// tr_surf.c #include "tr_local.h" /* THIS ENTIRE FILE IS BACK END backEnd.currentEntity will be valid. Tess_Begin has already been called for the surface's shader. The modelview matrix will be set. It is safe to actually issue drawing commands here if you don't want to use the shader system. */ //============================================================================ /* ============== RB_CheckOverflow ============== */ void RB_CheckOverflow( int verts, int indexes ) { if ( tess.shader == tr.shadowShader ) { if (tess.numVertexes + verts < SHADER_MAX_VERTEXES/2 && tess.numIndexes + indexes < SHADER_MAX_INDEXES) { return; } } else if (tess.numVertexes + verts < SHADER_MAX_VERTEXES && tess.numIndexes + indexes < SHADER_MAX_INDEXES) { return; } RB_EndSurface(); if ( verts >= SHADER_MAX_VERTEXES ) { ri.Error(ERR_DROP, "RB_CheckOverflow: verts > MAX (%d > %d)", verts, SHADER_MAX_VERTEXES ); } if ( indexes >= SHADER_MAX_INDEXES ) { ri.Error(ERR_DROP, "RB_CheckOverflow: indices > MAX (%d > %d)", indexes, SHADER_MAX_INDEXES ); } RB_BeginSurface(tess.shader, tess.fogNum ); } /* ============== RB_AddQuadStampExt ============== */ void RB_AddQuadStampExt( vec3_t origin, vec3_t left, vec3_t up, byte *color, float s1, float t1, float s2, float t2 ) { vec3_t normal; int ndx; RB_CHECKOVERFLOW( 4, 6 ); ndx = tess.numVertexes; // triangle indexes for a simple quad tess.indexes[ tess.numIndexes ] = ndx; tess.indexes[ tess.numIndexes + 1 ] = ndx + 1; tess.indexes[ tess.numIndexes + 2 ] = ndx + 3; tess.indexes[ tess.numIndexes + 3 ] = ndx + 3; tess.indexes[ tess.numIndexes + 4 ] = ndx + 1; tess.indexes[ tess.numIndexes + 5 ] = ndx + 2; tess.xyz[ndx][0] = origin[0] + left[0] + up[0]; tess.xyz[ndx][1] = origin[1] + left[1] + up[1]; tess.xyz[ndx][2] = origin[2] + left[2] + up[2]; tess.xyz[ndx+1][0] = origin[0] - left[0] + up[0]; tess.xyz[ndx+1][1] = origin[1] - left[1] + up[1]; tess.xyz[ndx+1][2] = origin[2] - left[2] + up[2]; tess.xyz[ndx+2][0] = origin[0] - left[0] - up[0]; tess.xyz[ndx+2][1] = origin[1] - left[1] - up[1]; tess.xyz[ndx+2][2] = origin[2] - left[2] - up[2]; tess.xyz[ndx+3][0] = origin[0] + left[0] - up[0]; tess.xyz[ndx+3][1] = origin[1] + left[1] - up[1]; tess.xyz[ndx+3][2] = origin[2] + left[2] - up[2]; // constant normal all the way around VectorSubtract( vec3_origin, backEnd.viewParms.ori.axis[0], normal ); tess.normal[ndx][0] = tess.normal[ndx+1][0] = tess.normal[ndx+2][0] = tess.normal[ndx+3][0] = normal[0]; tess.normal[ndx][1] = tess.normal[ndx+1][1] = tess.normal[ndx+2][1] = tess.normal[ndx+3][1] = normal[1]; tess.normal[ndx][2] = tess.normal[ndx+1][2] = tess.normal[ndx+2][2] = tess.normal[ndx+3][2] = normal[2]; // standard square texture coordinates tess.texCoords[ndx][0][0] = tess.texCoords[ndx][1][0] = s1; tess.texCoords[ndx][0][1] = tess.texCoords[ndx][1][1] = t1; tess.texCoords[ndx+1][0][0] = tess.texCoords[ndx+1][1][0] = s2; tess.texCoords[ndx+1][0][1] = tess.texCoords[ndx+1][1][1] = t1; tess.texCoords[ndx+2][0][0] = tess.texCoords[ndx+2][1][0] = s2; tess.texCoords[ndx+2][0][1] = tess.texCoords[ndx+2][1][1] = t2; tess.texCoords[ndx+3][0][0] = tess.texCoords[ndx+3][1][0] = s1; tess.texCoords[ndx+3][0][1] = tess.texCoords[ndx+3][1][1] = t2; // constant color all the way around // should this be identity and let the shader specify from entity? * ( unsigned int * ) &tess.vertexColors[ndx] = * ( unsigned int * ) &tess.vertexColors[ndx+1] = * ( unsigned int * ) &tess.vertexColors[ndx+2] = * ( unsigned int * ) &tess.vertexColors[ndx+3] = * ( unsigned int * )color; tess.numVertexes += 4; tess.numIndexes += 6; } /* ============== RB_AddQuadStamp ============== */ void RB_AddQuadStamp( vec3_t origin, vec3_t left, vec3_t up, byte *color ) { RB_AddQuadStampExt( origin, left, up, color, 0, 0, 1, 1 ); } /* ============== RB_SurfaceSprite ============== */ static void RB_SurfaceSprite( void ) { vec3_t left, up; float radius; // calculate the xyz locations for the four corners radius = backEnd.currentEntity->e.radius; if ( backEnd.currentEntity->e.rotation == 0 ) { VectorScale( backEnd.viewParms.ori.axis[1], radius, left ); VectorScale( backEnd.viewParms.ori.axis[2], radius, up ); } else { float s, c; float ang; ang = M_PI * backEnd.currentEntity->e.rotation / 180; s = sin( ang ); c = cos( ang ); VectorScale( backEnd.viewParms.ori.axis[1], c * radius, left ); VectorMA( left, -s * radius, backEnd.viewParms.ori.axis[2], left ); VectorScale( backEnd.viewParms.ori.axis[2], c * radius, up ); VectorMA( up, s * radius, backEnd.viewParms.ori.axis[1], up ); } if ( backEnd.viewParms.isMirror ) { VectorSubtract( vec3_origin, left, left ); } RB_AddQuadStamp( backEnd.currentEntity->e.origin, left, up, backEnd.currentEntity->e.shaderRGBA ); } /* ======================= RB_SurfaceOrientedQuad ======================= */ static void RB_SurfaceOrientedQuad( void ) { vec3_t left, up; float radius; // calculate the xyz locations for the four corners radius = backEnd.currentEntity->e.radius; MakeNormalVectors( backEnd.currentEntity->e.axis[0], left, up ); if ( backEnd.currentEntity->e.rotation == 0 ) { VectorScale( left, radius, left ); VectorScale( up, radius, up ); } else { vec3_t tempLeft, tempUp; float s, c; float ang; ang = M_PI * backEnd.currentEntity->e.rotation / 180; s = sin( ang ); c = cos( ang ); // Use a temp so we don't trash the values we'll need later VectorScale( left, c * radius, tempLeft ); VectorMA( tempLeft, -s * radius, up, tempLeft ); VectorScale( up, c * radius, tempUp ); VectorMA( tempUp, s * radius, left, up ); // no need to use the temp anymore, so copy into the dest vector ( up ) // This was copied for safekeeping, we're done, so we can move it back to left VectorCopy( tempLeft, left ); } if ( backEnd.viewParms.isMirror ) { VectorSubtract( vec3_origin, left, left ); } RB_AddQuadStamp( backEnd.currentEntity->e.origin, left, up, backEnd.currentEntity->e.shaderRGBA ); } /* ============= RB_SurfacePolychain ============= */ void RB_SurfacePolychain( srfPoly_t *p ) { int i; int numv; RB_CHECKOVERFLOW( p->numVerts, 3*(p->numVerts - 2) ); // fan triangles into the tess array numv = tess.numVertexes; for ( i = 0; i < p->numVerts; i++ ) { VectorCopy( p->verts[i].xyz, tess.xyz[numv] ); tess.texCoords[numv][0][0] = p->verts[i].st[0]; tess.texCoords[numv][0][1] = p->verts[i].st[1]; *(int *)&tess.vertexColors[numv] = *(int *)p->verts[ i ].modulate; numv++; } // generate fan indexes into the tess array for ( i = 0; i < p->numVerts-2; i++ ) { tess.indexes[tess.numIndexes + 0] = tess.numVertexes; tess.indexes[tess.numIndexes + 1] = tess.numVertexes + i + 1; tess.indexes[tess.numIndexes + 2] = tess.numVertexes + i + 2; tess.numIndexes += 3; } tess.numVertexes = numv; } inline ulong ComputeFinalVertexColor(const byte *colors) { int k; byte result[4]; ulong r, g, b; *(int *)result = *(int *)colors; if (tess.shader->lightmapIndex[0] != LIGHTMAP_BY_VERTEX || r_fullbright->integer) { result[0] = 255; result[1] = 255; result[2] = 255; return *(ulong *)result; } // an optimization could be added here to compute the style[0] (which is always the world normal light) r = g = b = 0; for(k = 0; k < MAXLIGHTMAPS; k++) { if (tess.shader->styles[k] < LS_UNUSED) { byte *styleColor = styleColors[tess.shader->styles[k]]; r += (ulong)(*colors++) * (ulong)(*styleColor++); g += (ulong)(*colors++) * (ulong)(*styleColor++); b += (ulong)(*colors++) * (ulong)(*styleColor); colors++; } else { break; } } result[0] = Com_Clamp(0, 255, r >> 8); result[1] = Com_Clamp(0, 255, g >> 8); result[2] = Com_Clamp(0, 255, b >> 8); return *(ulong *)result; } /* ============= RB_SurfaceTriangles ============= */ void RB_SurfaceTriangles( srfTriangles_t *srf ) { int i, k; drawVert_t *dv; float *xyz, *normal, *texCoords; byte *color; int dlightBits; qboolean needsNormal; dlightBits = srf->dlightBits[backEnd.smpFrame]; tess.dlightBits |= dlightBits; RB_CHECKOVERFLOW( srf->numVerts, srf->numIndexes ); for ( i = 0 ; i < srf->numIndexes ; i += 3 ) { tess.indexes[ tess.numIndexes + i + 0 ] = tess.numVertexes + srf->indexes[ i + 0 ]; tess.indexes[ tess.numIndexes + i + 1 ] = tess.numVertexes + srf->indexes[ i + 1 ]; tess.indexes[ tess.numIndexes + i + 2 ] = tess.numVertexes + srf->indexes[ i + 2 ]; } tess.numIndexes += srf->numIndexes; dv = srf->verts; xyz = tess.xyz[ tess.numVertexes ]; normal = tess.normal[ tess.numVertexes ]; texCoords = tess.texCoords[ tess.numVertexes ][0]; color = tess.vertexColors[ tess.numVertexes ]; needsNormal = tess.shader->needsNormal; for ( i = 0 ; i < srf->numVerts ; i++, dv++) { xyz[0] = dv->xyz[0]; xyz[1] = dv->xyz[1]; xyz[2] = dv->xyz[2]; xyz += 4; if ( needsNormal ) { normal[0] = dv->normal[0]; normal[1] = dv->normal[1]; normal[2] = dv->normal[2]; } normal += 4; texCoords[0] = dv->st[0]; texCoords[1] = dv->st[1]; for(k=0;klightmapIndex[k] >= 0) { texCoords[2+(k*2)] = dv->lightmap[k][0]; texCoords[2+(k*2)+1] = dv->lightmap[k][1]; } else { // can't have an empty slot in the middle, so we are done break; } } texCoords += NUM_TEX_COORDS*2; *(unsigned *)color = ComputeFinalVertexColor((byte *)dv->color); color += 4; } for ( i = 0 ; i < srf->numVerts ; i++ ) { tess.vertexDlightBits[ tess.numVertexes + i] = dlightBits; } tess.numVertexes += srf->numVerts; } /* ============== RB_SurfaceBeam ============== */ void RB_SurfaceBeam( void ) { #define NUM_BEAM_SEGS 6 refEntity_t *e; int i; vec3_t perpvec; vec3_t direction, normalized_direction; vec3_t start_points[NUM_BEAM_SEGS], end_points[NUM_BEAM_SEGS]; vec3_t oldorigin, origin; e = &backEnd.currentEntity->e; oldorigin[0] = e->oldorigin[0]; oldorigin[1] = e->oldorigin[1]; oldorigin[2] = e->oldorigin[2]; origin[0] = e->origin[0]; origin[1] = e->origin[1]; origin[2] = e->origin[2]; normalized_direction[0] = direction[0] = oldorigin[0] - origin[0]; normalized_direction[1] = direction[1] = oldorigin[1] - origin[1]; normalized_direction[2] = direction[2] = oldorigin[2] - origin[2]; if ( VectorNormalize( normalized_direction ) == 0 ) return; PerpendicularVector( perpvec, normalized_direction ); VectorScale( perpvec, 4, perpvec ); for ( i = 0; i < NUM_BEAM_SEGS ; i++ ) { RotatePointAroundVector( start_points[i], normalized_direction, perpvec, (360.0/NUM_BEAM_SEGS)*i ); // VectorAdd( start_points[i], origin, start_points[i] ); VectorAdd( start_points[i], direction, end_points[i] ); } GL_Bind( tr.whiteImage ); GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE ); qglColor3f( 1, 0, 0 ); qglBegin( GL_TRIANGLE_STRIP ); for ( i = 0; i <= NUM_BEAM_SEGS; i++ ) { qglVertex3fv( start_points[ i % NUM_BEAM_SEGS] ); qglVertex3fv( end_points[ i % NUM_BEAM_SEGS] ); } qglEnd(); } //------------------ // DoSprite //------------------ static void DoSprite( vec3_t origin, float radius, float rotation ) { float s, c; float ang; vec3_t left, up; ang = M_PI * rotation / 180.0f; s = sin( ang ); c = cos( ang ); VectorScale( backEnd.viewParms.ori.axis[1], c * radius, left ); VectorMA( left, -s * radius, backEnd.viewParms.ori.axis[2], left ); VectorScale( backEnd.viewParms.ori.axis[2], c * radius, up ); VectorMA( up, s * radius, backEnd.viewParms.ori.axis[1], up ); if ( backEnd.viewParms.isMirror ) { VectorSubtract( vec3_origin, left, left ); } RB_AddQuadStamp( origin, left, up, backEnd.currentEntity->e.shaderRGBA ); } //------------------ // RB_SurfaceSaber //------------------ static void RB_SurfaceSaberGlow() { vec3_t end; refEntity_t *e; e = &backEnd.currentEntity->e; // Render the glow part of the blade for ( float i = e->saberLength; i > 0; i -= e->radius * 0.65f ) { VectorMA( e->origin, i, e->axis[0], end ); DoSprite( end, e->radius, 0.0f );//random() * 360.0f ); e->radius += 0.017f; } // Big hilt sprite // Please don't kill me Pat...I liked the hilt glow blob, but wanted a subtle pulse.:) Feel free to ditch it if you don't like it. --Jeff // Please don't kill me Jeff... The pulse is good, but now I want the halo bigger if the saber is shorter... --Pat DoSprite( e->origin, 5.5f + random() * 0.25f, 0.0f );//random() * 360.0f ); } /* ============== RB_SurfaceLine ============== */ // // Values for a proper line render primitive... // Width // STScale (how many times to loop a texture) // alpha // RGB // // Values for proper line object... // lifetime // dscale // startalpha, endalpha // startRGB, endRGB // static void DoLine( const vec3_t start, const vec3_t end, const vec3_t up, float spanWidth ) { float spanWidth2; int vbase; RB_CHECKOVERFLOW( 4, 6 ); vbase = tess.numVertexes; spanWidth2 = -spanWidth; VectorMA( start, spanWidth, up, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = 0; tess.texCoords[tess.numVertexes][0][1] = 0; tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];// * 0.25;//wtf??not sure why the code would be doing this tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];// * 0.25; tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];// * 0.25; tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3];// * 0.25; tess.numVertexes++; VectorMA( start, spanWidth2, up, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = 1;//backEnd.currentEntity->e.shaderTexCoord[0]; tess.texCoords[tess.numVertexes][0][1] = 0; tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3]; tess.numVertexes++; VectorMA( end, spanWidth, up, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = 0; tess.texCoords[tess.numVertexes][0][1] = 1;//backEnd.currentEntity->e.shaderTexCoord[1]; tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3]; tess.numVertexes++; VectorMA( end, spanWidth2, up, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = 1;//backEnd.currentEntity->e.shaderTexCoord[0]; tess.texCoords[tess.numVertexes][0][1] = 1;//backEnd.currentEntity->e.shaderTexCoord[1]; tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3]; tess.numVertexes++; tess.indexes[tess.numIndexes++] = vbase; tess.indexes[tess.numIndexes++] = vbase + 1; tess.indexes[tess.numIndexes++] = vbase + 2; tess.indexes[tess.numIndexes++] = vbase + 2; tess.indexes[tess.numIndexes++] = vbase + 1; tess.indexes[tess.numIndexes++] = vbase + 3; } static void DoLine2( const vec3_t start, const vec3_t end, const vec3_t up, float spanWidth, float spanWidth2 ) { int vbase; RB_CHECKOVERFLOW( 4, 6 ); vbase = tess.numVertexes; VectorMA( start, spanWidth, up, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = 0; tess.texCoords[tess.numVertexes][0][1] = 0; tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];// * 0.25;//wtf??not sure why the code would be doing this tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];// * 0.25; tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];// * 0.25; tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3];// * 0.25; tess.numVertexes++; VectorMA( start, -spanWidth, up, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = 1;//backEnd.currentEntity->e.shaderTexCoord[0]; tess.texCoords[tess.numVertexes][0][1] = 0; tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3]; tess.numVertexes++; VectorMA( end, spanWidth2, up, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = 0; tess.texCoords[tess.numVertexes][0][1] = 1;//backEnd.currentEntity->e.shaderTexCoord[1]; tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3]; tess.numVertexes++; VectorMA( end, -spanWidth2, up, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = 1;//backEnd.currentEntity->e.shaderTexCoord[0]; tess.texCoords[tess.numVertexes][0][1] = 1;//backEnd.currentEntity->e.shaderTexCoord[1]; tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3]; tess.numVertexes++; tess.indexes[tess.numIndexes++] = vbase; tess.indexes[tess.numIndexes++] = vbase + 1; tess.indexes[tess.numIndexes++] = vbase + 2; tess.indexes[tess.numIndexes++] = vbase + 2; tess.indexes[tess.numIndexes++] = vbase + 1; tess.indexes[tess.numIndexes++] = vbase + 3; } static void DoLine_Oriented( const vec3_t start, const vec3_t end, const vec3_t up, float spanWidth ) { float spanWidth2; int vbase; vbase = tess.numVertexes; spanWidth2 = -spanWidth; // FIXME: use quad stamp? VectorMA( start, spanWidth, up, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = 0; tess.texCoords[tess.numVertexes][0][1] = 0; tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];// * 0.25; tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];// * 0.25; tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];// * 0.25; tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3];// * 0.25; tess.numVertexes++; VectorMA( start, spanWidth2, up, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = 1; tess.texCoords[tess.numVertexes][0][1] = 0; tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3];// * 0.25; tess.numVertexes++; VectorMA( end, spanWidth, up, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = 0; tess.texCoords[tess.numVertexes][0][1] = backEnd.currentEntity->e.data.line.stscale; tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3];// * 0.25; tess.numVertexes++; VectorMA( end, spanWidth2, up, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = 1; tess.texCoords[tess.numVertexes][0][1] = backEnd.currentEntity->e.data.line.stscale; tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0]; tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1]; tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2]; tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3];// * 0.25; tess.numVertexes++; tess.indexes[tess.numIndexes++] = vbase; tess.indexes[tess.numIndexes++] = vbase + 1; tess.indexes[tess.numIndexes++] = vbase + 2; tess.indexes[tess.numIndexes++] = vbase + 2; tess.indexes[tess.numIndexes++] = vbase + 1; tess.indexes[tess.numIndexes++] = vbase + 3; } //----------------- // RB_SurfaceLine //----------------- void RB_SurfaceLine( void ) { refEntity_t *e; vec3_t right; vec3_t start, end; vec3_t v1, v2; e = &backEnd.currentEntity->e; VectorCopy( e->oldorigin, end ); VectorCopy( e->origin, start ); // compute side vector VectorSubtract( start, backEnd.viewParms.ori.origin, v1 ); VectorSubtract( end, backEnd.viewParms.ori.origin, v2 ); CrossProduct( v1, v2, right ); VectorNormalize( right ); DoLine( start, end, right, e->radius); } void RB_SurfaceOrientedLine( void ) { refEntity_t *e; vec3_t right; vec3_t start, end; e = &backEnd.currentEntity->e; VectorCopy( e->oldorigin, end ); VectorCopy( e->origin, start ); // compute side vector VectorNormalize( e->axis[1] ); VectorCopy(e->axis[1], right); DoLine_Oriented( start, end, right, e->data.line.width*0.5 ); } /* ============== RB_SurfaceCylinder ============== */ #define NUM_CYLINDER_SEGMENTS 32 // FIXME: use quad stamp? static void DoCylinderPart(polyVert_t *verts) { int vbase; int i; RB_CHECKOVERFLOW( 4, 6 ); vbase = tess.numVertexes; for (i=0; i<4; i++) { VectorCopy( verts->xyz, tess.xyz[tess.numVertexes] ); tess.texCoords[tess.numVertexes][0][0] = verts->st[0]; tess.texCoords[tess.numVertexes][0][1] = verts->st[1]; tess.vertexColors[tess.numVertexes][0] = verts->modulate[0]; tess.vertexColors[tess.numVertexes][1] = verts->modulate[1]; tess.vertexColors[tess.numVertexes][2] = verts->modulate[2]; tess.vertexColors[tess.numVertexes][3] = verts->modulate[3]; tess.numVertexes++; verts++; } tess.indexes[tess.numIndexes++] = vbase; tess.indexes[tess.numIndexes++] = vbase + 1; tess.indexes[tess.numIndexes++] = vbase + 2; tess.indexes[tess.numIndexes++] = vbase + 2; tess.indexes[tess.numIndexes++] = vbase + 3; tess.indexes[tess.numIndexes++] = vbase; } // e->origin holds the bottom point // e->oldorigin holds the top point // e->radius holds the radius void RB_SurfaceCylinder( void ) { static polyVert_t lower_points[NUM_CYLINDER_SEGMENTS], upper_points[NUM_CYLINDER_SEGMENTS], verts[4]; vec3_t vr, vu, midpoint, v1; float detail, length; int i; int segments; refEntity_t *e; int nextSegment; e = &backEnd.currentEntity->e; //Work out the detail level of this cylinder VectorAdd( e->origin, e->oldorigin, midpoint ); VectorScale(midpoint, 0.5f, midpoint); // Average start and end VectorSubtract( midpoint, backEnd.viewParms.ori.origin, midpoint ); length = VectorNormalize( midpoint ); // this doesn't need to be perfect....just a rough compensation for zoom level is enough length *= (backEnd.viewParms.fovX / 90.0f); detail = 1 - ((float) length / 1024 ); segments = NUM_CYLINDER_SEGMENTS * detail; // 3 is the absolute minimum, but the pop between 3-8 is too noticeable if ( segments < 8 ) { segments = 8; } if ( segments > NUM_CYLINDER_SEGMENTS ) { segments = NUM_CYLINDER_SEGMENTS; } //Get the direction vector MakeNormalVectors( e->axis[0], vr, vu ); VectorScale( vu, e->radius, v1 ); // size1 VectorScale( vu, e->rotation, vu ); // size2 // Calculate the step around the cylinder detail = 360.0f / (float)segments; for ( i = 0; i < segments; i++ ) { //Upper ring RotatePointAroundVector( upper_points[i].xyz, e->axis[0], vu, detail * i ); VectorAdd( upper_points[i].xyz, e->origin, upper_points[i].xyz ); //Lower ring RotatePointAroundVector( lower_points[i].xyz, e->axis[0], v1, detail * i ); VectorAdd( lower_points[i].xyz, e->oldorigin, lower_points[i].xyz ); } // Calculate the texture coords so the texture can wrap around the whole cylinder detail = 1.0f / (float)segments; for ( i = 0; i < segments; i++ ) { if ( i + 1 < segments ) nextSegment = i + 1; else nextSegment = 0; VectorCopy( upper_points[i].xyz, verts[0].xyz ); verts[0].st[1] = 1.0f; verts[0].st[0] = detail * i; verts[0].modulate[0] = (byte)(e->shaderRGBA[0]); verts[0].modulate[1] = (byte)(e->shaderRGBA[1]); verts[0].modulate[2] = (byte)(e->shaderRGBA[2]); verts[0].modulate[3] = (byte)(e->shaderRGBA[3]); VectorCopy( lower_points[i].xyz, verts[1].xyz ); verts[1].st[1] = 0.0f; verts[1].st[0] = detail * i; verts[1].modulate[0] = (byte)(e->shaderRGBA[0]); verts[1].modulate[1] = (byte)(e->shaderRGBA[1]); verts[1].modulate[2] = (byte)(e->shaderRGBA[2]); verts[1].modulate[3] = (byte)(e->shaderRGBA[3]); VectorCopy( lower_points[nextSegment].xyz, verts[2].xyz ); verts[2].st[1] = 0.0f; verts[2].st[0] = detail * ( i + 1 ); verts[2].modulate[0] = (byte)(e->shaderRGBA[0]); verts[2].modulate[1] = (byte)(e->shaderRGBA[1]); verts[2].modulate[2] = (byte)(e->shaderRGBA[2]); verts[2].modulate[3] = (byte)(e->shaderRGBA[3]); VectorCopy( upper_points[nextSegment].xyz, verts[3].xyz ); verts[3].st[1] = 1.0f; verts[3].st[0] = detail * ( i + 1 ); verts[3].modulate[0] = (byte)(e->shaderRGBA[0]); verts[3].modulate[1] = (byte)(e->shaderRGBA[1]); verts[3].modulate[2] = (byte)(e->shaderRGBA[2]); verts[3].modulate[3] = (byte)(e->shaderRGBA[3]); DoCylinderPart(verts); } } static vec3_t sh1, sh2; static float f_count; #define LIGHTNING_RECURSION_LEVEL 1 // was 2 // these functions are pretty crappy in terms of returning a nice range of rnd numbers, but it's probably good enough? /*static int Q_rand( int *seed ) { *seed = (69069 * *seed + 1); return *seed; } static float Q_random( int *seed ) { return ( Q_rand( seed ) & 0xffff ) / (float)0x10000; } static float Q_crandom( int *seed ) { return 2.0F * ( Q_random( seed ) - 0.5f ); } */ // Up front, we create a random "shape", then apply that to each line segment...and then again to each of those segments...kind of like a fractal //---------------------------------------------------------------------------- static void CreateShape() //---------------------------------------------------------------------------- { VectorSet( sh1, 0.66f + crandom() * 0.1f, // fwd 0.07f + crandom() * 0.025f, 0.07f + crandom() * 0.025f ); // it seems to look best to have a point on one side of the ideal line, then the other point on the other side. VectorSet( sh2, 0.33f + crandom() * 0.1f, // fwd -sh1[1] + crandom() * 0.02f, // forcing point to be on the opposite side of the line -- right -sh1[2] + crandom() * 0.02f );// up } //---------------------------------------------------------------------------- static void ApplyShape( vec3_t start, vec3_t end, vec3_t right, float sradius, float eradius, int count ) //---------------------------------------------------------------------------- { vec3_t point1, point2, fwd; vec3_t rt, up; float perc, dis; if ( count < 1 ) { // done recursing DoLine2( start, end, right, sradius, eradius ); return; } CreateShape(); VectorSubtract( end, start, fwd ); dis = VectorNormalize( fwd ) * 0.7f; MakeNormalVectors( fwd, rt, up ); perc = sh1[0]; VectorScale( start, perc, point1 ); VectorMA( point1, 1.0f - perc, end, point1 ); VectorMA( point1, dis * sh1[1], rt, point1 ); VectorMA( point1, dis * sh1[2], up, point1 ); // do a quick and dirty interpolation of the radius at that point float rads1, rads2; rads1 = sradius * 0.666f + eradius * 0.333f; rads2 = sradius * 0.333f + eradius * 0.666f; // recursion ApplyShape( start, point1, right, sradius, rads1, count - 1 ); perc = sh2[0]; VectorScale( start, perc, point2 ); VectorMA( point2, 1.0f - perc, end, point2 ); VectorMA( point2, dis * sh2[1], rt, point2 ); VectorMA( point2, dis * sh2[2], up, point2 ); // recursion ApplyShape( point2, point1, right, rads1, rads2, count - 1 ); ApplyShape( point2, end, right, rads2, eradius, count - 1 ); } //---------------------------------------------------------------------------- static void DoBoltSeg( vec3_t start, vec3_t end, vec3_t right, float radius ) //---------------------------------------------------------------------------- { refEntity_t *e; vec3_t fwd, old; vec3_t cur, off={10,10,10}; vec3_t rt, up; vec3_t temp; int i; float dis, oldPerc = 0.0f, perc, oldRadius, newRadius; e = &backEnd.currentEntity->e; VectorSubtract( end, start, fwd ); dis = VectorNormalize( fwd ); MakeNormalVectors( fwd, rt, up ); VectorCopy( start, old ); oldRadius = newRadius = radius; for ( i = 20; i <= dis; i+= 20 ) { // because of our large step size, we may not actually draw to the end. In this case, fudge our percent so that we are basically complete if ( i + 20 > dis ) { perc = 1.0f; } else { // percentage of the amount of line completed perc = (float)i / dis; } // create our level of deviation for this point VectorScale( fwd, Q_crandom(&e->frame) * 3.0f, temp ); // move less in fwd direction, chaos also does not affect this VectorMA( temp, Q_crandom(&e->frame) * 7.0f * e->axis[0][0], rt, temp ); // move more in direction perpendicular to line, angles is really the chaos VectorMA( temp, Q_crandom(&e->frame) * 7.0f * e->axis[0][0], up, temp ); // move more in direction perpendicular to line // track our total level of offset from the ideal line VectorAdd( off, temp, off ); // Move from start to end, always adding our current level of offset from the ideal line // Even though we are adding a random offset.....by nature, we always move from exactly start....to end VectorAdd( start, off, cur ); VectorScale( cur, 1.0f - perc, cur ); VectorMA( cur, perc, end, cur ); if ( e->renderfx & RF_TAPERED ) { // This does pretty close to perfect tapering since apply shape interpolates the old and new as it goes along. // by using one minus the square, the radius stays fairly constant, then drops off quickly at the very point of the bolt oldRadius = radius * (1.0f-oldPerc*oldPerc); newRadius = radius * (1.0f-perc*perc); } // Apply the random shape to our line seg to give it some micro-detail-jaggy-coolness. ApplyShape( cur, old, right, newRadius, oldRadius, LIGHTNING_RECURSION_LEVEL ); // randomly split off to create little tendrils, but don't do it too close to the end and especially if we are not even of the forked variety if ( ( e->renderfx & RF_FORKED ) && f_count > 0 && Q_random(&e->frame) > 0.94f && radius * (1.0f - perc) > 0.2f ) { vec3_t newDest; f_count--; // Pick