// leave this as first line for PCH reasons... // #ifndef __Q_SHARED_H #include "../game/q_shared.h" #endif #if !defined(TR_LOCAL_H) #include "../renderer/tr_local.h" #endif #include "../renderer/MatComp.h" #if !defined(G2_H_INC) #include "G2.h" #endif #if !defined (MINIHEAP_H_INC) #include "../qcommon/miniheap.h" #endif #include "../server/server.h" #include "G2_local.h" #ifdef _SOF2 #include "G2_Gore.h" #define GORE_TAG_UPPER (256) #define GORE_TAG_MASK (~255) static int CurrentTag=GORE_TAG_UPPER+1; static int CurrentTagUpper=GORE_TAG_UPPER; static map GoreRecords; static map,int> GoreTagsTemp; // this is a surface index to gore tag map used only // temporarily during the generation phase so we reuse gore tags per LOD int goreModelIndex; //TODO: This needs to be set via a scalability cvar with some reasonable minimum value if pgore is used at all #define MAX_GORE_RECORDS (500) int AllocGoreRecord() { while (GoreRecords.size()>MAX_GORE_RECORDS) { int tagHigh=(*GoreRecords.begin()).first&GORE_TAG_MASK; GoreRecords.erase(GoreRecords.begin()); while (GoreRecords.size()) { if (((*GoreRecords.begin()).first&GORE_TAG_MASK)!=tagHigh) { break; } GoreRecords.erase(GoreRecords.begin()); } } int ret=CurrentTag; GoreRecords[CurrentTag]=GoreTextureCoordinates(); CurrentTag++; return ret; } void ResetGoreTag() { GoreTagsTemp.clear(); CurrentTag=CurrentTagUpper; CurrentTagUpper+=GORE_TAG_UPPER; } GoreTextureCoordinates *FindGoreRecord(int tag) { map::iterator i=GoreRecords.find(tag); if (i!=GoreRecords.end()) { return &(*i).second; } return 0; } void *G2_GetGoreRecord(int tag) { return FindGoreRecord(tag); } void DeleteGoreRecord(int tag) { GoreRecords.erase(tag); } static int CurrentGoreSet=1; // this is a UUID for gore sets static map GoreSets; // map from uuid to goreset CGoreSet *FindGoreSet(int goreSetTag) { map::iterator f=GoreSets.find(goreSetTag); if (f!=GoreSets.end()) { return (*f).second; } return 0; } CGoreSet *NewGoreSet() { CGoreSet *ret=new CGoreSet(CurrentGoreSet++); GoreSets[ret->mMyGoreSetTag]=ret; return ret; } void DeleteGoreSet(int goreSetTag) { map::iterator f=GoreSets.find(goreSetTag); if (f!=GoreSets.end()) { delete (*f).second; GoreSets.erase(f); } } CGoreSet::~CGoreSet() { multimap::iterator i; for (i=mGoreRecords.begin();i!=mGoreRecords.end();i++) { DeleteGoreRecord((*i).second.mGoreTag); } }; #endif // _SOF2 extern mdxaBone_t worldMatrix; extern mdxaBone_t worldMatrixInv; #pragma warning(disable : 4512) //assignment op could not be genereated class CTraceSurface { public: int surfaceNum; surfaceInfo_v &rootSList; model_t *currentModel; int lod; vec3_t rayStart; vec3_t rayEnd; CollisionRecord_t *collRecMap; int entNum; int modelIndex; skin_t *skin; shader_t *cust_shader; int *TransformedVertsArray; int traceFlags; bool hitOne; CTraceSurface( int initsurfaceNum, surfaceInfo_v &initrootSList, model_t *initcurrentModel, int initlod, vec3_t initrayStart, vec3_t initrayEnd, CollisionRecord_t *initcollRecMap, int initentNum, int initmodelIndex, skin_t *initskin, shader_t *initcust_shader, int *initTransformedVertsArray, int inittraceFlags): surfaceNum(initsurfaceNum), rootSList(initrootSList), currentModel(initcurrentModel), lod(initlod), collRecMap(initcollRecMap), entNum(initentNum), modelIndex(initmodelIndex), skin(initskin), cust_shader(initcust_shader), traceFlags(inittraceFlags), TransformedVertsArray(initTransformedVertsArray) { VectorCopy(initrayStart, rayStart); VectorCopy(initrayEnd, rayEnd); hitOne = false; } }; // assorted Ghoul 2 functions. // list all surfaces associated with a model void G2_List_Model_Surfaces(const char *fileName) { int i, x; model_t *mod_m = R_GetModelByHandle(RE_RegisterModel(fileName)); mdxmSurfHierarchy_t *surf; surf = (mdxmSurfHierarchy_t *) ( (byte *)mod_m->mdxm + mod_m->mdxm->ofsSurfHierarchy ); mdxmSurface_t *surface = (mdxmSurface_t *)((byte *)mod_m->mdxm + mod_m->mdxm->ofsLODs + sizeof(mdxmLOD_t)); for ( x = 0 ; x < mod_m->mdxm->numSurfaces ; x++) { Com_Printf("Surface %i Name %s\n", x, surf->name); if (r_verbose->value) { Com_Printf("Num Descendants %i\n", surf->numChildren); for (i=0; inumChildren; i++) { Com_Printf("Descendant %i\n", surf->childIndexes[i]); } } // find the next surface surf = (mdxmSurfHierarchy_t *)( (byte *)surf + (int)( &((mdxmSurfHierarchy_t *)0)->childIndexes[ surf->numChildren ] )); surface =(mdxmSurface_t *)( (byte *)surface + surface->ofsEnd ); } } // list all bones associated with a model void G2_List_Model_Bones(const char *fileName, int frame) { int x, i; mdxaSkel_t *skel; mdxaSkelOffsets_t *offsets; model_t *mod_m = R_GetModelByHandle(RE_RegisterModel(fileName)); model_t *mod_a = R_GetModelByHandle(mod_m->mdxm->animIndex); mdxaFrame_t *aframe=0; int frameSize; mdxaHeader_t *header = mod_a->mdxa; // figure out where the offset list is offsets = (mdxaSkelOffsets_t *)((byte *)header + sizeof(mdxaHeader_t)); frameSize = (int)( &((mdxaFrame_t *)0)->boneIndexes[ header->numBones ] ); aframe = (mdxaFrame_t *)((byte *)header + header->ofsFrames + (frame * frameSize)); // walk each bone and list it's name for (x=0; x< mod_a->mdxa->numBones; x++) { skel = (mdxaSkel_t *)((byte *)header + sizeof(mdxaHeader_t) + offsets->offsets[x]); Com_Printf("Bone %i Name %s\n", x, skel->name); Com_Printf("X pos %f, Y pos %f, Z pos %f\n", skel->BasePoseMat.matrix[0][3], skel->BasePoseMat.matrix[1][3], skel->BasePoseMat.matrix[2][3]); // if we are in verbose mode give us more details if (r_verbose->value) { Com_Printf("Num Descendants %i\n", skel->numChildren); for (i=0; inumChildren; i++) { Com_Printf("Num Descendants %i\n", skel->numChildren); } } } } /************************************************************************************************ * G2_GetAnimFileName * obtain the .gla filename for a model * * Input * filename of model * * Output * true if we successfully obtained a filename, false otherwise * ************************************************************************************************/ qboolean G2_GetAnimFileName(const char *fileName, char **filename) { // find the model we want model_t *mod = R_GetModelByHandle(RE_RegisterModel(fileName)); if (mod && mod->mdxm && (mod->mdxm->animName[0] != 0)) { *filename = mod->mdxm->animName; return qtrue; } return qfalse; } ///////////////////////////////////////////////////////////////////// // // Code for collision detection for models gameside // ///////////////////////////////////////////////////////////////////// int G2_DecideTraceLod(CGhoul2Info &ghoul2, int useLod, model_t *mod) { int returnLod = useLod; // if we are overriding the LOD at top level, then we can afford to only check this level of model if (ghoul2.mLodBias > returnLod) { returnLod = ghoul2.mLodBias; } //what about r_lodBias? // now ensure that we haven't selected a lod that doesn't exist for this model if ( returnLod >= mod->numLods ) { returnLod = mod->numLods - 1; } return returnLod; } void R_TransformEachSurface( mdxmSurface_t *surface, vec3_t scale, CMiniHeap *G2VertSpace, int *TransformedVertsArray, mdxaBone_v &bonePtr) { int j, k; int numVerts; mdxmVertex_t *v; float *TransformedVerts; // // deform the vertexes by the lerped bones // // alloc some space for the transformed verts to get put in TransformedVerts = (float *)G2VertSpace->MiniHeapAlloc(surface->numVerts * 5 * 4); TransformedVertsArray[surface->thisSurfaceIndex] = (int)TransformedVerts; if (!TransformedVerts) { Com_Error(ERR_DROP, "Ran out of transform space gameside for Ghoul2 Models. Please See Jake to Make space larger\n"); } // whip through and actually transform each vertex int *piBoneRefs = (int*) ((byte*)surface + surface->ofsBoneReferences); numVerts = surface->numVerts; v = (mdxmVertex_t *) ((byte *)surface + surface->ofsVerts); // optimisation issue if ((scale[0] != 1.0) || (scale[1] != 1.0) || (scale[2] != 1.0)) { for ( j = 0; j < numVerts; j++ ) { vec3_t tempVert, tempNormal; mdxmWeight_t *w; VectorClear( tempVert ); VectorClear( tempNormal ); w = v->weights; for ( k = 0 ; k < v->numWeights ; k++, w++ ) { //bone = bonePtr + piBoneRefs[w->boneIndex]; tempVert[0] += w->boneWeight * ( DotProduct( bonePtr[piBoneRefs[w->boneIndex]].matrix[0], v->vertCoords ) + bonePtr[piBoneRefs[w->boneIndex]].matrix[0][3] ); tempVert[1] += w->boneWeight * ( DotProduct( bonePtr[piBoneRefs[w->boneIndex]].matrix[1], v->vertCoords ) + bonePtr[piBoneRefs[w->boneIndex]].matrix[1][3] ); tempVert[2] += w->boneWeight * ( DotProduct( bonePtr[piBoneRefs[w->boneIndex]].matrix[2], v->vertCoords ) + bonePtr[piBoneRefs[w->boneIndex]].matrix[2][3] ); tempNormal[0] += w->boneWeight * DotProduct( bonePtr[piBoneRefs[w->boneIndex]].matrix[0], v->normal ); tempNormal[1] += w->boneWeight * DotProduct( bonePtr[piBoneRefs[w->boneIndex]].matrix[1], v->normal ); tempNormal[2] += w->boneWeight * DotProduct( bonePtr[piBoneRefs[w->boneIndex]].matrix[2], v->normal ); } int pos = j * 5; // copy tranformed verts into temp space TransformedVerts[pos++] = tempVert[0] * scale[0]; TransformedVerts[pos++] = tempVert[1] * scale[1]; TransformedVerts[pos++] = tempVert[2] * scale[2]; // we will need the S & T coors too for hitlocation and hitmaterial stuff TransformedVerts[pos++] = v->texCoords[0]; TransformedVerts[pos] = v->texCoords[1]; v = (mdxmVertex_t *)&v->weights[/*v->numWeights*/surface->maxVertBoneWeights]; } } else { for ( j = 0; j < numVerts; j++ ) { vec3_t tempVert, tempNormal; mdxmWeight_t *w; VectorClear( tempVert ); VectorClear( tempNormal ); w = v->weights; for ( k = 0 ; k < v->numWeights ; k++, w++ ) { //bone = bonePtr + piBoneRefs[w->boneIndex]; tempVert[0] += w->boneWeight * ( DotProduct( bonePtr[piBoneRefs[w->boneIndex]].matrix[0], v->vertCoords ) + bonePtr[piBoneRefs[w->boneIndex]].matrix[0][3] ); tempVert[1] += w->boneWeight * ( DotProduct( bonePtr[piBoneRefs[w->boneIndex]].matrix[1], v->vertCoords ) + bonePtr[piBoneRefs[w->boneIndex]].matrix[1][3] ); tempVert[2] += w->boneWeight * ( DotProduct( bonePtr[piBoneRefs[w->boneIndex]].matrix[2], v->vertCoords ) + bonePtr[piBoneRefs[w->boneIndex]].matrix[2][3] ); tempNormal[0] += w->boneWeight * DotProduct( bonePtr[piBoneRefs[w->boneIndex]].matrix[0], v->normal ); tempNormal[1] += w->boneWeight * DotProduct( bonePtr[piBoneRefs[w->boneIndex]].matrix[1], v->normal ); tempNormal[2] += w->boneWeight * DotProduct( bonePtr[piBoneRefs[w->boneIndex]].matrix[2], v->normal ); } int pos = j * 5; // copy tranformed verts into temp space TransformedVerts[pos++] = tempVert[0]; TransformedVerts[pos++] = tempVert[1]; TransformedVerts[pos++] = tempVert[2]; // we will need the S & T coors too for hitlocation and hitmaterial stuff TransformedVerts[pos++] = v->texCoords[0]; TransformedVerts[pos] = v->texCoords[1]; v = (mdxmVertex_t *)&v->weights[/*v->numWeights*/surface->maxVertBoneWeights]; } } } void G2_TransformSurfaces(int surfaceNum, surfaceInfo_v &rootSList, mdxaBone_v &bonePtr, model_t *currentModel, int lod, vec3_t scale, CMiniHeap *G2VertSpace, int *TransformedVertArray, bool secondTimeAround) { int i; // back track and get the surfinfo struct for this surface mdxmSurface_t *surface = (mdxmSurface_t *)G2_FindSurface((void *)currentModel, surfaceNum, lod); mdxmHierarchyOffsets_t *surfIndexes = (mdxmHierarchyOffsets_t *)((byte *)currentModel->mdxm + sizeof(mdxmHeader_t)); mdxmSurfHierarchy_t *surfInfo = (mdxmSurfHierarchy_t *)((byte *)surfIndexes + surfIndexes->offsets[surface->thisSurfaceIndex]); // see