// leave this as first line for PCH reasons... // #include "../server/exe_headers.h" #include "tr_local.h" /* This file does all of the processing necessary to turn a raw grid of points read from the map file into a srfGridMesh_t ready for rendering. The level of detail solution is direction independent, based only on subdivided distance from the true curve. Only a single entry point: srfGridMesh_t *R_SubdividePatchToGrid( int width, int height, drawVert_t points[MAX_PATCH_SIZE*MAX_PATCH_SIZE] ) { */ /* ============ LerpDrawVert ============ */ static void LerpDrawVert( drawVert_t *a, drawVert_t *b, drawVert_t *out ) { int k; out->xyz[0] = 0.5 * (a->xyz[0] + b->xyz[0]); out->xyz[1] = 0.5 * (a->xyz[1] + b->xyz[1]); out->xyz[2] = 0.5 * (a->xyz[2] + b->xyz[2]); out->st[0] = 0.5 * (a->st[0] + b->st[0]); out->st[1] = 0.5 * (a->st[1] + b->st[1]); out->normal[0] = 0.5 * (a->normal[0] + b->normal[0]); out->normal[1] = 0.5 * (a->normal[1] + b->normal[1]); out->normal[2] = 0.5 * (a->normal[2] + b->normal[2]); for(k=0;klightmap[k][0] = 0.5 * (a->lightmap[k][0] + b->lightmap[k][0]); out->lightmap[k][1] = 0.5 * (a->lightmap[k][1] + b->lightmap[k][1]); out->color[k][0] = (a->color[k][0] + b->color[k][0]) >> 1; out->color[k][1] = (a->color[k][1] + b->color[k][1]) >> 1; out->color[k][2] = (a->color[k][2] + b->color[k][2]) >> 1; out->color[k][3] = (a->color[k][3] + b->color[k][3]) >> 1; } } /* ============ Transpose ============ */ static void Transpose( int width, int height, drawVert_t ctrl[MAX_GRID_SIZE][MAX_GRID_SIZE] ) { int i, j; drawVert_t temp; if ( width > height ) { for ( i = 0 ; i < height ; i++ ) { for ( j = i + 1 ; j < width ; j++ ) { if ( j < height ) { // swap the value temp = ctrl[j][i]; ctrl[j][i] = ctrl[i][j]; ctrl[i][j] = temp; } else { // just copy ctrl[j][i] = ctrl[i][j]; } } } } else { for ( i = 0 ; i < width ; i++ ) { for ( j = i + 1 ; j < height ; j++ ) { if ( j < width ) { // swap the value temp = ctrl[i][j]; ctrl[i][j] = ctrl[j][i]; ctrl[j][i] = temp; } else { // just copy ctrl[i][j] = ctrl[j][i]; } } } } } /* ================= MakeMeshNormals Handles all the complicated wrapping and degenerate cases ================= */ static void MakeMeshNormals( int width, int height, drawVert_t ctrl[MAX_GRID_SIZE][MAX_GRID_SIZE] ) { int i, j, k, dist; vec3_t normal; vec3_t sum; int count; vec3_t base; vec3_t delta; int x, y; drawVert_t *dv; vec3_t around[8], temp; qboolean good[8]; qboolean wrapWidth, wrapHeight; float len; static int neighbors[8][2] = { {0,1}, {1,1}, {1,0}, {1,-1}, {0,-1}, {-1,-1}, {-1,0}, {-1,1} }; wrapWidth = qfalse; for ( i = 0 ; i < height ; i++ ) { VectorSubtract( ctrl[i][0].xyz, ctrl[i][width-1].xyz, delta ); len = VectorLength( delta ); if ( len > 1.0 ) { break; } } if ( i == height ) { wrapWidth = qtrue; } wrapHeight = qfalse; for ( i = 0 ; i < width ; i++ ) { VectorSubtract( ctrl[0][i].xyz, ctrl[height-1][i].xyz, delta ); len = VectorLength( delta ); if ( len > 1.0 ) { break; } } if ( i == width) { wrapHeight = qtrue; } for ( i = 0 ; i < width ; i++ ) { for ( j = 0 ; j < height ; j++ ) { count = 0; dv = &ctrl[j][i]; VectorCopy( dv->xyz, base ); for ( k = 0 ; k < 8 ; k++ ) { VectorClear( around[k] ); good[k] = qfalse; for ( dist = 1 ; dist <= 3 ; dist++ ) { x = i + neighbors[k][0] * dist; y = j + neighbors[k][1] * dist; if ( wrapWidth ) { if ( x < 0 ) { x = width - 1 + x; } else