// Copyright (C) 1999-2000 Id Software, Inc. // // cg_view.c -- setup all the parameters (position, angle, etc) // for a 3D rendering #include "cg_local.h" #if !defined(CL_LIGHT_H_INC) #include "cg_lights.h" #endif /* ============================================================================= MODEL TESTING The viewthing and gun positioning tools from Q2 have been integrated and enhanced into a single model testing facility. Model viewing can begin with either "testmodel " or "testgun ". The names must be the full pathname after the basedir, like "models/weapons/v_launch/tris.md3" or "players/male/tris.md3" Testmodel will create a fake entity 100 units in front of the current view position, directly facing the viewer. It will remain immobile, so you can move around it to view it from different angles. Testgun will cause the model to follow the player around and supress the real view weapon model. The default frame 0 of most guns is completely off screen, so you will probably have to cycle a couple frames to see it. "nextframe", "prevframe", "nextskin", and "prevskin" commands will change the frame or skin of the testmodel. These are bound to F5, F6, F7, and F8 in q3default.cfg. If a gun is being tested, the "gun_x", "gun_y", and "gun_z" variables will let you adjust the positioning. Note that none of the model testing features update while the game is paused, so it may be convenient to test with deathmatch set to 1 so that bringing down the console doesn't pause the game. ============================================================================= */ /* ================= CG_TestModel_f Creates an entity in front of the current position, which can then be moved around ================= */ void CG_TestModel_f (void) { vec3_t angles; memset( &cg.testModelEntity, 0, sizeof(cg.testModelEntity) ); if ( trap_Argc() < 2 ) { return; } Q_strncpyz (cg.testModelName, CG_Argv( 1 ), MAX_QPATH ); cg.testModelEntity.hModel = trap_R_RegisterModel( cg.testModelName ); if ( trap_Argc() == 3 ) { cg.testModelEntity.backlerp = atof( CG_Argv( 2 ) ); cg.testModelEntity.frame = 1; cg.testModelEntity.oldframe = 0; } if (! cg.testModelEntity.hModel ) { CG_Printf( "Can't register model\n" ); return; } VectorMA( cg.refdef.vieworg, 100, cg.refdef.viewaxis[0], cg.testModelEntity.origin ); angles[PITCH] = 0; angles[YAW] = 180 + cg.refdefViewAngles[1]; angles[ROLL] = 0; AnglesToAxis( angles, cg.testModelEntity.axis ); cg.testGun = qfalse; } /* ================= CG_TestGun_f Replaces the current view weapon with the given model ================= */ void CG_TestGun_f (void) { CG_TestModel_f(); cg.testGun = qtrue; //cg.testModelEntity.renderfx = RF_MINLIGHT | RF_DEPTHHACK | RF_FIRST_PERSON; // rww - 9-13-01 [1-26-01-sof2] cg.testModelEntity.renderfx = RF_DEPTHHACK | RF_FIRST_PERSON; } void CG_TestModelNextFrame_f (void) { cg.testModelEntity.frame++; CG_Printf( "frame %i\n", cg.testModelEntity.frame ); } void CG_TestModelPrevFrame_f (void) { cg.testModelEntity.frame--; if ( cg.testModelEntity.frame < 0 ) { cg.testModelEntity.frame = 0; } CG_Printf( "frame %i\n", cg.testModelEntity.frame ); } void CG_TestModelNextSkin_f (void) { cg.testModelEntity.skinNum++; CG_Printf( "skin %i\n", cg.testModelEntity.skinNum ); } void CG_TestModelPrevSkin_f (void) { cg.testModelEntity.skinNum--; if ( cg.testModelEntity.skinNum < 0 ) { cg.testModelEntity.skinNum = 0; } CG_Printf( "skin %i\n", cg.testModelEntity.skinNum ); } static void CG_AddTestModel (void) { int i; // re-register the model, because the level may have changed cg.testModelEntity.hModel = trap_R_RegisterModel( cg.testModelName ); if (! cg.testModelEntity.hModel ) { CG_Printf ("Can't register model\n"); return; } // if testing a gun, set the origin reletive to the view origin if ( cg.testGun ) { VectorCopy( cg.refdef.vieworg, cg.testModelEntity.origin ); VectorCopy( cg.refdef.viewaxis[0], cg.testModelEntity.axis[0] ); VectorCopy( cg.refdef.viewaxis[1], cg.testModelEntity.axis[1] ); VectorCopy( cg.refdef.viewaxis[2], cg.testModelEntity.axis[2] ); // allow the position to be adjusted for (i=0 ; i<3 ; i++) { cg.testModelEntity.origin[i] += cg.refdef.viewaxis[0][i] * cg_gun_x.value; cg.testModelEntity.origin[i] += cg.refdef.viewaxis[1][i] * cg_gun_y.value; cg.testModelEntity.origin[i] += cg.refdef.viewaxis[2][i] * cg_gun_z.value; } } trap_R_AddRefEntityToScene( &cg.testModelEntity ); } //============================================================================ /* ================= CG_CalcVrect Sets the coordinates of the rendered window ================= */ static void CG_CalcVrect (void) { int size; // the intermission should allways be full screen if ( cg.snap->ps.pm_type == PM_INTERMISSION ) { size = 100; } else { // bound normal viewsize if (cg_viewsize.integer < 30) { trap_Cvar_Set ("cg_viewsize","30"); size = 30; } else if (cg_viewsize.integer > 100) { trap_Cvar_Set ("cg_viewsize","100"); size = 100; } else { size = cg_viewsize.integer; } } cg.refdef.width = cgs.glconfig.vidWidth*size/100; cg.refdef.width &= ~1; cg.refdef.height = cgs.glconfig.vidHeight*size/100; cg.refdef.height &= ~1; cg.refdef.x = (cgs.glconfig.vidWidth - cg.refdef.width)/2; cg.refdef.y = (cgs.glconfig.vidHeight - cg.refdef.height)/2; } //============================================================================== //============================================================================== //============================================================================== // this causes a compiler bug on mac MrC compiler static void CG_StepOffset( void ) { int timeDelta; // smooth out stair climbing timeDelta = cg.time - cg.stepTime; if ( timeDelta < STEP_TIME ) { cg.refdef.vieworg[2] -= cg.stepChange * (STEP_TIME - timeDelta) / STEP_TIME; } } #define CAMERA_DAMP_INTERVAL 50 static vec3_t cameramins = { -4, -4, -4 }; static vec3_t cameramaxs = { 4, 4, 4 }; vec3_t camerafwd, cameraup; vec3_t cameraFocusAngles, cameraFocusLoc; vec3_t cameraIdealTarget, cameraIdealLoc; vec3_t cameraCurTarget={0,0,0}, cameraCurLoc={0,0,0}; vec3_t cameraOldLoc={0,0,0}, cameraNewLoc={0,0,0}; int cameraLastFrame=0; /* =============== Notes on the camera viewpoint in and out... cg.refdef.vieworg --at the start of the function holds the player actor's origin (center of player model). --it is set to the final view location of the camera at the end of the camera code. cg.refdefViewAngles --at the start holds the client's view angles --it is set to the final view angle of the camera at the end of the camera code. =============== */ /* =============== CG_CalcTargetThirdPersonViewLocation =============== */ static void CG_CalcIdealThirdPersonViewTarget(void) { float thirdPersonVertOffset = cg_thirdPersonVertOffset.value; if (cg.snap && cg.snap->ps.usingATST) { thirdPersonVertOffset = 200; } // Initialize IdealTarget VectorCopy(cg.refdef.vieworg, cameraFocusLoc); // Add in the new viewheight cameraFocusLoc[2] += cg.snap->ps.viewheight; // Add in a vertical offset from the viewpoint, which puts the actual target above the head, regardless of angle. // VectorMA(cameraFocusLoc, thirdPersonVertOffset, cameraup, cameraIdealTarget); // Add in a vertical offset from the viewpoint, which puts the actual target above the head, regardless of angle. VectorCopy( cameraFocusLoc, cameraIdealTarget ); cameraIdealTarget[2] += cg_thirdPersonVertOffset.value; //VectorMA(cameraFocusLoc, cg_thirdPersonVertOffset.value, cameraup, cameraIdealTarget); } /* =============== CG_CalcTargetThirdPersonViewLocation =============== */ static void CG_CalcIdealThirdPersonViewLocation(void) { float thirdPersonRange = cg_thirdPersonRange.value; if (cg.snap && cg.snap->ps.usingATST) { thirdPersonRange = 300; } VectorMA(cameraIdealTarget, -(thirdPersonRange), camerafwd, cameraIdealLoc); } static void CG_ResetThirdPersonViewDamp(void) { trace_t trace; // Cap the pitch within reasonable limits if (cameraFocusAngles[PITCH] > 89.0) { cameraFocusAngles[PITCH] = 89.0; } else if (cameraFocusAngles[PITCH] < -89.0) { cameraFocusAngles[PITCH] = -89.0; } AngleVectors(cameraFocusAngles, camerafwd, NULL, cameraup); // Set the cameraIdealTarget CG_CalcIdealThirdPersonViewTarget(); // Set the cameraIdealLoc CG_CalcIdealThirdPersonViewLocation(); // Now, we just set everything to the new positions. VectorCopy(cameraIdealLoc, cameraCurLoc); VectorCopy(cameraIdealTarget, cameraCurTarget); // First thing we do is trace from the first person viewpoint out to the new target location. CG_Trace(&trace, cameraFocusLoc, cameramins, cameramaxs, cameraCurTarget, cg.snap->ps.clientNum, MASK_SOLID|CONTENTS_PLAYERCLIP); if (trace.fraction <= 1.0) { VectorCopy(trace.endpos, cameraCurTarget); } // Now we trace from the new target location to the new view location, to make sure there is nothing in the way. CG_Trace(&trace, cameraCurTarget, cameramins, cameramaxs, cameraCurLoc, cg.snap->ps.clientNum, MASK_SOLID|CONTENTS_PLAYERCLIP); if (trace.fraction <= 1.0) { VectorCopy(trace.endpos, cameraCurLoc); } cameraLastFrame = cg.time; } // This is called every frame. static void CG_UpdateThirdPersonTargetDamp(void) { trace_t trace; vec3_t targetdiff; float dampfactor, dtime, ratio; // Set the cameraIdealTarget // Automatically get the ideal target, to avoid jittering. CG_CalcIdealThirdPersonViewTarget(); if (cg_thirdPersonTargetDamp.value>=1.0) { // No damping. VectorCopy(cameraIdealTarget, cameraCurTarget); } else if (cg_thirdPersonTargetDamp.value>=0.0) { // Calculate the difference from the current position to the new