if we have an override surface in the surface list surfaceInfo_t *surfOverride = G2_FindOverrideSurface(surfaceNum, rootSList); // really, we should use the default flags for this surface unless it's been overriden int offFlags = surfInfo->flags; if (surfOverride) { offFlags = surfOverride->offFlags; } // if this surface is not off, add it to the shader render list if (!offFlags) { // have we already transformed this group of ghoul2 skeletons this frame? if (secondTimeAround && (TransformedVertArray[surface->thisSurfaceIndex])) { return; } R_TransformEachSurface(surface, scale, G2VertSpace, TransformedVertArray, bonePtr); } // if we are turning off all descendants, then stop this recursion now if (offFlags & G2SURFACEFLAG_NODESCENDANTS) { return; } // now recursively call for the children for (i=0; i< surfInfo->numChildren; i++) { G2_TransformSurfaces(surfInfo->childIndexes[i], rootSList, bonePtr, currentModel, lod, scale, G2VertSpace, TransformedVertArray, secondTimeAround); } } // main calling point for the model transform for collision detection. At this point all of the skeleton has been transformed. void G2_TransformModel(CGhoul2Info_v &ghoul2, const int frameNum, vec3_t scale, CMiniHeap *G2VertSpace, int useLod) { int i, lod; model_t *currentModel; model_t *animModel; mdxaHeader_t *aHeader; vec3_t correctScale; bool secondTimeAround = false; // if we have already done this once, lets go again, and only do those surfaces that might have changed if (ghoul2[0].mMeshFrameNum == frameNum) { secondTimeAround = true; } VectorCopy(scale, correctScale); // check for scales of 0 - that's the default I believe if (!scale[0]) { correctScale[0] = 1.0; } if (!scale[1]) { correctScale[1] = 1.0; } if (!scale[2]) { correctScale[2] = 1.0; } // walk each possible model for this entity and try rendering it out for (i=0; imdxm->animIndex); aHeader = animModel->mdxa; // stop us building this model more than once per frame ghoul2[i].mMeshFrameNum = frameNum; // decide the LOD lod = G2_DecideTraceLod(ghoul2[i], useLod, currentModel); // give us space for the transformed vertex array to be put in ghoul2[i].mTransformedVertsArray = (int*)G2VertSpace->MiniHeapAlloc(currentModel->mdxm->numSurfaces * 4); memset(ghoul2[i].mTransformedVertsArray, 0,(currentModel->mdxm->numSurfaces * 4)); // did we get enough space? assert(ghoul2[i].mTransformedVertsArray); // recursively call the model surface transform G2_TransformSurfaces(ghoul2[i].mSurfaceRoot, ghoul2[i].mSlist, ghoul2[i].mTempBoneList, currentModel, lod, correctScale, G2VertSpace, ghoul2[i].mTransformedVertsArray, secondTimeAround); } } // work out how much space a triangle takes static float G2_AreaOfTri(const vec3_t A, const vec3_t B, const vec3_t C) { vec3_t cross, ab, cb; VectorSubtract(A, B, ab); VectorSubtract(C, B, cb); CrossProduct(ab, cb, cross); return VectorLength(cross); } // actually determine the S and T of the coordinate we hit in a given poly static void G2_BuildHitPointST( const vec3_t A, const float SA, const float TA, const vec3_t B, const float SB, const float TB, const vec3_t C, const float SC, const float TC, const vec3_t P, float *s, float *t,float &bary_i,float &bary_j) { float areaABC = G2_AreaOfTri(A, B, C); float i = G2_AreaOfTri(P, B, C) / areaABC; bary_i=i; float j = G2_AreaOfTri(A, P, C) / areaABC; bary_j=j; float k = G2_AreaOfTri(A, B, P) / areaABC; *s = SA * i + SB * j + SC * k; *t = TA * i + TB * j + TC * k; *s=fmod(*s, 1); if (*s< 0) { *s+= 1.0; } *t=fmod(*t, 1); if (*t< 0) { *t+= 1.0; } } // routine that works out given a ray whether or not it hits a poly static qboolean G2_SegmentTriangleTest( const vec3_t start, const vec3_t end, const vec3_t A, const vec3_t B, const vec3_t C, qboolean backFaces,qboolean frontFaces,vec3_t returnedPoint,vec3_t returnedNormal, float *denom) { static const float tiny=1E-10f; vec3_t returnedNormalT; vec3_t edgeAC; VectorSubtract(C, A, edgeAC); VectorSubtract(B, A, returnedNormalT); CrossProduct(returnedNormalT, edgeAC, returnedNormal); vec3_t ray; VectorSubtract(end, start, ray); *denom=DotProduct(ray, returnedNormal); if (fabs(*denom)0)|| // not accepting back faces (!frontFaces && *denom<0)) //not accepting front faces { return qfalse; } vec3_t toPlane; VectorSubtract(A, start, toPlane); const float t=DotProduct(toPlane, returnedNormal)/ *denom; if (t<0.0f||t>1.0f) { return qfalse; // off segment } VectorScale(ray, t, ray); VectorAdd(ray, start, returnedPoint); vec3_t edgePA; VectorSubtract(A, returnedPoint, edgePA); vec3_t edgePB; VectorSubtract(B, returnedPoint, edgePB); vec3_t edgePC; VectorSubtract(C, returnedPoint, edgePC); vec3_t temp; CrossProduct(edgePA, edgePB, temp); if (DotProduct(temp, returnedNormal)<0.0f) { return qfalse; // off triangle } CrossProduct(edgePC, edgePA, temp); if (DotProduct(temp,returnedNormal)<0.0f) { return qfalse; // off triangle } CrossProduct(edgePB, edgePC, temp); if (DotProduct(temp, returnedNormal)<0.0f) { return qfalse; // off triangle } return qtrue; } #ifdef _SOF2 struct SVertexTemp { int flags; int touch; int newindex; float tex[2]; SVertexTemp() { touch=0; } }; #define MAX_GORE_VERTS (3000) static SVertexTemp GoreVerts[MAX_GORE_VERTS]; static int GoreIndexCopy[MAX_GORE_VERTS]; static int GoreTouch=1; #define MAX_GORE_INDECIES (6000) static int GoreIndecies[MAX_GORE_INDECIES]; // now we at poly level, check each model space transformed poly against the model world transfomed ray void G2_GorePolys( const mdxmSurface_t *surface, const vec3_t rayStart, const vec3_t rayEnd,int entNum, /*WraithID wID, CSkin *skin, CShader *cust_shader,*/ mdxmSurfHierarchy_t *surfInfo,float ssize,float tsize,float theta,CGhoul2Info *ghoul2info,int surfaceIndex,int goreShader,int lod, int *TransformedVertsArray) { int j; vec3_t basis1; vec3_t basis2; vec3_t taxis; vec3_t saxis; basis2[0]=0.0f; basis2[1]=0.0f; basis2[2]=1.0f; CrossProduct(rayEnd,basis2,basis1); if (DotProduct(basis1,basis1)<.1f) { basis2[0]=0.0f; basis2[1]=1.0f; basis2[2]=0.0f; CrossProduct(rayEnd,basis2,basis1); } CrossProduct(rayEnd,basis1,basis2); // Give me a shot direction not a bunch of zeros :) -Gil assert(DotProduct(basis1,basis1)>.0001f); assert(DotProduct(basis2,basis2)>.0001f); VectorNormalize(basis1); VectorNormalize(basis2); float c=cos(theta); float s=sin(theta); VectorScale(basis1,.5f*c/tsize,taxis); VectorMA(taxis,.5f*s/tsize,basis2,taxis); VectorScale(basis1,-.5f*s/ssize,saxis); VectorMA(saxis,.5f*c/ssize,basis2,saxis); float *verts = (float *)TransformedVertsArray[surface->thisSurfaceIndex]; int numVerts = surface->numVerts; int flags=15; assert(numVerts0.20f) { vflags|=1; } if (s<0.80f) { vflags|=2; } if (t>0.20f) { vflags|=4; } if (t<0.80f) { vflags|=8; } vflags=(~vflags); flags&=vflags; GoreVerts[j].flags=vflags; GoreVerts[j].tex[0]=s; GoreVerts[j].tex[1]=t; } if (flags) { return; // completely off the gore splotch. } int numTris,newNumTris,newNumVerts; numTris = surface->numTriangles; mdxmTriangle_t *tris; tris = (mdxmTriangle_t *) ((byte *)surface + surface->ofsTriangles); verts = (float *)TransformedVertsArray[surface->thisSurfaceIndex]; newNumTris=0; newNumVerts=0; GoreTouch++; for ( j = 0; j < numTris; j++ ) { assert(tris[j].indexes[0]>=0&&tris[j].indexes[0]=0&&tris[j].indexes[1]=0&&tris[j].indexes[2],int>::iterator f=GoreTagsTemp.find(pair(goreModelIndex,surfaceIndex)); if (f==GoreTagsTemp.end()) // need to generate a record { newTag=AllocGoreRecord(); CGoreSet *goreSet=0; if (ghoul2info->mGoreSetTag) { goreSet=FindGoreSet(ghoul2info->mGoreSetTag); } if (!goreSet) { goreSet=NewGoreSet(); ghoul2info->mGoreSetTag=goreSet->mMyGoreSetTag; } assert(goreSet); SGoreSurface