1.0f; tess.vertexColors[tess.numVertexes][0] = e->shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = e->shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = e->shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = e->shaderRGBA[3]; tess.numVertexes++; VectorCopy( lower_points[0], tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = detail * i; tess.texCoords[tess.numVertexes][0][1] = 0.0f; tess.vertexColors[tess.numVertexes][0] = e->shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = e->shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = e->shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = e->shaderRGBA[3]; tess.numVertexes++; // glue the verts for ( i = 0; i < segments; i++ ) { tess.indexes[tess.numIndexes++] = vbase; tess.indexes[tess.numIndexes++] = vbase + 1; tess.indexes[tess.numIndexes++] = vbase + 2; tess.indexes[tess.numIndexes++] = vbase + 2; tess.indexes[tess.numIndexes++] = vbase + 1; tess.indexes[tess.numIndexes++] = vbase + 3; vbase += 2; } } static vec3_t sh1, sh2; static f_count; // Up front, we create a random "shape", then apply that to each line segment...and then again to each of those segments...kind of like a fractal //---------------------------------------------------------------------------- static void CreateShape() //---------------------------------------------------------------------------- { VectorSet( sh1, 0.66f,// + crandom() * 0.1f, // fwd 0.08f + crandom() * 0.02f, 0.08f + crandom() * 0.02f ); // it seems to look best to have a point on one side of the ideal line, then the other point on the other side. VectorSet( sh2, 0.33f,// + crandom() * 0.1f, // fwd -sh1[1] + crandom() * 0.02f, // forcing point to be on the opposite side of the line -- right -sh1[2] + crandom() * 0.02f );// up } //---------------------------------------------------------------------------- static void ApplyShape( vec3_t start, vec3_t end, vec3_t right, float sradius, float eradius, int count, float startPerc, float endPerc ) //---------------------------------------------------------------------------- { vec3_t point1, point2, fwd; vec3_t rt, up; float perc, dis; if ( count < 1 ) { // done recursing DoLine2( start, end, right, sradius, eradius, startPerc, endPerc ); return; } CreateShape(); VectorSubtract( end, start, fwd ); dis = VectorNormalize( fwd ) * 0.7f; MakeNormalVectors( fwd, rt, up ); perc = sh1[0]; VectorScale( start, perc, point1 ); VectorMA( point1, 1.0f - perc, end, point1 ); VectorMA( point1, dis * sh1[1], rt, point1 ); VectorMA( point1, dis * sh1[2], up, point1 ); // do a quick and dirty interpolation of the radius at that point float rads1, rads2; rads1 = sradius * 0.666f + eradius * 0.333f; rads2 = sradius * 0.333f + eradius * 0.666f; // recursion ApplyShape( start, point1, right, sradius, rads1, count - 1, startPerc, startPerc * 0.666f + endPerc * 0.333f ); perc = sh2[0]; VectorScale( start, perc, point2 ); VectorMA( point2, 1.0f - perc, end, point2 ); VectorMA( point2, dis * sh2[1], rt, point2 ); VectorMA( point2, dis * sh2[2], up, point2 ); // recursion ApplyShape( point2, point1, right, rads1, rads2, count - 1, startPerc * 0.333f + endPerc * 0.666f, startPerc * 0.666f + endPerc * 0.333f ); ApplyShape( point2, end, right, rads2, eradius, count - 1, startPerc * 0.333f + endPerc * 0.666f, endPerc ); } //---------------------------------------------------------------------------- static void DoBoltSeg( vec3_t start, vec3_t end, vec3_t right, float radius ) //---------------------------------------------------------------------------- { refEntity_t *e; vec3_t fwd, old; vec3_t cur, off={10,10,10}; vec3_t rt, up; vec3_t temp; int i; float dis, oldPerc = 0.0f, perc, oldRadius, newRadius; e = &backEnd.currentEntity->e; VectorSubtract( end, start, fwd ); dis = VectorNormalize( fwd ); if (dis > 2000) //freaky long { // ri.Printf( PRINT_WARNING, "DoBoltSeg: insane distance.\n" ); dis = 2000; } MakeNormalVectors( fwd, rt, up ); VectorCopy( start, old ); newRadius = oldRadius = radius; for ( i = 16; i <= dis; i+= 16 ) { // because of our large step size, we may not actually draw to the end. In this case, fudge our percent so that we are basically complete if ( i + 16 > dis ) { perc = 1.0f; } else { // percentage of the amount of line completed perc = (float)i / dis; } // create our level of deviation for this point VectorScale( fwd, Q_crandom(&e->frame) * 3.0f, temp ); // move less in fwd direction, chaos also does not affect this VectorMA( temp, Q_crandom(&e->frame) * 7.0f * e->angles[0], rt, temp ); // move more in direction perpendicular to line, angles is really the chaos VectorMA( temp, Q_crandom(&e->frame) * 7.0f * e->angles[0], up, temp ); // move more in direction perpendicular to line // track our total level of offset from the ideal line VectorAdd( off, temp, off ); // Move from start to end, always