one. VectorSubtract(cameraIdealTarget, cameraCurTarget, targetdiff); // Now we calculate how much of the difference we cover in the time allotted. // The equation is (Damp)^(time) dampfactor = 1.0-cg_thirdPersonTargetDamp.value; // We must exponent the amount LEFT rather than the amount bled off dtime = (float)(cg.time-cameraLastFrame) * (1.0/(float)CAMERA_DAMP_INTERVAL); // Our dampfactor is geared towards a time interval equal to "1". // Note that since there are a finite number of "practical" delta millisecond values possible, // the ratio should be initialized into a chart ultimately. ratio = powf(dampfactor, dtime); // This value is how much distance is "left" from the ideal. VectorMA(cameraIdealTarget, -ratio, targetdiff, cameraCurTarget); ///////////////////////////////////////////////////////////////////////////////////////////////////////// } // Now we trace to see if the new location is cool or not. // First thing we do is trace from the first person viewpoint out to the new target location. CG_Trace(&trace, cameraFocusLoc, cameramins, cameramaxs, cameraCurTarget, cg.snap->ps.clientNum, MASK_SOLID|CONTENTS_PLAYERCLIP); if (trace.fraction < 1.0) { VectorCopy(trace.endpos, cameraCurTarget); } // Note that previously there was an upper limit to the number of physics traces that are done through the world // for the sake of camera collision, since it wasn't calced per frame. Now it is calculated every frame. // This has the benefit that the camera is a lot smoother now (before it lerped between tested points), // however two full volume traces each frame is a bit scary to think about. } // This can be called every interval, at the user's discretion. static void CG_UpdateThirdPersonCameraDamp(void) { trace_t trace; vec3_t locdiff; float dampfactor, dtime, ratio; // Set the cameraIdealLoc CG_CalcIdealThirdPersonViewLocation(); // First thing we do is calculate the appropriate damping factor for the camera. dampfactor=0.0; if (cg_thirdPersonCameraDamp.value != 0.0) { double pitch; // Note that the camera pitch has already been capped off to 89. pitch = Q_fabs(cameraFocusAngles[PITCH]); // The higher the pitch, the larger the factor, so as you look up, it damps a lot less. pitch /= 89.0; dampfactor = (1.0-cg_thirdPersonCameraDamp.value)*(pitch*pitch); dampfactor += cg_thirdPersonCameraDamp.value; } if (dampfactor>=1.0) { // No damping. VectorCopy(cameraIdealLoc, cameraCurLoc); } else if (dampfactor>=0.0) { // Calculate the difference from the current position to the new one. VectorSubtract(cameraIdealLoc, cameraCurLoc, locdiff); // Now we calculate how much of the difference we cover in the time allotted. // The equation is (Damp)^(time) dampfactor = 1.0-dampfactor; // We must exponent the amount LEFT rather than the amount bled off dtime = (float)(cg.time-cameraLastFrame) * (1.0/(float)CAMERA_DAMP_INTERVAL); // Our dampfactor is geared towards a time interval equal to "1". // Note that since there are a finite number of "practical" delta millisecond values possible, // the ratio should be initialized into a chart ultimately. ratio = powf(dampfactor, dtime); // This value is how much distance is "left" from the ideal. VectorMA(cameraIdealLoc, -ratio, locdiff, cameraCurLoc); ///////////////////////////////////////////////////////////////////////////////////////////////////////// } // Now we trace from the new target location to the new view location, to make sure there is nothing in the way. CG_Trace(&trace, cameraCurTarget, cameramins, cameramaxs, cameraCurLoc, cg.snap->ps.clientNum, MASK_SOLID|CONTENTS_PLAYERCLIP); if (trace.fraction < 1.0) { VectorCopy( trace.endpos, cameraCurLoc ); //FIXME: when the trace hits movers, it gets very very jaggy... ? /* //this doesn't actually help any if ( trace.entityNum != ENTITYNUM_WORLD ) { centity_t *cent = &cg_entities[trace.entityNum]; gentity_t *gent = &g_entities[trace.entityNum]; if ( cent != NULL && gent != NULL ) { if ( cent->currentState.pos.trType == TR_LINEAR || cent->currentState.pos.trType == TR_LINEAR_STOP ) { vec3_t diff; VectorSubtract( cent->lerpOrigin, gent->currentOrigin, diff ); VectorAdd( cameraCurLoc, diff, cameraCurLoc ); } } } */ } // Note that previously there was an upper limit to the number of physics traces that are done through the world // for the sake of camera collision, since it wasn't calced per frame. Now it is calculated every frame. // This has the benefit that the camera is a lot smoother now (before it lerped between tested points), // however two full volume traces each frame is a bit scary to think about. } /* ===============` CG_OffsetThirdPersonView =============== */ extern vmCvar_t cg_thirdPersonHorzOffset; static void CG_OffsetThirdPersonView( void ) { vec3_t diff; float thirdPersonHorzOffset = cg_thirdPersonHorzOffset.value; // Set camera viewing direction. VectorCopy( cg.refdefViewAngles, cameraFocusAngles ); // if dead, look at killer if ( cg.snap->ps.stats[STAT_HEALTH] <= 0 ) { cameraFocusAngles[YAW] = cg.snap->ps.stats[STAT_DEAD_YAW]; } else { // Add in the third Person Angle. cameraFocusAngles[YAW] += cg_thirdPersonAngle.value; cameraFocusAngles[PITCH] += cg_thirdPersonPitchOffset.value; } // The next thing to do is to see if we need to calculate a new camera target location. // If we went back in time for some reason, or if we just started, reset the sample. if (cameraLastFrame == 0 || cameraLastFrame > cg.time) { CG_ResetThirdPersonViewDamp(); } else { // Cap the pitch within reasonable limits if (cameraFocusAngles[PITCH] > 80.0) { cameraFocusAngles[PITCH] = 80.0; } else if (cameraFocusAngles[PITCH] < -80.0) { cameraFocusAngles[PITCH] = -80.0; } AngleVectors(cameraFocusAngles, camerafwd, NULL, cameraup); // Move the target to the new location. CG_UpdateThirdPersonTargetDamp(); CG_UpdateThirdPersonCameraDamp(); } // Now interestingly, the Quake method is to calculate a target focus point above the player, and point the camera at it. // We won't do that for now. // We must now take the angle taken from the camera target and location. /*VectorSubtract(cameraCurTarget, cameraCurLoc, diff); VectorNormalize(diff); vectoangles(diff, cg.refdefViewAngles);*/ VectorSubtract(cameraCurTarget, cameraCurLoc, diff); { float dist = VectorNormalize(diff); //under normal circumstances, should never be 0.00000 and so on. if ( !dist || (diff[0] == 0 || diff[1] == 0) ) {//must be hitting something, need some value to calc angles, so use cam forward VectorCopy( camerafwd, diff ); } } vectoangles(diff, cg.refdefViewAngles); // Temp: just move the camera to the side a bit if ( thirdPersonHorzOffset != 0.0f ) { AnglesToAxis( cg.refdefViewAngles, cg.refdef.viewaxis ); VectorMA( cameraCurLoc, thirdPersonHorzOffset, cg.refdef.viewaxis[1], cameraCurLoc ); } // ...and of course we should copy the new view location to the proper spot too. VectorCopy(cameraCurLoc, cg.refdef.vieworg); cameraLastFrame=cg.time; } /* =============== CG_OffsetThirdPersonView =============== *//* #define FOCUS_DISTANCE 512 static void CG_OffsetThirdPersonView( void ) { vec3_t forward, right, up; vec3_t view; vec3_t focusAngles; trace_t trace; static vec3_t mins = { -4, -4, -4 }; static vec3_t maxs = { 4, 4, 4 }; vec3_t focusPoint; float focusDist; float forwardScale, sideScale; cg.refdef.vieworg[2] += cg.predictedPlayerState.viewheight; VectorCopy( cg.refdefViewAngles, focusAngles ); // if dead, look at killer if ( cg.predictedPlayerState.stats[STAT_HEALTH] <= 0 ) { focusAngles[YAW] = cg.predictedPlayerState.stats[STAT_DEAD_YAW]; cg.refdefViewAngles[YAW] = cg.predictedPlayerState.stats[STAT_DEAD_YAW]; } if ( focusAngles[PITCH] > 45 ) { focusAngles[PITCH] = 45; // don't go too far overhead } AngleVectors( focusAngles, forward, NULL, NULL ); VectorMA( cg.refdef.vieworg, FOCUS_DISTANCE, forward, focusPoint ); VectorCopy( cg.refdef.vieworg, view ); view[2] += 8; cg.refdefViewAngles[PITCH] *= 0.5; AngleVectors( cg.refdefViewAngles, forward, right, up ); forwardScale = cos( cg_thirdPersonAngle.value / 180 * M_PI ); sideScale = sin( cg_thirdPersonAngle.value / 180 * M_PI ); VectorMA( view, -cg_thirdPersonRange.value * forwardScale, forward, view ); VectorMA( view, -cg_thirdPersonRange.value * sideScale, right, view ); // trace a ray from the origin to the viewpoint to make sure the view isn't // in a solid block. Use an 8 by 8 block to prevent the view from near clipping anything if (!cg_cameraMode.integer) { CG_Trace( &trace, cg.refdef.vieworg, mins, maxs, view, cg.predictedPlayerState.clientNum, MASK_SOLID ); if ( trace.fraction != 1.0 ) { VectorCopy( trace.endpos, view ); view[2] += (1.0 - trace.fraction) * 32; // try another trace to this position, because a tunnel may have the ceiling // close enogh that this is poking out CG_Trace( &trace, cg.refdef.vieworg, mins, maxs, view, cg.predictedPlayerState.clientNum, MASK_SOLID ); VectorCopy( trace.endpos, view ); } } VectorCopy( view, cg.refdef.vieworg ); // select pitch to look at focus point from vieword VectorSubtract( focusPoint, cg.refdef.vieworg, focusPoint ); focusDist = sqrt( focusPoint[0] * focusPoint[0] + focusPoint[1] * focusPoint[1] ); if ( focusDist < 1 ) { focusDist = 1; // should never happen } cg.refdefViewAngles[PITCH] = -180 / M_PI * atan2( focusPoint[2], focusDist ); cg.refdefViewAngles[YAW] -= cg_thirdPersonAngle.value; } // this causes a compiler bug on mac MrC compiler static void CG_StepOffset( void ) { int timeDelta; // smooth out stair climbing timeDelta = cg.time - cg.stepTime; if ( timeDelta < STEP_TIME ) { cg.refdef.vieworg[2] -= cg.stepChange * (STEP_TIME - timeDelta) / STEP_TIME; } }*/ /* =============== CG_OffsetFirstPersonView =============== */ static void CG_OffsetFirstPersonView( void ) { float *origin; float *angles; float bob; float ratio; float delta; float speed; float f; vec3_t predictedVelocity; int timeDelta; if ( cg.snap->ps.pm_type == PM_INTERMISSION ) { return; } origin = cg.refdef.vieworg; angles = cg.refdefViewAngles; // if dead, fix the angle and don't add any kick if ( cg.snap->ps.stats[STAT_HEALTH] <= 0 ) { angles[ROLL] = 40; angles[PITCH] = -15; angles[YAW] = cg.snap->ps.stats[STAT_DEAD_YAW]; origin[2] += cg.predictedPlayerState.viewheight; return; } // add angles based on weapon kick VectorAdd (angles, cg.kick_angles, angles); // add angles based on damage kick if ( cg.damageTime ) { ratio = cg.time - cg.damageTime; if ( ratio < DAMAGE_DEFLECT_TIME ) { ratio /= DAMAGE_DEFLECT_TIME; angles[PITCH] += ratio * cg.v_dmg_pitch; angles[ROLL] += ratio * cg.v_dmg_roll; } else { ratio = 1.0 - ( ratio - DAMAGE_DEFLECT_TIME ) / DAMAGE_RETURN_TIME; if ( ratio > 0 ) { angles[PITCH] += ratio * cg.v_dmg_pitch; angles[ROLL] += ratio * cg.v_dmg_roll; } } } // add pitch based on fall kick #if 0 ratio = ( cg.time - cg.landTime) / FALL_TIME; if (ratio < 0) ratio = 0; angles[PITCH] += ratio * cg.fall_value; #endif // add angles based on velocity VectorCopy( cg.predictedPlayerState.velocity, predictedVelocity ); delta = DotProduct ( predictedVelocity, cg.refdef.viewaxis[0]); angles[PITCH] += delta * cg_runpitch.value; delta = DotProduct ( predictedVelocity, cg.refdef.viewaxis[1]); angles[ROLL] -= delta * cg_runroll.value; // add angles based on bob // make sure the bob is visible even at low speeds speed = cg.xyspeed > 200 ? cg.xyspeed : 200; delta = cg.bobfracsin * cg_bobpitch.value * speed; if (cg.predictedPlayerState.pm_flags & PMF_DUCKED) delta *= 3; // crouching angles[PITCH] += delta; delta = cg.bobfracsin * cg_bobroll.value * speed; if (cg.predictedPlayerState.pm_flags & PMF_DUCKED) delta *= 3; // crouching accentuates roll if (cg.bobcycle & 1) delta = -delta; angles[ROLL] += delta; //=================================== // add view height origin[2] += cg.predictedPlayerState.viewheight; // smooth out duck height changes timeDelta = cg.time - cg.duckTime; if ( timeDelta < DUCK_TIME) { cg.refdef.vieworg[2] -= cg.duckChange * (DUCK_TIME - timeDelta) / DUCK_TIME; } // add bob height bob = cg.bobfracsin * cg.xyspeed * cg_bobup.value; if (bob > 6) { bob = 6; } origin[2] += bob; // add fall height delta = cg.time - cg.landTime; if ( delta < LAND_DEFLECT_TIME ) { f = delta / LAND_DEFLECT_TIME; cg.refdef.vieworg[2] += cg.landChange * f; } else if ( delta < LAND_DEFLECT_TIME + LAND_RETURN_TIME ) { delta -= LAND_DEFLECT_TIME; f = 1.0 - ( delta / LAND_RETURN_TIME ); cg.refdef.vieworg[2] += cg.landChange * f; } // add step offset CG_StepOffset(); // add kick offset VectorAdd (origin, cg.kick_origin, origin); // pivot the eye based on a neck length #if 0 { #define NECK_LENGTH 8 vec3_t forward, up; cg.refdef.vieworg[2] -= NECK_LENGTH; AngleVectors( cg.refdefViewAngles, forward, NULL, up ); VectorMA( cg.refdef.vieworg, 3, forward, cg.refdef.vieworg ); VectorMA( cg.refdef.vieworg, NECK_LENGTH, up, cg.refdef.vieworg ); } #endif } //====================================================================== void CG_ZoomDown_f( void ) { if ( cg.zoomed ) { return; } cg.zoomed = qtrue; cg.zoomTime = cg.time; } void CG_ZoomUp_f( void ) { if ( !cg.zoomed ) { return; } cg.zoomed = qfalse; cg.zoomTime = cg.time; } /* ==================== CG_CalcFovFromX Calcs Y FOV from given X FOV ==================== */ #define WAVE_AMPLITUDE 1 #define WAVE_FREQUENCY 0.4 qboolean CG_CalcFOVFromX( float fov_x ) { float x; // float phase; // float v; // int contents; float fov_y; qboolean inwater; x = cg.refdef.width / tan( fov_x / 360 * M_PI ); fov_y = atan2( cg.refdef.height, x ); fov_y = fov_y * 360 / M_PI; // there's a problem with this, it only takes the leafbrushes into account, not the entity brushes, // so if you give slime/water etc properties to a func_door area brush in order to move the whole water // level up/down this doesn't take into account the door position, so warps the view the whole time // whether the water is up or not. Fortunately there's only one slime area in Trek that you can be under, // so lose it... #if 0 /* // warp if underwater contents = CG_PointContents( cg.refdef.vieworg, -1 ); if ( contents & ( CONTENTS_WATER | CONTENTS_SLIME | CONTENTS_LAVA ) ){ phase = cg.time / 1000.0 * WAVE_FREQUENCY * M_PI * 2; v = WAVE_AMPLITUDE * sin( phase ); fov_x += v; fov_y -= v; inwater = qtrue; } else { inwater = qfalse; } */ #else inwater = qfalse; #endif // set it cg.refdef.fov_x = fov_x; cg.refdef.fov_y = fov_y; return (inwater); } /* ==================== CG_CalcFov Fixed fov at intermissions, otherwise account for fov variable and zooms. ==================== */ #define WAVE_AMPLITUDE 1 #define WAVE_FREQUENCY 0.4 float zoomFov; //this has to be global client-side static int CG_CalcFov( void ) { float x; float phase; float v; int contents; float fov_x, fov_y; float f; int inwater; if ( cg.predictedPlayerState.pm_type == PM_INTERMISSION ) { // if in intermission, use a fixed value fov_x = 80;//90; } else { // user selectable if ( cgs.dmflags & DF_FIXED_FOV ) { // dmflag to prevent wide fov for all clients fov_x = 80;//90; } else { fov_x = cg_fov.value; if ( fov_x < 1 ) { fov_x = 1; } else if ( fov_x > 160 ) { fov_x = 160; } } if (cg.predictedPlayerState.zoomMode == 2) { //binoculars if (zoomFov > 40.0f) { zoomFov -= cg.frametime * 0.075f; if (zoomFov < 40.0f) { zoomFov = 40.0f; } else if (zoomFov > cg_fov.value) { zoomFov = cg_fov.value; } } fov_x = zoomFov; } else if (cg.predictedPlayerState.zoomMode) { if (!cg.predictedPlayerState.zoomLocked) { if (zoomFov > 50) { //Now starting out at nearly half zoomed in zoomFov = 50; } zoomFov -= cg.frametime * 0.035f;//0.075f; if (zoomFov < MAX_ZOOM_FOV) { zoomFov = MAX_ZOOM_FOV; } else if (zoomFov > cg_fov.value) { zoomFov = cg_fov.value; } else { // Still zooming static zoomSoundTime = 0; if (zoomSoundTime < cg.time || zoomSoundTime > cg.time + 10000) { trap_S_StartSound(cg.refdef.vieworg, ENTITYNUM_WORLD, CHAN_LOCAL, cgs.media.disruptorZoomLoop); zoomSoundTime = cg.time + 300; } } } fov_x = zoomFov; } else { zoomFov = 80; f = ( cg.time - cg.predictedPlayerState.zoomTime ) / ZOOM_OUT_TIME; if ( f > 1.0 ) { fov_x = fov_x; } else { fov_x = cg.predictedPlayerState.zoomFov + f * ( fov_x - cg.predictedPlayerState.zoomFov ); } } } x = cg.refdef.width / tan( fov_x / 360 * M_PI ); fov_y = atan2( cg.refdef.height, x ); fov_y = fov_y * 360 / M_PI; // warp if underwater contents = CG_PointContents( cg.refdef.vieworg, -1 ); if ( contents & ( CONTENTS_WATER | CONTENTS_SLIME | CONTENTS_LAVA ) ){ phase = cg.time / 1000.0 * WAVE_FREQUENCY * M_PI * 2; v = WAVE_AMPLITUDE * sin( phase ); fov_x += v; fov_y -= v; inwater = qtrue; } else { inwater = qfalse; } // set it cg.refdef.fov_x = fov_x; cg.refdef.fov_y = fov_y; if (cg.predictedPlayerState.zoomMode) { cg.zoomSensitivity = zoomFov/cg_fov.value; } else if ( !cg.zoomed ) { cg.zoomSensitivity = 1; } else { cg.zoomSensitivity = cg.refdef.fov_y / 75.0; } return inwater; } /* =============== CG_DamageBlendBlob =============== */ static void CG_DamageBlendBlob( void ) { int t; int maxTime; refEntity_t ent; if ( !cg.damageValue ) { return; } maxTime = DAMAGE_TIME; t = cg.time - cg.damageTime; if ( t <= 0 || t >= maxTime ) { return; } memset( &ent, 0, sizeof( ent ) ); ent.reType = RT_SPRITE; ent.renderfx = RF_FIRST_PERSON; VectorMA( cg.refdef.vieworg, 8, cg.refdef.viewaxis[0], ent.origin ); VectorMA( ent.origin, cg.damageX * -8, cg.refdef.viewaxis[1], ent.origin ); VectorMA( ent.origin, cg.damageY * 8, cg.refdef.viewaxis[2], ent.origin ); ent.radius = cg.damageValue * 3 * ( 1.0 - ((float)t / maxTime) ); ent.customShader = cgs.media.viewPainShader; ent.shaderRGBA[0] = 180 * ( 1.0 - ((float)t / maxTime) ); ent.shaderRGBA[1] = 50 * ( 1.0 - ((float)t / maxTime) ); ent.shaderRGBA[2] = 50 * ( 1.0 - ((float)t / maxTime) ); ent.shaderRGBA[3] = 255; trap_R_AddRefEntityToScene( &ent ); } qboolean CheckOutOfConstrict(float curAng) { float degrees_negative, degrees_positive; float angle_ideal = cg.constrictValue; float angle_current = curAng; float angle_dif = 0; if (angle_current < 0) { angle_current += 360; } if (angle_current > 360) { angle_current -= 360; } if (cg.doConstrict <= cg.time) { return qfalse; } if (angle_ideal <= angle_current) { degrees_negative = (angle_current - angle_ideal); degrees_positive = (360 - angle_current) + angle_ideal; } else { degrees_negative = angle_current + (360 - angle_ideal); degrees_positive = (angle_ideal - angle_current); } if (degrees_negative < degrees_positive) { angle_dif = degrees_negative; } else { angle_dif = degrees_positive; } if (angle_dif > 60) { return qtrue; } return qfalse; } /* =============== CG_CalcViewValues Sets cg.refdef view values =============== */ static int CG_CalcViewValues( void ) { playerState_t *ps; memset( &cg.refdef, 0, sizeof( cg.refdef ) ); // strings for in game rendering // Q_strncpyz( cg.refdef.text[0], "Park Ranger", sizeof(cg.refdef.text[0]) ); // Q_strncpyz( cg.refdef.text[1], "19", sizeof(cg.refdef.text[1]) ); // calculate size of 3D view CG_CalcVrect(); ps = &cg.predictedPlayerState; /* if (cg.cameraMode) { vec3_t origin, angles; if (trap_getCameraInfo(cg.time, &origin, &angles)) { VectorCopy(origin, cg.refdef.vieworg); angles[ROLL] = 