add; add.mGoreShaderEnum=goreShader; add.mGoreTag=newTag; goreSet->mGoreRecords.insert(pair(surfaceIndex,add)); GoreTagsTemp[pair(goreModelIndex,surfaceIndex)]=newTag; } else { newTag=(*f).second; } GoreTextureCoordinates *gore=FindGoreRecord(newTag); if (gore) { assert(sizeof(float)==sizeof(int)); // data block format: int size= sizeof(int)+ // num verts sizeof(int)+ // num tris sizeof(int)*newNumVerts+ // which verts to copy from original surface sizeof(float)*4*newNumVerts+ // storgage for deformed verts sizeof(float)*4*newNumVerts+ // storgage for deformed normal sizeof(float)*2*newNumVerts+ // texture coordinates sizeof(int)*newNumTris*3; // new indecies // FIXME: John Scott's memory system needed here!! int *data=0;//=(int *)Z_Malloc(size, TAG_G2GORE); gore->tex[lod]=(float *)data; *data++=newNumVerts; *data++=newNumTris; memcpy(data,GoreIndexCopy,sizeof(int)*newNumVerts); data+=newNumVerts*9; // skip verts and normals float *fdata=(float *)data; for (j=0;jtex[lod])*sizeof(int)==size); } } #endif // _SOF2 // now we're at poly level, check each model space transformed poly against the model world transfomed ray bool G2_TracePolys( const mdxmSurface_t *surface, const vec3_t rayStart, const vec3_t rayEnd, CollisionRecord_t *collRecMap, int entNum, int modelIndex, const skin_t *skin, const shader_t *cust_shader, const mdxmSurfHierarchy_t *surfInfo, int *TransformedVertsArray, int traceFlags) { int j, numTris; // whip through and actually transform each vertex const mdxmTriangle_t *tris = (mdxmTriangle_t *) ((byte *)surface + surface->ofsTriangles); const float *verts = (float *)TransformedVertsArray[surface->thisSurfaceIndex]; numTris = surface->numTriangles; for ( j = 0; j < numTris; j++ ) { float face; vec3_t hitPoint, normal; // determine actual coords for this triangle const float *point1 = &verts[(tris[j].indexes[0] * 5)]; const float *point2 = &verts[(tris[j].indexes[1] * 5)]; const float *point3 = &verts[(tris[j].indexes[2] * 5)]; // did we hit it? if (G2_SegmentTriangleTest(rayStart, rayEnd, point1, point2, point3, qtrue, qtrue, hitPoint, normal, &face)) { // find space in the collision records for this record for (int i=0; ithisSurfaceIndex; newCol.mModelIndex = modelIndex; if (face>0) { newCol.mFlags = G2_FRONTFACE; } else { newCol.mFlags = G2_BACKFACE; } VectorSubtract(hitPoint, rayStart, distVect); distance = VectorLength(distVect); // put the hit point back into world space TransformAndTranslatePoint(hitPoint, newCol.mCollisionPosition, &worldMatrix); // transform normal (but don't translate) into world angles TransformPoint(normal, newCol.mCollisionNormal, &worldMatrix); VectorNormalize(newCol.mCollisionNormal); newCol.mMaterial = newCol.mLocation = 0; // Determine our location within the texture, and barycentric coordinates G2_BuildHitPointST(point1, point1[3], point1[4], point2, point2[3], point2[4], point3, point3[3], point3[4], hitPoint, &x_pos, &y_pos,newCol.mBarycentricI,newCol.mBarycentricJ); const shader_t *shader = 0; // now, we know what surface this hit belongs to, we need to go get the shader handle so we can get the correct hit location and hit material info if ( cust_shader ) { shader = cust_shader; } else if ( skin ) { int j; // match the surface name to something in the skin file shader = tr.defaultShader; for ( j = 0 ; j < skin->numSurfaces ; j++ ) { // the names have both been lowercased if ( !strcmp( skin->surfaces[j]->name, surfInfo->name ) ) { shader = skin->surfaces[j]->shader; break; } } } else { shader = R_GetShaderByHandle( surfInfo->shaderIndex ); } // do we even care to decide what the hit or location area's are? If we don't have them in the shader there is little point if ((shader->hitLocation) || (shader->hitMaterial)) { // ok, we have a floating