adding our current level of offset from the ideal line // Even though we are adding a random offset.....by nature, we always move from exactly start....to end VectorAdd( start, off, cur ); VectorScale( cur, 1.0f - perc, cur ); VectorMA( cur, perc, end, cur ); if ( e->renderfx & RF_TAPERED ) { // This does pretty close to perfect tapering since apply shape interpolates the old and new as it goes along. // by using one minus the square, the radius stays fairly constant, then drops off quickly at the very point of the bolt oldRadius = radius * (1.0f-oldPerc*oldPerc); newRadius = radius * (1.0f-perc*perc); } // Apply the random shape to our line seg to give it some micro-detail-jaggy-coolness. ApplyShape( cur, old, right, newRadius, oldRadius, 2 - r_lodbias->integer, 0, 1 ); // randomly split off to create little tendrils, but don't do it too close to the end and especially if we are not even of the forked variety if (( e->renderfx & RF_FORKED ) && f_count > 0 && Q_random(&e->frame) > 0.93f && (1.0f - perc) > 0.8f ) { vec3_t newDest; f_count--; // Pick a point somewhere between the current point and the final endpoint VectorAdd( cur, e->oldorigin, newDest ); VectorScale( newDest, 0.5f, newDest ); // And then add some crazy offset for ( int t = 0; t < 3; t++ ) { newDest[t] += Q_crandom(&e->frame) * 80; } // we could branch off using OLD and NEWDEST, but that would allow multiple forks...whereas, we just want simpler brancing DoBoltSeg( cur, newDest, right, newRadius ); } // Current point along the line becomes our new old attach point VectorCopy( cur, old ); oldPerc = perc; } } //------------------------------------------ static void RB_SurfaceElectricity() //------------------------------------------ { refEntity_t *e; vec3_t right, fwd; vec3_t start, end; vec3_t v1, v2; float radius, perc = 1.0f, dis; e = &backEnd.currentEntity->e; radius = e->radius; VectorCopy( e->origin, start ); VectorSubtract( e->oldorigin, start, fwd ); dis = VectorNormalize( fwd ); // see if we should grow from start to end if ( e->renderfx & RF_GROW ) { perc = 1.0f - ( e->endTime - tr.refdef.time ) / e->angles[1]/*duration*/; if ( perc > 1.0f ) { perc = 1.0f; } else if ( perc < 0.0f ) { perc = 0.0f; } } VectorMA( start, perc * dis, fwd, e->oldorigin ); VectorCopy( e->oldorigin, end ); // compute side vector VectorSubtract( start, backEnd.viewParms.or.origin, v1 ); VectorSubtract( end, backEnd.viewParms.or.origin, v2 ); CrossProduct( v1, v2, right ); VectorNormalize( right ); // allow now more than three branches on branch type electricity f_count = 3; DoBoltSeg( start, end, right, radius ); } /* ============= RB_SurfacePolychain ============= */ /* // we could try to do something similar to this to get better normals into the tess for these types of surfs. As it stands, any shader pass that // requires a normal ( env map ) will not work properly since the normals seem to essentially be random garbage. void RB_SurfacePolychain( srfPoly_t *p ) { int i; int numv; vec3_t a,b,normal={1,0,0}; RB_CHECKOVERFLOW( p->numVerts, 3*(p->numVerts - 2) ); if ( p->numVerts >= 3 ) { VectorSubtract( p->verts[0].xyz, p->verts[1].xyz, a ); VectorSubtract( p->verts[2].xyz, p->verts[1].xyz, b ); CrossProduct( a,b, normal ); VectorNormalize( normal ); } // fan triangles into the tess array numv = tess.numVertexes; for ( i = 0; i < p->numVerts; i++ ) { VectorCopy( p->verts[i].xyz, tess.xyz[numv] ); tess.texCoords[numv][0][0] = p->verts[i].st[0]; tess.texCoords[numv][0][1] = p->verts[i].st[1]; VectorCopy( normal, tess.normal[numv] ); *(int *)&tess.vertexColors[numv] = *(int *)p->verts[ i ].modulate; numv++; } // generate fan indexes into the tess array for ( i = 0; i < p->numVerts-2; i++ ) { tess.indexes[tess.numIndexes + 0] = tess.numVertexes; tess.indexes[tess.numIndexes + 1] = tess.numVertexes + i + 1; tess.indexes[tess.numIndexes + 2] = tess.numVertexes + i + 2; tess.numIndexes += 3; } tess.numVertexes = numv; } */ void RB_SurfacePolychain( srfPoly_t *p ) { int i; int numv; RB_CHECKOVERFLOW( p->numVerts, 3*(p->numVerts - 2) ); // fan triangles into the tess array numv = tess.numVertexes; for ( i = 0; i < p->numVerts; i++ ) { VectorCopy( p->verts[i].xyz, tess.xyz[numv] ); tess.texCoords[numv][0][0] = p->verts[i].st[0]; tess.texCoords[numv][0][1] = p->verts[i].st[1]; *(int *)&tess.vertexColors[numv] = *(int *)p->verts[ i ].modulate; numv++; } // generate fan indexes into the tess array for ( i = 0; i < p->numVerts-2; i++ ) { tess.indexes[tess.numIndexes + 0] = tess.numVertexes; tess.indexes[tess.numIndexes + 1] = tess.numVertexes + i + 1; tess.indexes[tess.numIndexes + 2] = tess.numVertexes + i + 2; tess.numIndexes += 3; } tess.numVertexes = numv; } inline ulong ComputeFinalVertexColor(const byte *colors) { int k; byte result[4]; ulong r, g, b; *(int *)result = *(int *)colors; if (tess.shader->lightmapIndex[0] != LIGHTMAP_BY_VERTEX || r_fullbright->integer || tr.refdef.doFullbright ) { result[0] = 255; result[1] = 255; result[2] = 255; return *(ulong *)result; } // an optimization could be added here to compute the style[0] (which is always the world normal light) r = g = b = 0; for(k = 0; k < MAXLIGHTMAPS; k++) { if (tess.shader->styles[k] < LS_UNUSED) { byte *styleColor = styleColors[tess.shader->styles[k]]; r += (ulong)(*colors++) * (ulong)(*styleColor++); g += (ulong)(*colors++) * (ulong)(*styleColor++); b += (ulong)(*colors++) * (ulong)(*styleColor); colors++; } else { break; } } result[0] = Com_Clamp(0, 255, r >> 8); result[1] = Com_Clamp(0, 255, g >> 8); result[2] = Com_Clamp(0, 255, b >> 8); return *(ulong *)result; } /* ============= RB_SurfaceTriangles ============= */ void RB_SurfaceTriangles( srfTriangles_t *srf ) { int i, k; drawVert_t *dv; float *xyz, *normal, *texCoords; byte *color; int dlightBits; qboolean needsNormal; dlightBits = srf->dlightBits[backEnd.smpFrame]; tess.dlightBits |= dlightBits; RB_CHECKOVERFLOW( srf->numVerts, srf->numIndexes ); for ( i = 0 ; i < srf->numIndexes ; i += 3 ) { tess.indexes[ tess.numIndexes + i + 0 ] = tess.numVertexes + srf->indexes[ i + 0 ]; tess.indexes[ tess.numIndexes + i + 1 ] = tess.numVertexes + srf->indexes[ i + 1 ]; tess.indexes[ tess.numIndexes + i + 2 ] = tess.numVertexes + srf->indexes[ i + 2 ]; } tess.numIndexes += srf->numIndexes; dv = srf->verts; xyz = tess.xyz[ tess.numVertexes ]; normal = tess.normal[ tess.numVertexes ]; texCoords = tess.texCoords[ tess.numVertexes ][0]; color = tess.vertexColors[ tess.numVertexes ]; needsNormal = tess.shader->needsNormal; for ( i = 0 ; i < srf->numVerts ; i++, dv++) { xyz[0] = dv->xyz[0]; xyz[1] = dv->xyz[1]; xyz[2] = dv->xyz[2]; xyz += 4; if ( needsNormal ) { normal[0] = dv->normal[0]; normal[1] = dv->normal[1]; normal[2] = dv->normal[2]; } normal += 4; texCoords[0] = dv->st[0]; texCoords[1] = dv->st[1]; for(k=0;klightmapIndex[k] >= 0) { texCoords[2+(k*2)] = dv->lightmap[k][0]; texCoords[2+(k*2)+1] = dv->lightmap[k][1]; } else { // can't have an empty slot in the middle, so we are done break; } } texCoords += NUM_TEX_COORDS*2; *(unsigned int*)color = ComputeFinalVertexColor((byte *)dv->color); color += 4; } for ( i = 0 ; i < srf->numVerts ; i++ ) { tess.vertexDlightBits[ tess.numVertexes + i] = dlightBits; } tess.numVertexes += srf->numVerts; } /* ============== RB_SurfaceBeam ============== */ void RB_SurfaceBeam( void ) { #define NUM_BEAM_SEGS 6 refEntity_t *e; int i; vec3_t perpvec; vec3_t direction, normalized_direction; vec3_t start_points[NUM_BEAM_SEGS], end_points[NUM_BEAM_SEGS]; vec3_t oldorigin, origin; e = &backEnd.currentEntity->e; oldorigin[0] = e->oldorigin[0]; oldorigin[1] = e->oldorigin[1]; oldorigin[2] = e->oldorigin[2]; origin[0] = e->origin[0]; origin[1] = e->origin[1]; origin[2] = e->origin[2]; normalized_direction[0] = direction[0] = oldorigin[0] - origin[0]; normalized_direction[1] = direction[1] = oldorigin[1] - origin[1]; normalized_direction[2] = direction[2] = oldorigin[2] - origin[2]; if ( VectorNormalize( normalized_direction ) == 0 ) return; PerpendicularVector( perpvec, normalized_direction ); VectorScale( perpvec, 4, perpvec ); for ( i = 0; i < NUM_BEAM_SEGS ; i++ ) { RotatePointAroundVector( start_points[i], normalized_direction, perpvec, (360.0/NUM_BEAM_SEGS)*i ); // VectorAdd( start_points[i], origin, start_points[i] ); VectorAdd( start_points[i], direction, end_points[i] ); } GL_Bind( tr.whiteImage ); GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE ); switch(e->skinNum) { case 1://Green qglColor3f( 0, 1, 0 ); break; case 2://Blue qglColor3f( 0.5, 0.5, 1 ); break; case 0://red default: qglColor3f( 1, 0, 0 ); break; } qglBegin( GL_TRIANGLE_STRIP ); for ( i = 0; i <= NUM_BEAM_SEGS; i++ ) { qglVertex3fv( start_points[ i % NUM_BEAM_SEGS] ); qglVertex3fv( end_points[ i % NUM_BEAM_SEGS] ); } qglEnd(); } //------------------ // DoSprite //------------------ static void DoSprite( vec3_t origin, float radius, float rotation ) { float s, c; float ang; vec3_t left, up; ang = M_PI * rotation / 180.0f; s = sin( ang ); c = cos( ang ); VectorScale( backEnd.viewParms.or.axis[1], c * radius, left ); VectorMA( left, -s * radius, backEnd.viewParms.or.axis[2], left ); VectorScale( backEnd.viewParms.or.axis[2], c * radius, up ); VectorMA( up, s * radius, backEnd.viewParms.or.axis[1], up ); if ( backEnd.viewParms.isMirror ) { VectorSubtract( vec3_origin, left, left ); } RB_AddQuadStamp( origin, left, up, backEnd.currentEntity->e.shaderRGBA ); } //------------------ // RB_SurfaceSaber //------------------ static void RB_SurfaceSaberGlow() { vec3_t end; refEntity_t *e; e = &backEnd.currentEntity->e; // Render the glow part of the blade for ( float i = e->saberLength; i > 0; i -= e->radius * 0.65f ) { VectorMA( e->origin, i, e->axis[0], end ); DoSprite( end, e->radius, 0.0f );//random() * 360.0f ); e->radius += 0.017f; } // Big hilt sprite // Please don't kill me Pat...I liked the hilt glow blob, but wanted a subtle pulse.:) Feel free to ditch it if you don't like it. --Jeff // Please don't kill me Jeff... The pulse is good, but now I want the halo bigger if the saber is shorter... --Pat DoSprite( e->origin, 5.5f + random() * 0.25f, 0.0f );//random() * 360.0f ); } /* ** LerpMeshVertexes */ static void LerpMeshVertexes (md3Surface_t *surf, float backlerp) { short *oldXyz, *newXyz, *oldNormals, *newNormals; float *outXyz, *outNormal; float oldXyzScale, newXyzScale; float oldNormalScale, newNormalScale; int vertNum; unsigned lat, lng; int numVerts; outXyz = tess.xyz[tess.numVertexes]; outNormal = tess.normal[tess.numVertexes]; newXyz = (short *)((byte *)surf + surf->ofsXyzNormals) + (backEnd.currentEntity->e.frame * surf->numVerts * 4); newNormals = newXyz + 3; newXyzScale = MD3_XYZ_SCALE * (1.0 - backlerp); newNormalScale = 1.0 - backlerp; numVerts = surf->numVerts; if ( backlerp == 0 ) { // // just copy the vertexes // for (vertNum=0 ; vertNum < numVerts ; vertNum++, newXyz += 4, newNormals += 4, outXyz += 4, outNormal += 4) { outXyz[0] = newXyz[0] * newXyzScale; outXyz[1] = newXyz[1] * newXyzScale; outXyz[2] = newXyz[2] * newXyzScale; lat = ( newNormals[0] >> 8 ) & 0xff; lng = ( newNormals[0] & 0xff ); lat *= (FUNCTABLE_SIZE/256); lng *= (FUNCTABLE_SIZE/256); // decode X as cos( lat ) * sin( long ) // decode Y as sin( lat ) * sin( long ) // decode Z as cos( long ) outNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng]; outNormal[1] = tr.sinTable[lat] * tr.sinTable[lng]; outNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK]; } } else { // // interpolate and copy the vertex and normal // oldXyz = (short *)((byte *)surf + surf->ofsXyzNormals) + (backEnd.currentEntity->e.oldframe * surf->numVerts * 4); oldNormals = oldXyz + 3; oldXyzScale = MD3_XYZ_SCALE * backlerp; oldNormalScale = backlerp; for (vertNum=0 ; vertNum < numVerts ; vertNum++, oldXyz += 4, newXyz += 4, oldNormals += 4, newNormals += 4, outXyz += 4, outNormal += 4) { vec3_t uncompressedOldNormal, uncompressedNewNormal; // interpolate the xyz outXyz[0] = oldXyz[0] * oldXyzScale + newXyz[0] * newXyzScale; outXyz[1] = oldXyz[1] * oldXyzScale + newXyz[1] * newXyzScale; outXyz[2] = oldXyz[2] * oldXyzScale + newXyz[2] * newXyzScale; // FIXME: interpolate lat/long instead? lat = ( newNormals[0] >> 8 ) & 0xff; lng = ( newNormals[0] & 0xff ); lat *= 4; lng *= 4; uncompressedNewNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng]; uncompressedNewNormal[1] = tr.sinTable[lat] * tr.sinTable[lng]; uncompressedNewNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK]; lat = ( oldNormals[0] >> 8 ) & 0xff; lng = ( oldNormals[0] & 0xff ); lat *= 4; lng *= 4; uncompressedOldNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng]; uncompressedOldNormal[1] = tr.sinTable[lat] * tr.sinTable[lng]; uncompressedOldNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK]; outNormal[0] = uncompressedOldNormal[0] * oldNormalScale + uncompressedNewNormal[0] * newNormalScale; outNormal[1] = uncompressedOldNormal[1] * oldNormalScale + uncompressedNewNormal[1] * newNormalScale; outNormal[2] = uncompressedOldNormal[2] * oldNormalScale + uncompressedNewNormal[2] * newNormalScale; VectorNormalize (outNormal); } } } /* ============= RB_SurfaceMesh ============= */ void RB_SurfaceMesh(md3Surface_t *surface) { int j; float backlerp; int *triangles; float *texCoords; int indexes; int Bob, Doug; int numVerts; if ( backEnd.currentEntity->e.oldframe == backEnd.currentEntity->e.frame ) { backlerp = 0; } else { backlerp = backEnd.currentEntity->e.backlerp; } RB_CHECKOVERFLOW( surface->numVerts, surface->numTriangles*3 ); LerpMeshVertexes (surface, backlerp); triangles = (int *) ((byte *)surface + surface->ofsTriangles); indexes = surface->numTriangles * 3; Bob = tess.numIndexes; Doug = tess.numVertexes; for (j = 0 ; j < indexes ; j++) { tess.indexes[Bob + j] = Doug + triangles[j]; } tess.numIndexes += indexes; texCoords = (float *) ((byte *)surface + surface->ofsSt); numVerts = surface->numVerts; for ( j = 0; j < numVerts; j++ ) { tess.texCoords[Doug + j][0][0] = texCoords[j*2+0]; tess.texCoords[Doug + j][0][1] = texCoords[j*2+1]; // FIXME: fill in lightmapST for completeness? } tess.numVertexes += surface->numVerts; } /* ============== RB_SurfaceFace ============== */ void RB_SurfaceFace( srfSurfaceFace_t *surf ) { int i, k; unsigned *indices, *tessIndexes; float *v; float *normal; int ndx; int Bob; int numPoints; int dlightBits; RB_CHECKOVERFLOW( surf->numPoints, surf->numIndices ); dlightBits = surf->dlightBits[backEnd.smpFrame]; tess.dlightBits |= dlightBits; indices = ( unsigned * ) ( ( ( char * ) surf ) + surf->ofsIndices ); Bob = tess.numVertexes; tessIndexes = tess.indexes + tess.numIndexes; for ( i = surf->numIndices-1 ; i >= 0 ; i-- ) { tessIndexes[i] = indices[i] + Bob; } tess.numIndexes += surf->numIndices; v = surf->points[0]; ndx = tess.numVertexes; numPoints = surf->numPoints; if ( tess.shader->needsNormal ) { normal = surf->plane.normal; for ( i = 0, ndx = tess.numVertexes; i < numPoints; i++, ndx++ ) { VectorCopy( normal, tess.normal[ndx] ); } } for ( i = 0, v = surf->points[0], ndx = tess.numVertexes; i < numPoints; i++, v += VERTEXSIZE, ndx++ ) { VectorCopy( v, tess.xyz[ndx]); tess.texCoords[ndx][0][0] = v[3]; tess.texCoords[ndx][0][1] = v[4]; for(k=0;klightmapIndex[k] >= 0) { tess.texCoords[ndx][k+1][0] = v[VERTEX_LM+(k*2)]; tess.texCoords[ndx][k+1][1] = v[VERTEX_LM+(k*2)+1]; } else { break; } } *(unsigned int*) &tess.vertexColors[ndx] = ComputeFinalVertexColor((byte *)&v[VERTEX_COLOR]); tess.vertexDlightBits[ndx] = dlightBits; } tess.numVertexes += surf->numPoints; } static float LodErrorForVolume( vec3_t local, float radius ) { vec3_t world; float d; world[0] = local[0] * backEnd.or.axis[0][0] + local[1] * backEnd.or.axis[1][0] + local[2] * backEnd.or.axis[2][0] + backEnd.or.origin[0]; world[1] = local[0] * backEnd.or.axis[0][1] + local[1] * backEnd.or.axis[1][1] + local[2] * backEnd.or.axis[2][1] + backEnd.or.origin[1]; world[2] = local[0] * backEnd.or.axis[0][2] + local[1] * backEnd.or.axis[1][2] + local[2] * backEnd.or.axis[2][2] + backEnd.or.origin[2]; VectorSubtract( world, backEnd.viewParms.or.origin, world ); d = DotProduct( world, backEnd.viewParms.or.axis[0] ); if ( d < 0 ) { d = -d; } d -= radius; if ( d < 1 ) { d = 1; } return r_lodCurveError->value / d; } /* ============= RB_SurfaceGrid Just copy the grid of points and triangulate ============= */ void RB_SurfaceGrid( srfGridMesh_t *cv ) { int i, j, k; float *xyz; float *texCoords; float *normal; unsigned char *color; drawVert_t *dv; int rows, irows, vrows; int used; int widthTable[MAX_GRID_SIZE]; int heightTable[MAX_GRID_SIZE]; float lodError; int lodWidth, lodHeight; int numVertexes; int dlightBits; int *vDlightBits; qboolean needsNormal; dlightBits = cv->dlightBits[backEnd.smpFrame]; tess.dlightBits |= dlightBits; // determine the allowable discrepance lodError = LodErrorForVolume( cv->lodOrigin, cv->lodRadius ); // determine which rows and columns of the subdivision // we are actually going to use widthTable[0] = 0; lodWidth = 1; for ( i = 1 ; i < cv->width-1 ; i++ ) { if ( cv->widthLodError[i] <= lodError ) { widthTable[lodWidth] = i; lodWidth++; } } widthTable[lodWidth] = cv->width-1; lodWidth++; heightTable[0] = 0; lodHeight = 1; for ( i = 1 ; i < cv->height-1 ; i++ ) { if ( cv->heightLodError[i] <= lodError ) { heightTable[lodHeight] = i; lodHeight++; } } heightTable[lodHeight] = cv->height-1; lodHeight++; // very large grids may have more points or indexes than can be fit // in the tess structure, so we may have to issue it in multiple passes used = 0; rows = 0; while ( used < lodHeight - 1 ) { // see how many rows of both verts and indexes we can add without overflowing do { vrows = ( SHADER_MAX_VERTEXES - tess.numVertexes ) / lodWidth; irows = ( SHADER_MAX_INDEXES - tess.numIndexes ) / ( lodWidth * 6 ); // if we don't have enough space for at least one strip, flush the buffer if ( vrows < 2 || irows < 1 ) { RB_EndSurface(); RB_BeginSurface(tess.shader, tess.fogNum ); } else { break; } } while ( 1 ); rows = irows; if ( vrows < irows + 1 ) { rows = vrows - 1; } if ( used + rows > lodHeight ) { rows = lodHeight - used; } numVertexes = tess.numVertexes; xyz = tess.xyz[numVertexes]; normal = tess.normal[numVertexes]; texCoords = tess.texCoords[numVertexes][0]; color = ( unsigned char * ) &tess.vertexColors[numVertexes]; vDlightBits = &tess.vertexDlightBits[numVertexes]; needsNormal = tess.shader->needsNormal; for ( i = 0 ; i < rows ; i++ ) { for ( j = 0 ; j < lodWidth ; j++ ) { dv = cv->verts + heightTable[ used + i ] * cv->width + widthTable[ j ]; xyz[0] = dv->xyz[0]; xyz[1] = dv->xyz[1]; xyz[2] = dv->xyz[2]; xyz += 4; texCoords[0] = dv->st[0]; texCoords[1] = dv->st[1]; for(k=0;klightmap[k][0]; texCoords[2+(k*2)+1]= dv->lightmap[k][1]; } texCoords += NUM_TEX_COORDS*2; if ( needsNormal ) { normal[0] = dv->normal[0]; normal[1] = dv->normal[1]; normal[2] = dv->normal[2]; } normal += 4; *(unsigned *)color = ComputeFinalVertexColor((byte *)dv->color); color += 4; *vDlightBits++ = dlightBits; } } // add the indexes { int numIndexes; int w, h; h = rows - 1; w = lodWidth - 1; numIndexes = tess.numIndexes; for (i = 0 ; i < h ; i++) { for (j = 0 ; j < w ; j++) { int v1, v2, v3, v4; // vertex order to be reckognized as tristrips v1 = numVertexes + i*lodWidth + j + 1; v2 = v1 - 1; v3 = v2 + lodWidth; v4 = v3 + 1; tess.indexes[numIndexes] = v2; tess.indexes[numIndexes+1] = v3; tess.indexes[numIndexes+2] = v1; tess.indexes[numIndexes+3] = v1; tess.indexes[numIndexes+4] = v3; tess.indexes[numIndexes+5] = v4; numIndexes += 6; } } tess.numIndexes = numIndexes; } tess.numVertexes += rows * lodWidth; used += rows - 1; } } inline void Vector2Set(vec2_t a,float b,float c) { a[0] = b; a[1] = c; } inline void Vector2Copy(vec2_t src,vec2_t dst) { dst[0] = src[0]; dst[1] = src[1]; } #define LATHE_SEG_STEP 10 #define BEZIER_STEP 0.05f // must be in the range of 0 to 1 // FIXME: This function is horribly expensive static void RB_SurfaceLathe() { refEntity_t *e; vec2_t pt, oldpt, l_oldpt; vec2_t pt2, oldpt2, l_oldpt2; float bezierStep, latheStep; float temp, mu, mum1; float mum13, mu3, group1, group2; float s, c, d = 1.0f, pain = 0.0f; int i, t, vbase; e = &backEnd.currentEntity->e; if ( e->endTime && e->endTime > backEnd.refdef.time ) { d = 1.0f - ( e->endTime - backEnd.refdef.time ) / 1000.0f; } if ( e->frame && e->frame + 1000 > backEnd.refdef.time ) { pain = ( backEnd.refdef.time - e->frame ) / 1000.0f; // pain *= pain; pain = ( 1.0f - pain ) * 0.08f; } Vector2Set( l_oldpt, e->axis[0][0], e->axis[0][1] ); // do scalability stuff...r_lodbias 0-3 int lod = r_lodbias->integer + 1; if ( lod > 4 ) { lod = 4; } bezierStep = BEZIER_STEP * lod; latheStep = LATHE_SEG_STEP * lod; // Do bezier profile strip, then lathe this around to make a 3d model for ( mu = 0.0f; mu <= 1.01f * d; mu += bezierStep ) { // Four point curve mum1 = 1 - mu; mum13 = mum1 * mum1 * mum1; mu3 = mu * mu * mu; group1 = 3 * mu * mum1 * mum1; group2 = 3 * mu * mu *mum1; // Calc the current point on the curve for ( i = 0; i < 2; i++ ) { l_oldpt2[i] = mum13 * e->axis[0][i] + group1 * e->axis[1][i] + group2 * e->axis[2][i] + mu3 * e->oldorigin[i]; } Vector2Set( oldpt, l_oldpt[0], 0 ); Vector2Set( oldpt2, l_oldpt2[0], 0 ); // lathe patch section around in a complete circle for ( t = latheStep; t <= 360; t += latheStep ) { Vector2Set( pt, l_oldpt[0], 0 ); Vector2Set( pt2, l_oldpt2[0], 0 ); s = sin( DEG2RAD( t )); c = cos( DEG2RAD( t )); // rotate lathe points //c -s 0 //s c 0 //0 0 1 temp = c * pt[0] - s * pt[1]; pt[1] = s * pt[0] + c * pt[1]; pt[0] = temp; temp = c * pt2[0] - s * pt2[1]; pt2[1] = s * pt2[0] + c * pt2[1]; pt2[0] = temp; RB_CHECKOVERFLOW( 4, 6 ); vbase = tess.numVertexes; // Actually generate the necessary verts VectorSet( tess.normal[tess.numVertexes], oldpt[0], oldpt[1], l_oldpt[1] ); VectorAdd( e->origin, tess.normal[tess.numVertexes], tess.xyz[tess.numVertexes] ); VectorNormalize( tess.normal[tess.numVertexes] ); i = oldpt[0] * 0.1f + oldpt[1] * 0.1f; tess.texCoords[tess.numVertexes][0][0] = (t-latheStep)/360.0f; tess.texCoords[tess.numVertexes][0][1] = mu-bezierStep + cos( i + backEnd.refdef.floatTime ) * pain; tess.vertexColors[tess.numVertexes][0] = e->shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = e->shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = e->shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = e->shaderRGBA[3]; tess.numVertexes++; VectorSet( tess.normal[tess.numVertexes], oldpt2[0], oldpt2[1], l_oldpt2[1] ); VectorAdd( e->origin, tess.normal[tess.numVertexes], tess.xyz[tess.numVertexes] ); VectorNormalize( tess.normal[tess.numVertexes] ); i = oldpt2[0] * 0.1f + oldpt2[1] * 0.1f; tess.texCoords[tess.numVertexes][0][0] = (t-latheStep) / 360.0f; tess.texCoords[tess.numVertexes][0][1] = mu + cos( i + backEnd.refdef.floatTime ) * pain; tess.vertexColors[tess.numVertexes][0] = e->shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = e->shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = e->shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = e->shaderRGBA[3]; tess.numVertexes++; VectorSet( tess.normal[tess.numVertexes], pt[0], pt[1], l_oldpt[1] ); VectorAdd( e->origin, tess.normal[tess.numVertexes], tess.xyz[tess.numVertexes] ); VectorNormalize( tess.normal[tess.numVertexes] ); i = pt[0] * 0.1f + pt[1] * 0.1f; tess.texCoords[tess.numVertexes][0][0] = t/360.0f; tess.texCoords[tess.numVertexes][0][1] = mu-bezierStep + cos( i + backEnd.refdef.floatTime ) * pain; tess.vertexColors[tess.numVertexes][0] = e->shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = e->shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = e->shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = e->shaderRGBA[3]; tess.numVertexes++; VectorSet( tess.normal[tess.numVertexes], pt2[0], pt2[1], l_oldpt2[1] ); VectorAdd( e->origin, tess.normal[tess.numVertexes], tess.xyz[tess.numVertexes] ); VectorNormalize( tess.normal[tess.numVertexes] ); i = pt2[0] * 0.1f + pt2[1] * 0.1f; tess.texCoords[tess.numVertexes][0][0] = t/360.0f; tess.texCoords[tess.numVertexes][0][1] = mu + cos( i + backEnd.refdef.floatTime ) * pain; tess.vertexColors[tess.numVertexes][0] = e->shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = e->shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = e->shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = e->shaderRGBA[3]; tess.numVertexes++; tess.indexes[tess.numIndexes++] = vbase; tess.indexes[tess.numIndexes++] = vbase + 1; tess.indexes[tess.numIndexes++] = vbase + 3; tess.indexes[tess.numIndexes++] = vbase + 3; tess.indexes[tess.numIndexes++] = vbase + 2; tess.indexes[tess.numIndexes++] = vbase; // Shuffle new points to old Vector2Copy( pt, oldpt ); Vector2Copy( pt2, oldpt2 ); } // shuffle lathe points Vector2Copy( l_oldpt2, l_oldpt ); } } #define DISK_DEF 4 #define TUBE_DEF 6 static void RB_SurfaceClouds() { // Disk definition float diskStripDef[DISK_DEF] = { 0.0f, 0.4f, 0.7f, 1.0f }; float diskAlphaDef[DISK_DEF] = { 1.0f, 1.0f, 0.4f, 0.0f }; float diskCurveDef[DISK_DEF] = { 0.0f, 0.0f, 0.008f, 0.02f }; // tube definition float tubeStripDef[TUBE_DEF] = { 0.0f, 0.05f, 0.1f, 0.5f, 0.7f, 1.0f }; float tubeAlphaDef[TUBE_DEF] = { 0.0f, 0.45f, 1.0f, 1.0f, 0.45f, 0.0f }; float tubeCurveDef[TUBE_DEF] = { 0.0f, 0.004f, 0.006f, 0.01f, 0.006f, 0.0f }; refEntity_t *e; vec3_t pt, oldpt; vec3_t pt2, oldpt2; float latheStep = 30.0f; float s, c, temp; float *stripDef, *alphaDef, *curveDef, ct; int i, t, vbase; e = &backEnd.currentEntity->e; // select which type we shall be doing if ( e->renderfx & RF_GROW ) // doing tube type { ct = TUBE_DEF; stripDef = tubeStripDef; alphaDef = tubeAlphaDef; curveDef = tubeCurveDef; e->backlerp *= -1; // needs to be reversed } else { ct = DISK_DEF; stripDef = diskStripDef; alphaDef = diskAlphaDef; curveDef = diskCurveDef; } // do the strip def, then lathe this around to make a 3d model for ( i = 0; i < ct - 1; i++ ) { VectorSet( oldpt, (stripDef[i] * (e->radius - e->rotation)) + e->rotation, 0, curveDef[i] * e->radius * e->backlerp ); VectorSet( oldpt2, (stripDef[i+1] * (e->radius - e->rotation)) + e->rotation, 0, curveDef[i+1] * e->radius * e->backlerp ); // lathe section around in a complete circle for ( t = latheStep; t <= 360; t += latheStep ) { // rotate every time except last seg if ( t < 360.0f ) { VectorCopy( oldpt, pt ); VectorCopy( oldpt2, pt2 ); s = sin( DEG2RAD( latheStep )); c = cos( DEG2RAD( latheStep )); // rotate lathe points temp = c * pt[0] - s * pt[1]; // c -s 0 pt[1] = s * pt[0] + c * pt[1]; // s c 0 pt[0] = temp; // 0 0 1 temp = c * pt2[0] - s * pt2[1]; // c -s 0 pt2[1] = s * pt2[0] + c * pt2[1];// s c 0 pt2[0] = temp; // 0 0 1 } else { // just glue directly to the def points. VectorSet( pt, (stripDef[i] * (e->radius - e->rotation)) + e->rotation, 0, curveDef[i] * e->radius * e->backlerp ); VectorSet( pt2, (stripDef[i+1] * (e->radius - e->rotation)) + e->rotation, 0, curveDef[i+1] * e->radius * e->backlerp ); } RB_CHECKOVERFLOW( 4, 6 ); vbase = tess.numVertexes; // Actually generate the necessary verts VectorAdd( e->origin, oldpt, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = tess.xyz[tess.numVertexes][0] * 0.1f; tess.texCoords[tess.numVertexes][0][1] = tess.xyz[tess.numVertexes][1] * 0.1f; tess.vertexColors[tess.numVertexes][0] = tess.vertexColors[tess.numVertexes][1] = tess.vertexColors[tess.numVertexes][2] = e->shaderRGBA[0] * alphaDef[i]; tess.vertexColors[tess.numVertexes][3] = e->shaderRGBA[3]; tess.numVertexes++; VectorAdd( e->origin, oldpt2, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = tess.xyz[tess.numVertexes][0] * 0.1f; tess.texCoords[tess.numVertexes][0][1] = tess.xyz[tess.numVertexes][1] * 0.1f; tess.vertexColors[tess.numVertexes][0] = tess.vertexColors[tess.numVertexes][1] = tess.vertexColors[tess.numVertexes][2] = e->shaderRGBA[0] * alphaDef[i+1]; tess.vertexColors[tess.numVertexes][3] = e->shaderRGBA[3]; tess.numVertexes++; VectorAdd( e->origin, pt, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = tess.xyz[tess.numVertexes][0] * 0.1f; tess.texCoords[tess.numVertexes][0][1] = tess.xyz[tess.numVertexes][1] * 0.1f; tess.vertexColors[tess.numVertexes][0] = tess.vertexColors[tess.numVertexes][1] = tess.vertexColors[tess.numVertexes][2] = e->shaderRGBA[0] * alphaDef[i]; tess.vertexColors[tess.numVertexes][3] = e->shaderRGBA[3]; tess.numVertexes++; VectorAdd( e->origin, pt2, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = tess.xyz[tess.numVertexes][0] * 0.1f; tess.texCoords[tess.numVertexes][0][1] = tess.xyz[tess.numVertexes][1] * 0.1f; tess.vertexColors[tess.numVertexes][0] = tess.vertexColors[tess.numVertexes][1] = tess.vertexColors[tess.numVertexes][2] = e->shaderRGBA[0] * alphaDef[i+1]; tess.vertexColors[tess.numVertexes][3] = e->shaderRGBA[3]; tess.numVertexes++; tess.indexes[tess.numIndexes++] = vbase; tess.indexes[tess.numIndexes++] = vbase + 1; tess.indexes[tess.numIndexes++] = vbase + 3; tess.indexes[tess.numIndexes++] = vbase + 3; tess.indexes[tess.numIndexes++] = vbase + 2; tess.indexes[tess.numIndexes++] = vbase; // Shuffle new points to old Vector2Copy( pt, oldpt ); Vector2Copy( pt2, oldpt2 ); } } } /* =========================================================================== NULL MODEL =========================================================================== */ /* =================== RB_SurfaceAxis Draws x/y/z lines from the origin for orientation debugging =================== */ void RB_SurfaceAxis( void ) { GL_Bind( tr.whiteImage ); qglLineWidth( 3 ); qglBegin( GL_LINES ); qglColor3f( 1,0,0 ); qglVertex3f( 0,0,0 ); qglVertex3f( 16,0,0 ); qglColor3f( 0,1,0 ); qglVertex3f( 0,0,0 ); qglVertex3f( 0,16,0 ); qglColor3f( 0,0,1 ); qglVertex3f( 0,0,0 ); qglVertex3f( 0,0,16 ); qglEnd(); qglLineWidth( 1 ); } //=========================================================================== /* ==================== RB_SurfaceEntity Entities that have a single procedurally generated surface ==================== */ void RB_SurfaceEntity( surfaceType_t *surfType ) { switch( backEnd.currentEntity->e.reType ) { case RT_SPRITE: RB_SurfaceSprite(); break; case RT_ORIENTED_QUAD: RB_SurfaceOrientedQuad(); break; case RT_LINE: RB_SurfaceLine(); break; case RT_ELECTRICITY: RB_SurfaceElectricity(); break; case RT_BEAM: RB_SurfaceBeam(); break; case RT_SABER_GLOW: RB_SurfaceSaberGlow(); break; case RT_CYLINDER: RB_SurfaceCylinder(); break; case RT_LATHE: RB_SurfaceLathe(); break; case RT_CLOUDS: RB_SurfaceClouds(); break; default: RB_SurfaceAxis(); break; } return; } void RB_SurfaceBad( surfaceType_t *surfType ) { ri.Printf( PRINT_ALL, "Bad surface tesselated.\n" ); } /* ================== RB_TestZFlare This is called at surface tesselation time ================== */ qboolean RB_TestZFlare( vec3_t point, vec3_t color, vec3_t normal) { int i; vec4_t eye, clip, normalized, window; // if the point is off the screen, don't bother adding it // calculate screen coordinates and depth R_TransformModelToClip( point, backEnd.or.modelMatrix, backEnd.viewParms.projectionMatrix, eye, clip ); // check to see if the point is completely off screen for ( i = 0 ; i < 3 ; i++ ) { if ( clip[i] >= clip[3] || clip[i] <= -clip[3] ) { return qfalse; } } R_TransformClipToWindow( clip, &backEnd.viewParms, normalized, window ); if ( window[0] < 0 || window[0] >= backEnd.viewParms.viewportWidth || window[1] < 0 || window[1] >= backEnd.viewParms.viewportHeight ) { return qfalse; // shouldn't happen, since we check the clip[] above, except for FP rounding } //do test float depth; qboolean visible; float screenZ; // doing a readpixels is as good as doing a glFinish(), so // don't bother with another sync glState.finishCalled = qfalse; // read back the z buffer contents qglReadPixels( backEnd.viewParms.viewportX + window[0],backEnd.viewParms.viewportY + window[1], 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, &depth ); screenZ = backEnd.viewParms.projectionMatrix[14] / ( ( 2*depth - 1 ) * backEnd.viewParms.projectionMatrix[11] - backEnd.viewParms.projectionMatrix[10] ); visible = ( -eye[2] - -screenZ ) < 24; return visible; } void RB_SurfaceFlare( srfFlare_t *surf ) { vec3_t left, up; float radius; byte color[4]; vec3_t dir; vec3_t origin; float d; if ( !r_flares->integer ) { return; } if ( r_flares->integer ==1 ) { //gonna do the z-test if (!RB_TestZFlare( surf->origin, surf->color, surf->normal) ) return; } // calculate the xyz locations for the four corners radius = r_flareSize->value; VectorScale( backEnd.viewParms.or.axis[1], radius, left ); VectorScale( backEnd.viewParms.or.axis[2], radius, up ); if ( backEnd.viewParms.isMirror ) { VectorSubtract( vec3_origin, left, left ); } VectorMA( surf->origin, 3, surf->normal, origin ); VectorSubtract( origin, backEnd.viewParms.or.origin, dir ); VectorNormalize( dir ); d = -DotProduct( dir, surf->normal ); if ( d < 0 ) { return; } color[0] = surf->color[0] * 255; color[1] = surf->color[1] * 255; color[2] = surf->color[2] * 255; color[3] = 255; // fade the intensity of the flare down as the // light surface turns away from the viewer color[0] *= d; color[1] *= d; color[2] *= d; RB_AddQuadStamp( origin, left, up, color ); } void RB_SurfaceDisplayList( srfDisplayList_t *surf ) { // all apropriate state must be set in RB_BeginSurface // this isn't implemented yet... qglCallList( surf->listNum ); } void RB_SurfaceSkip( void *surf ) { } void (*rb_surfaceTable[SF_NUM_SURFACE_TYPES])( void *) = { (void(*)(void*))RB_SurfaceBad, // SF_BAD, (void(*)(void*))RB_SurfaceSkip, // SF_SKIP, (void(*)(void*))RB_SurfaceFace, // SF_FACE, (void(*)(void*))RB_SurfaceGrid, // SF_GRID, (void(*)(void*))RB_SurfaceTriangles, // SF_TRIANGLES, (void(*)(void*))RB_SurfacePolychain, // SF_POLY, (void(*)(void*))RB_SurfaceMesh, // SF_MD3, (void(*)(void*))RB_SurfaceAnim, // SF_MD4, /* Ghoul2 Insert Start */ (void(*)(void*))RB_SurfaceGhoul, // SF_MDX, /* Ghoul2 Insert End */ (void(*)(void*))RB_SurfaceFlare, // SF_FLARE, (void(*)(void*))RB_SurfaceEntity, // SF_ENTITY (void(*)(void*))RB_SurfaceDisplayList // SF_DISPLAY_LIST };