a point somewhere between the current point and the final endpoint VectorAdd( cur, e->oldorigin, newDest ); VectorScale( newDest, 0.5f, newDest ); // And then add some crazy offset for ( int t = 0; t < 3; t++ ) { newDest[t] += Q_crandom(&e->frame) * 80; } // we could branch off using OLD and NEWDEST, but that would allow multiple forks...whereas, we just want simpler brancing DoBoltSeg( cur, newDest, right, newRadius ); } // Current point along the line becomes our new old attach point VectorCopy( cur, old ); oldPerc = perc; } } //------------------------------------------ static void RB_SurfaceElectricity() //------------------------------------------ { refEntity_t *e; vec3_t right, fwd; vec3_t start, end; vec3_t v1, v2; float radius, perc = 1.0f, dis; e = &backEnd.currentEntity->e; radius = e->radius; VectorCopy( e->origin, start ); VectorSubtract( e->oldorigin, start, fwd ); dis = VectorNormalize( fwd ); // see if we should grow from start to end if ( e->renderfx & RF_GROW ) { perc = 1.0f - ( e->axis[0][2]/*endTime*/ - tr.refdef.time ) / e->axis[0][1]/*duration*/; if ( perc > 1.0f ) { perc = 1.0f; } else if ( perc < 0.0f ) { perc = 0.0f; } } VectorMA( start, perc * dis, fwd, e->oldorigin ); VectorCopy( e->oldorigin, end ); // compute side vector VectorSubtract( start, backEnd.viewParms.ori.origin, v1 ); VectorSubtract( end, backEnd.viewParms.ori.origin, v2 ); CrossProduct( v1, v2, right ); VectorNormalize( right ); DoBoltSeg( start, end, right, radius ); } //================================================================================ /* ** VectorArrayNormalize * * The inputs to this routing seem to always be close to length = 1.0 (about 0.6 to 2.0) * This means that we don't have to worry about zero length or enormously long vectors. */ static void VectorArrayNormalize(vec4_t *normals, unsigned int count) { // assert(count); #if idppc { register float half = 0.5; register float one = 1.0; float *components = (float *)normals; // Vanilla PPC code, but since PPC has a reciprocal square root estimate instruction, // runs *much* faster than calling sqrt(). We'll use a single Newton-Raphson // refinement step to get a little more precision. This seems to yeild results // that are correct to 3 decimal places and usually correct to at least 4 (sometimes 5). // (That is, for the given input range of about 0.6 to 2.0). do { float x, y, z; float B, y0, y1; x = components[0]; y = components[1]; z = components[2]; components += 4; B = x*x + y*y + z*z; #ifdef __GNUC__ asm("frsqrte %0,%1" : "=f" (y0) : "f" (B)); #else y0 = __frsqrte(B); #endif y1 = y0 + half*y0*(one - B*y0*y0); x = x * y1; y = y * y1; components[-4] = x; z = z * y1; components[-3] = y; components[-2] = z; } while(count--); } #else // No assembly version for this architecture, or C_ONLY defined // given the input, it's safe to call VectorNormalizeFast while (count--) { VectorNormalizeFast(normals[0]); normals++; } #endif } /* ** LerpMeshVertexes */ static void LerpMeshVertexes (md3Surface_t *surf, float backlerp) { short *oldXyz, *newXyz, *oldNormals, *newNormals; float *outXyz, *outNormal; float oldXyzScale, newXyzScale; float oldNormalScale, newNormalScale; int vertNum; unsigned lat, lng; int numVerts; outXyz = tess.xyz[tess.numVertexes]; outNormal = tess.normal[tess.numVertexes]; newXyz = (short *)((byte *)surf + surf->ofsXyzNormals) + (backEnd.currentEntity->e.frame * surf->numVerts * 4); newNormals = newXyz + 3; newXyzScale = MD3_XYZ_SCALE * (1.0 - backlerp); newNormalScale = 1.0 - backlerp; numVerts = surf->numVerts; if ( backlerp == 0 ) { // // just copy the vertexes // for (vertNum=0 ; vertNum < numVerts ; vertNum++, newXyz += 4, newNormals += 4, outXyz += 4, outNormal += 4) { outXyz[0] = newXyz[0] * newXyzScale; outXyz[1] = newXyz[1] * newXyzScale; outXyz[2] = newXyz[2] * newXyzScale; lat = ( newNormals[0] >> 8 ) & 0xff; lng = ( newNormals[0] & 0xff ); lat *= (FUNCTABLE_SIZE/256); lng *= (FUNCTABLE_SIZE/256); // decode X as cos( lat ) * sin( long ) // decode Y as sin( lat ) * sin( long ) // decode Z as cos( long ) outNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng]; outNormal[1] = tr.sinTable[lat] * tr.sinTable[lng]; outNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK]; } } else { // // interpolate and copy the vertex and normal // oldXyz = (short *)((byte *)surf + surf->ofsXyzNormals) + (backEnd.currentEntity->e.oldframe * surf->numVerts * 4); oldNormals = oldXyz + 3; oldXyzScale = MD3_XYZ_SCALE * backlerp; oldNormalScale = backlerp; for (vertNum=0 ; vertNum < numVerts ; vertNum++, oldXyz += 4, newXyz += 4, oldNormals += 4, newNormals += 4, outXyz += 4, outNormal += 4) { vec3_t uncompressedOldNormal, uncompressedNewNormal; // interpolate the xyz outXyz[0] = oldXyz[0] * oldXyzScale + newXyz[0] * newXyzScale; outXyz[1] = oldXyz[1] * oldXyzScale + newXyz[1] * newXyzScale; outXyz[2] = oldXyz[2] * oldXyzScale + newXyz[2] * newXyzScale; // FIXME: interpolate lat/long instead? lat = ( newNormals[0] >> 8 ) & 0xff; lng = ( newNormals[0] & 0xff ); lat *= 4; lng *= 4; uncompressedNewNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng]; uncompressedNewNormal[1] = tr.sinTable[lat] * tr.sinTable[lng]; uncompressedNewNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK]; lat = ( oldNormals[0] >> 8 ) & 0xff; lng = ( oldNormals[0] & 0xff ); lat *= 4; lng *= 4; uncompressedOldNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng]; uncompressedOldNormal[1] = tr.sinTable[lat] * tr.sinTable[lng]; uncompressedOldNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK]; outNormal[0] = uncompressedOldNormal[0] * oldNormalScale + uncompressedNewNormal[0] * newNormalScale; outNormal[1] = uncompressedOldNormal[1] * oldNormalScale + uncompressedNewNormal[1] * newNormalScale; outNormal[2] = uncompressedOldNormal[2] * oldNormalScale + uncompressedNewNormal[2] * newNormalScale; // VectorNormalize (outNormal); } VectorArrayNormalize((vec4_t *)tess.normal[tess.numVertexes], numVerts); } } /* ============= RB_SurfaceMesh ============= */ void RB_SurfaceMesh(md3Surface_t *surface) { int j; float backlerp; int *triangles; float *texCoords; int indexes; int Bob, Doug; int numVerts; if ( backEnd.currentEntity->e.oldframe == backEnd.currentEntity->e.frame ) { backlerp = 0; } else { backlerp = backEnd.currentEntity->e.backlerp; } RB_CHECKOVERFLOW( surface->numVerts, surface->numTriangles*3 ); LerpMeshVertexes (surface, backlerp); triangles = (int *) ((byte *)surface + surface->ofsTriangles); indexes = surface->numTriangles * 3; Bob = tess.numIndexes; Doug = tess.numVertexes; for (j = 0 ; j < indexes ; j++) { tess.indexes[Bob + j] = Doug + triangles[j]; } tess.numIndexes += indexes; texCoords = (float *) ((byte *)surface + surface->ofsSt); numVerts = surface->numVerts; for ( j = 0; j < numVerts; j++ ) { tess.texCoords[Doug + j][0][0] = texCoords[j*2+0]; tess.texCoords[Doug + j][0][1] = texCoords[j*2+1]; // FIXME: fill in lightmapST for completeness? } tess.numVertexes += surface->numVerts; } /* ============== RB_SurfaceFace ============== */ void RB_SurfaceFace( srfSurfaceFace_t *surf ) { int i, k; unsigned *indices, *tessIndexes; float *v; float *normal; int ndx; int Bob; int numPoints; int dlightBits; RB_CHECKOVERFLOW( surf->numPoints, surf->numIndices ); dlightBits = surf->dlightBits[backEnd.smpFrame]; tess.dlightBits |= dlightBits; indices = ( unsigned * ) ( ( ( char * ) surf ) + surf->ofsIndices ); Bob = tess.numVertexes; tessIndexes = tess.indexes + tess.numIndexes; for ( i = surf->numIndices-1 ; i >= 0 ; i-- ) { tessIndexes[i] = indices[i] + Bob; } tess.numIndexes += surf->numIndices; v = surf->points[0]; ndx = tess.numVertexes; numPoints = surf->numPoints; if ( tess.shader->needsNormal ) { normal = surf->plane.normal; for ( i = 0, ndx = tess.numVertexes; i < numPoints; i++, ndx++ ) { VectorCopy( normal, tess.normal[ndx] ); } } for ( i = 0, v = surf->points[0], ndx = tess.numVertexes; i < numPoints; i++, v += VERTEXSIZE, ndx++ ) { VectorCopy( v, tess.xyz[ndx]); tess.texCoords[ndx][0][0] = v[3]; tess.texCoords[ndx][0][1] = v[4]; for(k=0;klightmapIndex[k] >= 0) { tess.texCoords[ndx][k+1][0] = v[VERTEX_LM+(k*2)]; tess.texCoords[ndx][k+1][1] = v[VERTEX_LM+(k*2)+1]; } else { break; } } *(unsigned *) &tess.vertexColors[ndx] = ComputeFinalVertexColor((byte *)&v[VERTEX_COLOR]); tess.vertexDlightBits[ndx] = dlightBits; } tess.numVertexes += surf->numPoints; } static float LodErrorForVolume( vec3_t local, float radius ) { vec3_t world; float d; // never let it go negative if ( r_lodCurveError->value < 0 ) { return 0; } world[0] = local[0] * backEnd.ori.axis[0][0] + local[1] * backEnd.ori.axis[1][0] + local[2] * backEnd.ori.axis[2][0] + backEnd.ori.origin[0]; world[1] = local[0] * backEnd.ori.axis[0][1] + local[1] * backEnd.ori.axis[1][1] + local[2] * backEnd.ori.axis[2][1] + backEnd.ori.origin[1]; world[2] = local[0] * backEnd.ori.axis[0][2] + local[1] * backEnd.ori.axis[1][2] + local[2] * backEnd.ori.axis[2][2] + backEnd.ori.origin[2]; VectorSubtract( world, backEnd.viewParms.ori.origin, world ); d = DotProduct( world, backEnd.viewParms.ori.axis[0] ); if ( d < 0 ) { d = -d; } d -= radius; if ( d < 1 ) { d = 1; } return r_lodCurveError->value / d; } /* ============= RB_SurfaceGrid Just copy the grid of points and triangulate ============= */ void RB_SurfaceGrid( srfGridMesh_t *cv ) { int i, j, k; float *xyz; float *texCoords; float *normal; unsigned char *color; drawVert_t *dv; int rows, irows, vrows; int used; int widthTable[MAX_GRID_SIZE]; int heightTable[MAX_GRID_SIZE]; float lodError; int lodWidth, lodHeight; int numVertexes; int dlightBits; int *vDlightBits; qboolean needsNormal; dlightBits = cv->dlightBits[backEnd.smpFrame]; tess.dlightBits |= dlightBits; // determine the allowable discrepance lodError = LodErrorForVolume( cv->lodOrigin, cv->lodRadius ); // determine which rows and columns of the subdivision // we are actually going to use widthTable[0] = 0; lodWidth = 1; for ( i = 1 ; i < cv->width-1 ; i++ ) { if ( cv->widthLodError[i] <= lodError ) { widthTable[lodWidth] = i; lodWidth++; } } widthTable[lodWidth] = cv->width-1; lodWidth++; heightTable[0] = 0; lodHeight = 1; for ( i = 1 ; i < cv->height-1 ; i++ ) { if ( cv->heightLodError[i] <= lodError ) { heightTable[lodHeight] = i; lodHeight++; } } heightTable[lodHeight] = cv->height-1; lodHeight++; // very large grids may have more points or indexes than can be fit // in the tess structure, so we may have to issue it in multiple passes used = 0; rows = 0; while ( used < lodHeight - 1 ) { // see how many rows of both verts and indexes we can add without overflowing do { vrows = ( SHADER_MAX_VERTEXES - tess.numVertexes ) / lodWidth; irows = ( SHADER_MAX_INDEXES - tess.numIndexes ) / ( lodWidth * 6 ); // if we don't have enough space for at least one strip, flush the buffer if ( vrows < 2 || irows < 1 ) { RB_EndSurface(); RB_BeginSurface(tess.shader, tess.fogNum ); } else { break; } } while ( 1 ); rows = irows; if ( vrows < irows + 1 ) { rows = vrows - 1; } if ( used + rows > lodHeight ) { rows = lodHeight - used; } numVertexes = tess.numVertexes; xyz = tess.xyz[numVertexes]; normal = tess.normal[numVertexes]; texCoords = tess.texCoords[numVertexes][0]; color = ( unsigned char * ) &tess.vertexColors[numVertexes]; vDlightBits = &tess.vertexDlightBits[numVertexes]; needsNormal = tess.shader->needsNormal; for ( i = 0 ; i < rows ; i++ ) { for ( j = 0 ; j < lodWidth ; j++ ) { dv = cv->verts + heightTable[ used + i ] * cv->width + widthTable[ j ]; xyz[0] = dv->xyz[0]; xyz[1] = dv->xyz[1]; xyz[2] = dv->xyz[2]; xyz += 4; texCoords[0] = dv->st[0]; texCoords[1] = dv->st[1]; for(k=0;klightmap[k][0]; texCoords[2+(k*2)+1]= dv->lightmap[k][1]; } texCoords += NUM_TEX_COORDS*2; if ( needsNormal ) { normal[0] = dv->normal[0]; normal[1] = dv->normal[1]; normal[2] = dv->normal[2]; } normal += 4; *(unsigned *)color = ComputeFinalVertexColor((byte *)dv->color); color += 4; *vDlightBits++ = dlightBits; } } // add the indexes { int numIndexes; int w, h; h = rows - 1; w = lodWidth - 1; numIndexes = tess.numIndexes; for (i = 0 ; i < h ; i++) { for (j = 0 ; j < w ; j++) { int v1, v2, v3, v4; // vertex order to be reckognized as tristrips v1 = numVertexes + i*lodWidth + j + 1; v2 = v1 - 1; v3 = v2 + lodWidth; v4 = v3 + 1; tess.indexes[numIndexes] = v2; tess.indexes[numIndexes+1] = v3; tess.indexes[numIndexes+2] = v1; tess.indexes[numIndexes+3] = v1; tess.indexes[numIndexes+4] = v3; tess.indexes[numIndexes+5] = v4; numIndexes += 6; } } tess.numIndexes = numIndexes; } tess.numVertexes += rows * lodWidth; used += rows - 1; } } /* =========================================================================== NULL MODEL =========================================================================== */ /* =================== RB_SurfaceAxis Draws x/y/z lines from the origin for orientation debugging =================== */ void RB_SurfaceAxis( void ) { GL_Bind( tr.whiteImage ); qglLineWidth( 3 ); qglBegin( GL_LINES ); qglColor3f( 1,0,0 ); qglVertex3f( 0,0,0 ); qglVertex3f( 16,0,0 ); qglColor3f( 0,1,0 ); qglVertex3f( 0,0,0 ); qglVertex3f( 0,16,0 ); qglColor3f( 0,0,1 ); qglVertex3f( 0,0,0 ); qglVertex3f( 0,0,16 ); qglEnd(); qglLineWidth( 1 ); } //=========================================================================== /* ==================== RB_SurfaceEntity Entities that have a single procedurally generated surface ==================== */ void RB_SurfaceEntity( surfaceType_t *surfType ) { switch( backEnd.currentEntity->e.reType ) { case RT_SPRITE: RB_SurfaceSprite(); break; case RT_ORIENTED_QUAD: RB_SurfaceOrientedQuad(); break; case RT_BEAM: RB_SurfaceBeam(); break; case RT_ELECTRICITY: RB_SurfaceElectricity(); break; case RT_LINE: RB_SurfaceLine(); break; case RT_ORIENTEDLINE: RB_SurfaceOrientedLine(); break; case RT_SABER_GLOW: RB_SurfaceSaberGlow(); break; case RT_CYLINDER: RB_SurfaceCylinder(); break; case RT_ENT_CHAIN: { int i, count, start; trRefEntity_t tempEnt = *backEnd.currentEntity; start = backEnd.currentEntity->e.uRefEnt.uMini.miniStart; count = backEnd.currentEntity->e.uRefEnt.uMini.miniCount; backEnd.currentEntity = &tempEnt; for(i=0;ie, &backEnd.refdef.miniEntities[start+i], sizeof(backEnd.refdef.miniEntities[start+i])); RB_SurfaceEntity(surfType); } } break; default: RB_SurfaceAxis(); break; } return; } void RB_SurfaceBad( surfaceType_t *surfType ) { ri.Printf( PRINT_ALL, "Bad surface tesselated.\n" ); } #if 0 void RB_SurfaceFlare( srfFlare_t *surf ) { vec3_t left, up; float radius; byte color[4]; vec3_t dir; vec3_t origin; float d; // calculate the xyz locations for the four corners radius = 30; VectorScale( backEnd.viewParms.or.axis[1], radius, left ); VectorScale( backEnd.viewParms.or.axis[2], radius, up ); if ( backEnd.viewParms.isMirror ) { VectorSubtract( vec3_origin, left, left ); } color[0] = color[1] = color[2] = color[3] = 255; VectorMA( surf->origin, 3, surf->normal, origin ); VectorSubtract( origin, backEnd.viewParms.or.origin, dir ); VectorNormalize( dir ); VectorMA( origin, r_ignore->value, dir, origin ); d = -DotProduct( dir, surf->normal ); if ( d < 0 ) { return; } #if 0 color[0] *= d; color[1] *= d; color[2] *= d; #endif RB_AddQuadStamp( origin, left, up, color ); } #else void RB_SurfaceFlare( srfFlare_t *surf ) { #if 0 vec3_t left, up; byte color[4]; color[0] = surf->color[0] * 255; color[1] = surf->color[1] * 255; color[2] = surf->color[2] * 255; color[3] = 255; VectorClear( left ); VectorClear( up ); left[0] = r_ignore->value; up[1] = r_ignore->value; RB_AddQuadStampExt( surf->origin, left, up, color, 0, 0, 1, 1 ); #endif } #endif void RB_SurfaceDisplayList( srfDisplayList_t *surf ) { // all apropriate state must be set in RB_BeginSurface // this isn't implemented yet... qglCallList( surf->listNum ); } void RB_SurfaceSkip( void *surf ) { } void (*rb_surfaceTable[SF_NUM_SURFACE_TYPES])( void *) = { (void(*)(void*))RB_SurfaceBad, // SF_BAD, (void(*)(void*))RB_SurfaceSkip, // SF_SKIP, (void(*)(void*))RB_SurfaceFace, // SF_FACE, (void(*)(void*))RB_SurfaceGrid, // SF_GRID, (void(*)(void*))RB_SurfaceTriangles, // SF_TRIANGLES, (void(*)(void*))RB_SurfacePolychain, // SF_POLY, (void(*)(void*))RB_SurfaceMesh, // SF_MD3, (void(*)(void*))RB_SurfaceAnim, // SF_MD4, /* Ghoul2 Insert Start */ (void(*)(void*))RB_SurfaceGhoul, // SF_MDX, /* Ghoul2 Insert End */ (void(*)(void*))RB_SurfaceFlare, // SF_FLARE, (void(*)(void*))RB_SurfaceEntity, // SF_ENTITY (void(*)(void*))RB_SurfaceDisplayList // SF_DISPLAY_LIST };