0; VectorCopy(angles, cg.refdefViewAngles); AnglesToAxis( cg.refdefViewAngles, cg.refdef.viewaxis ); return CG_CalcFov(); } else { cg.cameraMode = qfalse; } } */ // intermission view if ( ps->pm_type == PM_INTERMISSION ) { VectorCopy( ps->origin, cg.refdef.vieworg ); VectorCopy( ps->viewangles, cg.refdefViewAngles ); AnglesToAxis( cg.refdefViewAngles, cg.refdef.viewaxis ); return CG_CalcFov(); } cg.bobcycle = ( ps->bobCycle & 128 ) >> 7; cg.bobfracsin = fabs( sin( ( ps->bobCycle & 127 ) / 127.0 * M_PI ) ); cg.xyspeed = sqrt( ps->velocity[0] * ps->velocity[0] + ps->velocity[1] * ps->velocity[1] ); VectorCopy( ps->origin, cg.refdef.vieworg ); VectorCopy( ps->viewangles, cg.refdefViewAngles ); if (cg_cameraOrbit.integer) { if (cg.time > cg.nextOrbitTime) { cg.nextOrbitTime = cg.time + cg_cameraOrbitDelay.integer; cg_thirdPersonAngle.value += cg_cameraOrbit.value; } } // add error decay if ( cg_errorDecay.value > 0 ) { int t; float f; t = cg.time - cg.predictedErrorTime; f = ( cg_errorDecay.value - t ) / cg_errorDecay.value; if ( f > 0 && f < 1 ) { VectorMA( cg.refdef.vieworg, f, cg.predictedError, cg.refdef.vieworg ); } else { cg.predictedErrorTime = 0; } } if ( cg.renderingThirdPerson && !cg.snap->ps.zoomMode) { // back away from character CG_OffsetThirdPersonView(); } else { // offset for local bobbing and kicks CG_OffsetFirstPersonView(); } // position eye reletive to origin AnglesToAxis( cg.refdefViewAngles, cg.refdef.viewaxis ); if ( cg.hyperspace ) { cg.refdef.rdflags |= RDF_NOWORLDMODEL | RDF_HYPERSPACE; } // field of view return CG_CalcFov(); } /* ===================== CG_PowerupTimerSounds ===================== */ static void CG_PowerupTimerSounds( void ) { int i; int t; // powerup timers going away for ( i = 0 ; i < MAX_POWERUPS ; i++ ) { t = cg.snap->ps.powerups[i]; if ( t <= cg.time ) { continue; } if ( t - cg.time >= POWERUP_BLINKS * POWERUP_BLINK_TIME ) { continue; } if ( ( t - cg.time ) / POWERUP_BLINK_TIME != ( t - cg.oldTime ) / POWERUP_BLINK_TIME ) { //trap_S_StartSound( NULL, cg.snap->ps.clientNum, CHAN_ITEM, cgs.media.wearOffSound ); } } } /* ===================== CG_AddBufferedSound ===================== */ void CG_AddBufferedSound( sfxHandle_t sfx ) { if ( !sfx ) return; cg.soundBuffer[cg.soundBufferIn] = sfx; cg.soundBufferIn = (cg.soundBufferIn + 1) % MAX_SOUNDBUFFER; if (cg.soundBufferIn == cg.soundBufferOut) { cg.soundBufferOut++; } } /* ===================== CG_PlayBufferedSounds ===================== */ static void CG_PlayBufferedSounds( void ) { if ( cg.soundTime < cg.time ) { if (cg.soundBufferOut != cg.soundBufferIn && cg.soundBuffer[cg.soundBufferOut]) { trap_S_StartLocalSound(cg.soundBuffer[cg.soundBufferOut], CHAN_ANNOUNCER); cg.soundBuffer[cg.soundBufferOut] = 0; cg.soundBufferOut = (cg.soundBufferOut + 1) % MAX_SOUNDBUFFER; cg.soundTime = cg.time + 750; } } } void CG_UpdateSoundTrackers() { int num; centity_t *cent; for ( num = 0 ; num < ENTITYNUM_NONE ; num++ ) { cent = &cg_entities[num]; if (cent && cent->currentState.eFlags & EF_SOUNDTRACKER) { //keep sound for this entity updated in accordance with its attached entity at all times if (cg.snap && cent->currentState.trickedentindex == cg.snap->ps.clientNum) { //this is actually the player, so center the sound origin right on top of us VectorCopy(cg.refdef.vieworg, cent->lerpOrigin); trap_S_UpdateEntityPosition( cent->currentState.number, cent->lerpOrigin ); } else { trap_S_UpdateEntityPosition( cent->currentState.number, cg_entities[cent->currentState.trickedentindex].lerpOrigin ); } } } } //========================================================================= /* ================================ Screen Effect stuff starts here ================================ */ #define CAMERA_DEFAULT_FOV 90.0f #define MAX_SHAKE_INTENSITY 16.0f cgscreffects_t cgScreenEffects; void CG_SE_UpdateShake( vec3_t origin, vec3_t angles ) { vec3_t moveDir; float intensity_scale, intensity; int i; if ( cgScreenEffects.shake_duration <= 0 ) return; if ( cg.time > ( cgScreenEffects.shake_start + cgScreenEffects.shake_duration ) ) { cgScreenEffects.shake_intensity = 0; cgScreenEffects.shake_duration = 0; cgScreenEffects.shake_start = 0; return; } cgScreenEffects.FOV = CAMERA_DEFAULT_FOV; cgScreenEffects.FOV2 = CAMERA_DEFAULT_FOV; //intensity_scale now also takes into account FOV with 90.0 as normal intensity_scale = 1.0f - ( (float) ( cg.time - cgScreenEffects.shake_start ) / (float) cgScreenEffects.shake_duration ) * (((cgScreenEffects.FOV+cgScreenEffects.FOV2)/2.0f)/90.0f); intensity = cgScreenEffects.shake_intensity * intensity_scale; for ( i = 0; i < 3; i++ ) { moveDir[i] = ( crandom() * intensity ); } //Move the camera VectorAdd( origin, moveDir, origin ); for ( i=0; i < 2; i++ ) // Don't do ROLL