if ( x >= width ) { x = 1 + x - width; } } if ( wrapHeight ) { if ( y < 0 ) { y = height - 1 + y; } else if ( y >= height ) { y = 1 + y - height; } } if ( x < 0 || x >= width || y < 0 || y >= height ) { break; // edge of patch } VectorSubtract( ctrl[y][x].xyz, base, temp ); if ( VectorNormalize2( temp, temp ) == 0 ) { continue; // degenerate edge, get more dist } else { good[k] = qtrue; VectorCopy( temp, around[k] ); break; // good edge } } } VectorClear( sum ); for ( k = 0 ; k < 8 ; k++ ) { if ( !good[k] || !good[(k+1)&7] ) { continue; // didn't get two points } CrossProduct( around[(k+1)&7], around[k], normal ); if ( VectorNormalize2( normal, normal ) == 0 ) { continue; } VectorAdd( normal, sum, sum ); count++; } if ( count == 0 ) { //printf("bad normal\n"); count = 1; } VectorNormalize2( sum, dv->normal ); } } } /* ============ InvertCtrl ============ */ static void InvertCtrl( int width, int height, drawVert_t ctrl[MAX_GRID_SIZE][MAX_GRID_SIZE] ) { int i, j; drawVert_t temp; for ( i = 0 ; i < height ; i++ ) { for ( j = 0 ; j < width/2 ; j++ ) { temp = ctrl[i][j]; ctrl[i][j] = ctrl[i][width-1-j]; ctrl[i][width-1-j] = temp; } } } /* ================= InvertErrorTable ================= */ static void InvertErrorTable( float errorTable[2][MAX_GRID_SIZE], int width, int height ) { int i; float copy[2][MAX_GRID_SIZE]; memcpy( copy, errorTable, sizeof( copy ) ); for ( i = 0 ; i < width ; i++ ) { errorTable[1][i] = copy[0][i]; //[width-1-i]; } for ( i = 0 ; i < height ; i++ ) { errorTable[0][i] = copy[1][height-1-i]; } } /* ================== PutPointsOnCurve ================== */ static void PutPointsOnCurve( drawVert_t ctrl[MAX_GRID_SIZE][MAX_GRID_SIZE], int width, int height ) { int i, j; drawVert_t prev, next; for ( i = 0 ; i < width ; i++ ) { for ( j = 1 ; j < height ; j += 2 ) { LerpDrawVert( &ctrl[j][i], &ctrl[j+1][i], &prev ); LerpDrawVert( &ctrl[j][i], &ctrl[j-1][i], &next ); LerpDrawVert( &prev, &next, &ctrl[j][i] ); } } for ( j = 0 ; j < height ; j++ ) { for ( i = 1 ; i < width ; i += 2 ) { LerpDrawVert( &ctrl[j][i], &ctrl[j][i+1], &prev ); LerpDrawVert( &ctrl[j][i], &ctrl[j][i-1], &next ); LerpDrawVert( &prev, &next, &ctrl[j][i] ); } } } /* ================= R_SubdividePatchToGrid ================= */ srfGridMesh_t *R_SubdividePatchToGrid( int width, int height, drawVert_t points[MAX_PATCH_SIZE*MAX_PATCH_SIZE] ) { int i, j, k, l; drawVert_t prev, next, mid; float len, maxLen; int dir; int t; MAC_STATIC drawVert_t ctrl[MAX_GRID_SIZE][MAX_GRID_SIZE]; float errorTable[2][MAX_GRID_SIZE]; srfGridMesh_t *grid; drawVert_t *vert; vec3_t tmpVec; for ( i = 0 ; i < width ; i++ ) { for ( j = 0 ; j < height ; j++ ) { ctrl[j][i] = points[j*width+i]; } } for ( dir = 0 ; dir < 2 ; dir++ ) { for ( j = 0 ; j < MAX_GRID_SIZE ; j++ ) { errorTable[dir][j] = 0; } // horizontal subdivisions for ( j = 0 ; j + 2 < width ; j += 2 ) { // check subdivided midpoints against control points maxLen = 0; for ( i = 0 ; i < height ; i++ ) { vec3_t midxyz; vec3_t dir; vec3_t projected; float d; // calculate the point on the curve for ( l = 0 ; l < 3 ; l++ ) { midxyz[l] = (ctrl[i][j].xyz[l] + ctrl[i][j+1].xyz[l] * 2 + ctrl[i][j+2].xyz[l] ) * 0.25; } // see how far off the line it is // using dist-from-line will not account for internal // texture warping, but it gives a lot less polygons than // dist-from-midpoint