point position. - determine location in data we need to look at if (shader->hitLocation) { newCol.mLocation = *(hitMatReg[shader->hitLocation].loc + ((int)(y_pos * hitMatReg[shader->hitLocation].height) * hitMatReg[shader->hitLocation].width) + ((int)(x_pos * hitMatReg[shader->hitLocation].width))); Com_Printf("G2_TracePolys hit location: %d\n", newCol.mLocation); } if (shader->hitMaterial) { newCol.mMaterial = *(hitMatReg[shader->hitMaterial].loc + ((int)(y_pos * hitMatReg[shader->hitMaterial].height) * hitMatReg[shader->hitMaterial].width) + ((int)(x_pos * hitMatReg[shader->hitMaterial].width))); } } // now we have constructed that new hit record, store it. newCol.mDistance = distance; // exit now if we should if (traceFlags & G2_RETURNONHIT) { return true; } break; } } } } return false; } // look at a surface and then do the trace on each poly void G2_TraceSurfaces(CTraceSurface &TS) { int i; // back track and get the surfinfo struct for this surface const mdxmSurface_t *surface = (mdxmSurface_t *)G2_FindSurface((void *)TS.currentModel, TS.surfaceNum, TS.lod); const mdxmHierarchyOffsets_t *surfIndexes = (mdxmHierarchyOffsets_t *)((byte *)TS.currentModel->mdxm + sizeof(mdxmHeader_t)); const mdxmSurfHierarchy_t *surfInfo = (mdxmSurfHierarchy_t *)((byte *)surfIndexes + surfIndexes->offsets[surface->thisSurfaceIndex]); // see if we have an override surface in the surface list const surfaceInfo_t *surfOverride = G2_FindOverrideSurface(TS.surfaceNum, TS.rootSList); // don't allow recursion if we've already hit a polygon if (TS.hitOne) { return; } // really, we should use the default flags for this surface unless it's been overriden int offFlags = surfInfo->flags; // set the off flags if we have some if (surfOverride) { offFlags = surfOverride->offFlags; } // if this surface is not off, add it to the shader render list if (!offFlags) { // go away and trace the polys in this surface if (G2_TracePolys(surface, TS.rayStart, TS.rayEnd, TS.collRecMap, TS.entNum, TS.modelIndex, TS.skin, TS.cust_shader, surfInfo, TS.TransformedVertsArray, TS.traceFlags) && (TS.traceFlags & G2_RETURNONHIT)) { // ok, we hit one, *and* we want to return instantly because the returnOnHit is set // so indicate we've hit one, so other surfaces don't get hit and return TS.hitOne = true; return; } } // if we are turning off all descendants, then stop this recursion now if (offFlags & G2SURFACEFLAG_NODESCENDANTS) { return; } // now recursively call for the children for (i=0; i< surfInfo->numChildren; i++) { TS.surfaceNum = surfInfo->childIndexes[i]; G2_TraceSurfaces(TS); } } void G2_TraceModels(CGhoul2Info_v &ghoul2, vec3_t rayStart, vec3_t rayEnd, CollisionRecord_t *collRecMap, int entNum, int traceFlags, int useLod) { int i, lod; model_t *currentModel; model_t *animModel; mdxaHeader_t *aHeader; skin_t *skin; shader_t *cust_shader; // walk each possible model for this entity and try tracing against it for (i=0; imdxm->animIndex); aHeader = animModel->mdxa; // // figure out whether we should be using a custom shader for this model // if (ghoul2[i].mCustomShader) { cust_shader = R_GetShaderByHandle(ghoul2[i].mCustomShader ); } else { cust_shader = NULL; } // figure out the custom skin thing if ( ghoul2[i].mSkin > 0 && ghoul2[i].mSkin < tr.numSkins ) { skin = R_GetSkinByHandle( ghoul2[i].mSkin ); } else { skin = NULL; } lod = G2_DecideTraceLod(ghoul2[i],useLod, currentModel); CTraceSurface TS(ghoul2[i].mSurfaceRoot, ghoul2[i].mSlist, currentModel, lod, rayStart, rayEnd, collRecMap, entNum, i, skin, cust_shader, ghoul2[i].mTransformedVertsArray, traceFlags); // start the surface recursion loop G2_TraceSurfaces(TS); // if we've hit one surface on one model, don't bother doing the rest if ((traceFlags & G2_RETURNONHIT) && TS.hitOne) { break; } } } void TransformPoint (vec3_t in, vec3_t out, mdxaBone_t *mat) { for (int i=0;i<3;i++) { out[i]= in[0]*mat->matrix[i][0] + in[1]*mat->matrix[i][1] + in[2]*mat->matrix[i][2]; } } void TransformAndTranslatePoint (vec3_t in, vec3_t out, mdxaBone_t *mat) { for (int i=0;i<3;i++) { out[i]= in[0]*mat->matrix[i][0] + in[1]*mat->matrix[i][1] + in[2]*mat->matrix[i][2] + mat->matrix[i][3]; } } // create a matrix using a set of angles void Create_Matrix(const float *angle, mdxaBone_t *matrix) { vec3_t axis[3]; // convert angles to axis AnglesToAxis( angle, axis ); matrix->matrix[0][0] = axis[0][0]; matrix->matrix[1][0] = axis[0][1]; matrix->matrix[2][0] = axis[0][2]; matrix->matrix[0][1] = axis[1][0]; matrix->matrix[1][1] = axis[1][1]; matrix->matrix[2][1] = axis[1][2]; matrix->matrix[0][2] = axis[2][0]; matrix->matrix[1][2] = axis[2][1]; matrix->matrix[2][2] = axis[2][2]; matrix->matrix[0][3] = 0; matrix->matrix[1][3] = 0; matrix->matrix[2][3] = 0; } // given a matrix, generate the inverse of that matrix void Inverse_Matrix(mdxaBone_t *src, mdxaBone_t *dest) { int i, j; for (i = 0; i < 3; i++) { for (j = 0; j < 3; j++) { dest->matrix[i][j]=src->matrix[j][i]; } } for (i = 0; i < 3; i++) { dest->matrix[i][3]=0; for (j = 0; j < 3; j++) { dest->matrix[i][3]-=dest->matrix[i][j]*src->matrix[j][3]; } } } // generate the world matrix for a given set of angles and origin - called from lots of places void G2_GenerateWorldMatrix(const vec3_t angles, const vec3_t origin) { Create_Matrix(angles, &worldMatrix); worldMatrix.matrix[0][3] = origin[0]; worldMatrix.matrix[1][3] = origin[1]; worldMatrix.matrix[2][3] = origin[2]; Inverse_Matrix(&worldMatrix, &worldMatrixInv); } // go away and determine what the pointer for a specific surface definition within the model definition is void *G2_FindSurface(void *mod_t, int index, int lod) { // damn include file dependancies model_t *mod = (model_t *)mod_t; // point at first lod list byte *current = (byte*)((int)mod->mdxm + (int)mod->mdxm->ofsLODs); int i; //walk the lods for (i=0; iofsEnd; } // avoid the lod pointer data structure current += sizeof(mdxmLOD_t); mdxmLODSurfOffset_t *indexes = (mdxmLODSurfOffset_t *)current; // we are now looking at the offset array current += indexes->offsets[index]; return (void *)current; } #define SURFACE_SAVE_BLOCK_SIZE sizeof(surfaceInfo_t) #define BOLT_SAVE_BLOCK_SIZE (sizeof(boltInfo_t) - sizeof(mdxaBone_t)) #define BONE_SAVE_BLOCK_SIZE sizeof(boneInfo_t) qboolean G2_SaveGhoul2Models(CGhoul2Info_v &ghoul2, char **buffer, int *size) { // is there anything to save? if (!ghoul2.size()) { *buffer = (char *)Z_Malloc(4, TAG_GHOUL2, qtrue); int *tempBuffer = (int *)*buffer; *tempBuffer = 0; *size = 4; return qtrue; } // yeah, lets get busy *size = 0; // this one isn't a define since I couldn't work out how to figure it out at compile time int ghoul2BlockSize = (int)&ghoul2[0].mTransformedVertsArray - (int)&ghoul2[0].mModelindex; // add in count for number of ghoul2 models *size += 4; // start out working out the total size of the buffer we need to allocate for (int i=0; i i) && (nextGhoul2[i].mModelindex != -1) && (nextGhoul2[i].mBlist.size() > x) && (nextGhoul2[i].mBlist[x].boneNumber != -1)) { boneInfo_t &nextBone = nextGhoul2[i].mBlist[x]; // does this bone override actually have anything in it, and if it does, is it a bone angles override? if ((bone.boneNumber != -1) && ((bone.flags) & (BONE_ANGLES_TOTAL))) { float *nowMatrix = (float*) &bone.matrix; float *nextMatrix = (float*) &nextBone.matrix; float *newMatrix = (float*) &bone.newMatrix; // now interpolate the matrix for (int z=0; z < 12; z++) { newMatrix[z] = nowMatrix[z] + interpolation * ( nextMatrix[z] - nowMatrix[z] ); } } } else { memcpy(&ghoul2[i].mBlist[x].newMatrix, &ghoul2[i].mBlist[x].matrix, sizeof(mdxaBone_t)); } } } } }