moveDir[i] = ( crandom() * intensity ); //Move the angles VectorAdd( angles, moveDir, angles ); } /* ================= CG_CalcScreenEffects Currently just for screen shaking ================= */ void CG_CalcScreenEffects(void) { CG_SE_UpdateShake(cg.refdef.vieworg, cg.refdefViewAngles); } void CGCam_Shake( float intensity, int duration ) { if ( intensity > MAX_SHAKE_INTENSITY ) intensity = MAX_SHAKE_INTENSITY; cgScreenEffects.shake_intensity = intensity; cgScreenEffects.shake_duration = duration; cgScreenEffects.shake_start = cg.time; } /* ================================ Screen Effect stuff ends here ================================ */ /* ================= CG_DrawActiveFrame Generates and draws a game scene and status information at the given time. ================= */ void CG_DrawActiveFrame( int serverTime, stereoFrame_t stereoView, qboolean demoPlayback ) { int inwater; cg.time = serverTime; cg.demoPlayback = demoPlayback; // update cvars CG_UpdateCvars(); // if we are only updating the screen as a loading // pacifier, don't even try to read snapshots if ( cg.infoScreenText[0] != 0 ) { CG_DrawInformation(); return; } trap_FX_AdjustTime( cg.time ); CG_RunLightStyles(); // any looped sounds will be respecified as entities // are added to the render list trap_S_ClearLoopingSounds(qfalse); // clear all the render lists trap_R_ClearScene(); // set up cg.snap and possibly cg.nextSnap CG_ProcessSnapshots(); trap_ROFF_UpdateEntities(); // if we haven't received any snapshots yet, all // we can draw is the information screen if ( !cg.snap || ( cg.snap->snapFlags & SNAPFLAG_NOT_ACTIVE ) ) { CG_DrawInformation(); return; } // let the client system know what our weapon and zoom settings are if (cg.snap && cg.snap->ps.saberLockTime > cg.time) { trap_SetUserCmdValue( cg.weaponSelect, 0.01, cg.forceSelect, cg.itemSelect ); } else if (cg.snap && cg.snap->ps.usingATST) { trap_SetUserCmdValue( cg.weaponSelect, 0.2, cg.forceSelect, cg.itemSelect ); } else { trap_SetUserCmdValue( cg.weaponSelect, cg.zoomSensitivity, cg.forceSelect, cg.itemSelect ); } // this counter will be bumped for every valid scene we generate cg.clientFrame++; // update cg.predictedPlayerState CG_PredictPlayerState(); // decide on third person view cg.renderingThirdPerson = cg_thirdPerson.integer || (cg.snap->ps.stats[STAT_HEALTH] <= 0); if (cg.snap->ps.stats[STAT_HEALTH] > 0 && (cg.predictedPlayerState.weapon == WP_SABER || cg.predictedPlayerState.usingATST || cg.predictedPlayerState.forceHandExtend == HANDEXTEND_KNOCKDOWN)) { cg.renderingThirdPerson = 1; } else if (cg.snap->ps.zoomMode) { //always force first person when zoomed cg.renderingThirdPerson = 0; } // build cg.refdef inwater = CG_CalcViewValues(); CG_CalcScreenEffects(); // first person blend blobs, done after AnglesToAxis if ( !cg.renderingThirdPerson ) { CG_DamageBlendBlob(); } // build the render lists if ( !cg.hyperspace ) { CG_AddPacketEntities(); // adter calcViewValues, so predicted player state is correct CG_AddMarks(); CG_AddParticles (); CG_AddLocalEntities(); } CG_AddViewWeapon( &cg.predictedPlayerState ); if ( !cg.hyperspace ) { trap_FX_AddScheduledEffects(); } // add buffered sounds CG_PlayBufferedSounds(); // play buffered voice chats CG_PlayBufferedVoiceChats(); // finish up the rest of the refdef if ( cg.testModelEntity.hModel ) { CG_AddTestModel(); } cg.refdef.time = cg.time; memcpy( cg.refdef.areamask, cg.snap->areamask, sizeof( cg.refdef.areamask ) ); // warning sounds when powerup is wearing off CG_PowerupTimerSounds(); // if there are any entities flagged as sound trackers and attached to other entities, update their sound pos CG_UpdateSoundTrackers(); // update audio positions trap_S_Respatialize( cg.snap->ps.clientNum, cg.refdef.vieworg, cg.refdef.viewaxis, inwater ); // make sure the lagometerSample and frame timing isn't done twice when in stereo if ( stereoView != STEREO_RIGHT ) { cg.frametime = cg.time - cg.oldTime; if ( cg.frametime < 0 ) { cg.frametime = 0; } cg.oldTime = cg.time; CG_AddLagometerFrameInfo(); } if (cg_timescale.value != cg_timescaleFadeEnd.value) { if (cg_timescale.value < cg_timescaleFadeEnd.value) { cg_timescale.value += cg_timescaleFadeSpeed.value * ((float)cg.frametime) / 1000; if (cg_timescale.value > cg_timescaleFadeEnd.value) cg_timescale.value = cg_timescaleFadeEnd.value; } else { cg_timescale.value -= cg_timescaleFadeSpeed.value * ((float)cg.frametime) / 1000; if (cg_timescale.value < cg_timescaleFadeEnd.value) cg_timescale.value = cg_timescaleFadeEnd.value; } if (cg_timescaleFadeSpeed.value) { trap_Cvar_Set("timescale", va("%f", cg_timescale.value)); } } // actually issue the rendering calls CG_DrawActive( stereoView ); if ( cg_stats.integer ) { CG_Printf( "cg.clientFrame:%i\n", cg.clientFrame ); } }