VectorSubtract( midxyz, ctrl[i][j].xyz, midxyz ); VectorSubtract( ctrl[i][j+2].xyz, ctrl[i][j].xyz, dir ); VectorNormalize( dir ); d = DotProduct( midxyz, dir ); VectorScale( dir, d, projected ); VectorSubtract( midxyz, projected, midxyz); len = VectorLength( midxyz ); if ( len > maxLen ) { maxLen = len; } } // if all the points are on the lines, remove the entire columns if ( maxLen < 0.1 ) { errorTable[dir][j+1] = 999; continue; } // see if we want to insert subdivided columns if ( width + 2 > MAX_GRID_SIZE ) { errorTable[dir][j+1] = 1.0/maxLen; continue; // can't subdivide any more } if ( maxLen <= r_subdivisions->value ) { errorTable[dir][j+1] = 1.0/maxLen; continue; // didn't need subdivision } errorTable[dir][j+2] = 1.0/maxLen; // insert two columns and replace the peak width += 2; for ( i = 0 ; i < height ; i++ ) { LerpDrawVert( &ctrl[i][j], &ctrl[i][j+1], &prev ); LerpDrawVert( &ctrl[i][j+1], &ctrl[i][j+2], &next ); LerpDrawVert( &prev, &next, &mid ); for ( k = width - 1 ; k > j + 3 ; k-- ) { ctrl[i][k] = ctrl[i][k-2]; } ctrl[i][j + 1] = prev; ctrl[i][j + 2] = mid; ctrl[i][j + 3] = next; } // back up and recheck this set again, it may need more subdivision j -= 2; } Transpose( width, height, ctrl ); t = width; width = height; height = t; } // put all the aproximating points on the curve PutPointsOnCurve( ctrl, width, height ); // cull out any rows or columns that are colinear for ( i = 1 ; i < width-1 ; i++ ) { if ( errorTable[0][i] != 999 ) { continue; } for ( j = i+1 ; j < width ; j++ ) { for ( k = 0 ; k < height ; k++ ) { ctrl[k][j-1] = ctrl[k][j]; } errorTable[0][j-1] = errorTable[0][j]; } width--; } for ( i = 1 ; i < height-1 ; i++ ) { if ( errorTable[1][i] != 999 ) { continue; } for ( j = i+1 ; j < height ; j++ ) { for ( k = 0 ; k < width ; k++ ) { ctrl[j-1][k] = ctrl[j][k]; } errorTable[1][j-1] = errorTable[1][j]; } height--; } #if 1 // flip for longest tristrips as an optimization // the results should be visually identical with or // without this step if ( height > width ) { Transpose( width, height, ctrl ); InvertErrorTable( errorTable, width, height ); t = width; width = height; height = t; InvertCtrl( width, height, ctrl ); } #endif // calculate normals MakeMeshNormals( width, height, ctrl ); // copy the results out to a grid grid = (struct srfGridMesh_s *) ri.Hunk_Alloc( (width * height - 1) * sizeof( drawVert_t ) + sizeof( *grid ), qtrue ); grid->widthLodError = (float *) ri.Hunk_Alloc( width * 4, qfalse ); memcpy( grid->widthLodError, errorTable[0], width * 4 ); grid->heightLodError = (float *) ri.Hunk_Alloc( height * 4, qfalse ); memcpy( grid->heightLodError, errorTable[1], height * 4 ); grid->width = width; grid->height = height; grid->surfaceType = SF_GRID; ClearBounds( grid->meshBounds[0], grid->meshBounds[1] ); for ( i = 0 ; i < width ; i++ ) { for ( j = 0 ; j < height ; j++ ) { vert = &grid->verts[j*width+i]; *vert = ctrl[j][i]; AddPointToBounds( vert->xyz, grid->meshBounds[0], grid->meshBounds[1] ); } } // compute local origin and bounds VectorAdd( grid->meshBounds[0], grid->meshBounds[1], grid->localOrigin ); VectorScale( grid->localOrigin, 0.5f, grid->localOrigin ); VectorSubtract( grid->meshBounds[0], grid->localOrigin, tmpVec ); grid->meshRadius = VectorLength( tmpVec ); VectorCopy( grid->localOrigin, grid->lodOrigin ); grid->lodRadius = grid->meshRadius; return grid; }