#include "tr_local.h" /* for a projection shadow: point[x] += light vector * ( z - shadow plane ) point[y] += point[z] = shadow plane 1 0 light[x] / light[z] */ typedef struct { int i2; int facing; } edgeDef_t; #define MAX_EDGE_DEFS 32 static edgeDef_t edgeDefs[SHADER_MAX_VERTEXES][MAX_EDGE_DEFS]; static int numEdgeDefs[SHADER_MAX_VERTEXES]; static int facing[SHADER_MAX_INDEXES/3]; void R_AddEdgeDef( int i1, int i2, int facing ) { int c; c = numEdgeDefs[ i1 ]; if ( c == MAX_EDGE_DEFS ) { return; // overflow } edgeDefs[ i1 ][ c ].i2 = i2; edgeDefs[ i1 ][ c ].facing = facing; numEdgeDefs[ i1 ]++; } void R_RenderShadowEdges( void ) { int i; #if 0 int numTris; // dumb way -- render every triangle's edges numTris = tess.numIndexes / 3; for ( i = 0 ; i < numTris ; i++ ) { int i1, i2, i3; if ( !facing[i] ) { continue; } i1 = tess.indexes[ i*3 + 0 ]; i2 = tess.indexes[ i*3 + 1 ]; i3 = tess.indexes[ i*3 + 2 ]; qglBegin( GL_TRIANGLE_STRIP ); qglVertex3fv( tess.xyz[ i1 ] ); qglVertex3fv( tess.xyz[ i1 + tess.numVertexes ] ); qglVertex3fv( tess.xyz[ i2 ] ); qglVertex3fv( tess.xyz[ i2 + tess.numVertexes ] ); qglVertex3fv( tess.xyz[ i3 ] ); qglVertex3fv( tess.xyz[ i3 + tess.numVertexes ] ); qglVertex3fv( tess.xyz[ i1 ] ); qglVertex3fv( tess.xyz[ i1 + tess.numVertexes ] ); qglEnd(); } #else int c, c2; int j, k; int i2; int c_edges, c_rejected; int hit[2]; // an edge is NOT a silhouette edge if its face doesn't face the light, // or if it has a reverse paired edge that also faces the light. // A well behaved polyhedron would have exactly two faces for each edge, // but lots of models have dangling edges or overfanned edges c_edges = 0; c_rejected = 0; for ( i = 0 ; i < tess.numVertexes ; i++ ) { c = numEdgeDefs[ i ]; for ( j = 0 ; j < c ; j++ ) { if ( !edgeDefs[ i ][ j ].facing ) { continue; } hit[0] = 0; hit[1] = 0; i2 = edgeDefs[ i ][ j ].i2; c2 = numEdgeDefs[ i2 ]; for ( k = 0 ; k < c2 ; k++ ) { if ( edgeDefs[ i2 ][ k ].i2 == i ) { hit[ edgeDefs[ i2 ][ k ].facing ]++; } } // if it doesn't share the edge with another front facing // triangle, it is a sil edge if ( hit[ 1 ] == 0 ) { qglBegin( GL_TRIANGLE_STRIP ); qglVertex3fv( tess.xyz[ i ] ); qglVertex3fv( tess.xyz[ i + tess.numVertexes ] ); qglVertex3fv( tess.xyz[ i2 ] ); qglVertex3fv( tess.xyz[ i2 + tess.numVertexes ] ); qglEnd(); c_edges++; } else { c_rejected++; } } } #endif } /* ================= RB_ShadowTessEnd triangleFromEdge[ v1 ][ v2 ] set triangle from edge( v1, v2, tri ) if ( facing[ triangleFromEdge[ v1 ][ v2 ] ] && !facing[ triangleFromEdge[ v2 ][ v1 ] ) { } ================= */ void RB_ShadowTessEnd( void ) { int i; int numTris; vec3_t lightDir; // we can only do this if we have enough space in the vertex buffers if ( tess.numVertexes >= SHADER_MAX_VERTEXES / 2 ) { return; } if ( glConfig.stencilBits < 4 ) { return; } VectorCopy( backEnd.currentEntity->lightDir, lightDir ); // project vertexes away from light direction for ( i = 0 ; i < tess.numVertexes ; i++ ) { VectorMA( tess.xyz[i], -512, lightDir, tess.xyz[i+tess.numVertexes] ); } // decide which triangles face the light Com_Memset( numEdgeDefs, 0, 4 * tess.numVertexes ); numTris = tess.numIndexes / 3; for ( i = 0 ; i < numTris ; i++ ) { int i1, i2, i3; vec3_t d1, d2, normal; float *v1, *v2, *v3; float d; i1 = tess.indexes[ i*3 + 0 ]; i2 = tess.indexes[ i*3 + 1 ]; i3 = tess.indexes[ i*3 + 2 ]; v1 = tess.xyz[ i1 ]; v2 = tess.xyz[ i2 ]; v3 = tess.xyz[ i3 ]; VectorSubtract( v2, v1, d1 ); VectorSubtract( v3, v1, d2 ); CrossProduct( d1, d2, normal ); d = DotProduct( normal, lightDir ); if ( d > 0 ) { facing[ i ] = 1; } else { facing[ i ] = 0; } // create the edges R_AddEdgeDef( i1, i2, facing[ i ] ); R_AddEdgeDef( i2, i3, facing[ i ] ); R_AddEdgeDef( i3, i1, facing[ i ] ); } // draw the silhouette edges GL_Bind( tr.whiteImage ); qglEnable( GL_CULL_FACE ); GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ZERO ); qglColor3f( 0.2f, 0.2f, 0.2f ); // don't write to the color buffer qglColorMask( GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE ); qglEnable( GL_STENCIL_TEST ); qglStencilFunc( GL_ALWAYS, 1, 255 ); // mirrors have the culling order reversed if ( backEnd.viewParms.isMirror ) { qglCullFace( GL_FRONT ); qglStencilOp( GL_KEEP, GL_KEEP, GL_INCR ); R_RenderShadowEdges(); qglCullFace( GL_BACK ); qglStencilOp( GL_KEEP, GL_KEEP, GL_DECR ); R_RenderShadowEdges(); } else { qglCullFace( GL_BACK ); qglStencilOp( GL_KEEP, GL_KEEP, GL_INCR ); R_RenderShadowEdges(); qglCullFace( GL_FRONT ); qglStencilOp( GL_KEEP, GL_KEEP, GL_DECR ); R_RenderShadowEdges(); } // reenable writing to the color buffer qglColorMask( GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE ); } /* ================= RB_ShadowFinish Darken everything that is is a shadow volume. We have to delay this until everything has been shadowed, because otherwise shadows from different body parts would overlap and double darken. ================= */ void RB_ShadowFinish( void ) { if ( r_shadows->integer != 2 ) { return; } if ( glConfig.stencilBits < 4 ) { return; } qglEnable( GL_STENCIL_TEST ); qglStencilFunc( GL_NOTEQUAL, 0, 255 ); qglDisable (GL_CLIP_PLANE0); qglDisable (GL_CULL_FACE); GL_Bind( tr.whiteImage ); qglLoadIdentity (); qglColor3f( 0.6f, 0.6f, 0.6f ); GL_State( GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ZERO ); // qglColor3f( 1, 0, 0 ); // GL_State( GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ZERO ); qglBegin( GL_QUADS ); qglVertex3f( -100, 100, -10 ); qglVertex3f( 100, 100, -10 ); qglVertex3f( 100, -100, -10 ); qglVertex3f( -100, -100, -10 ); qglEnd (); qglColor4f(1,1,1,1); qglDisable( GL_STENCIL_TEST ); } /* ================= RB_ProjectionShadowDeform ================= */ void RB_ProjectionShadowDeform( void ) { float *xyz; int i; float h; vec3_t ground; vec3_t light; float groundDist; float d; vec3_t lightDir; xyz = ( float * ) tess.xyz; ground[0] = backEnd.or.axis[0][2]; ground[1] = backEnd.or.axis[1][2]; ground[2] = backEnd.or.axis[2][2]; groundDist = backEnd.or.origin[2] - backEnd.currentEntity->e.shadowPlane; VectorCopy( backEnd.currentEntity->lightDir, lightDir ); d = DotProduct( lightDir, ground ); // don't let the shadows get too long or go negative if ( d < 0.5 ) { VectorMA( lightDir, (0.5 - d), ground, lightDir ); d = DotProduct( lightDir, ground ); } d = 1.0 / d; light[0] = lightDir[0] * d; light[1] = lightDir[1] * d; light[2] = lightDir[2] * d; for ( i = 0; i < tess.numVertexes; i++, xyz += 4 ) { h = DotProduct( xyz, ground ) + groundDist; xyz[0] -= light[0] * h; xyz[1] -= light[1] * h; xyz[2] -= light[2] * h; } }