// mathlib.c -- math primitives #include "stdafx.h" #include "cmdlib.h" #include "mathlib.h" vec3_t vec3_origin = {0.0f,0.0f,0.0f}; float VectorLength(vec3_t v) { int i; float length; length = 0.0f; for (i=0 ; i< 3 ; i++) length += v[i]*v[i]; length = (float)sqrt (length); return length; } qboolean VectorCompare (vec3_t v1, vec3_t v2) { int i; for (i=0 ; i<3 ; i++) if (fabs(v1[i]-v2[i]) > EQUAL_EPSILON) return false; return true; } vec_t Q_rint (vec_t in) { if (g_PrefsDlg.m_bNoClamp) return in; else return (float)floor (in + 0.5); } void VectorMA (vec3_t va, float scale, vec3_t vb, vec3_t vc) { vc[0] = va[0] + scale*vb[0]; vc[1] = va[1] + scale*vb[1]; vc[2] = va[2] + scale*vb[2]; } void CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross) { cross[0] = v1[1]*v2[2] - v1[2]*v2[1]; cross[1] = v1[2]*v2[0] - v1[0]*v2[2]; cross[2] = v1[0]*v2[1] - v1[1]*v2[0]; } vec_t _DotProduct (vec3_t v1, vec3_t v2) { return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; } void _VectorSubtract (vec3_t va, vec3_t vb, vec3_t out) { out[0] = va[0]-vb[0]; out[1] = va[1]-vb[1]; out[2] = va[2]-vb[2]; } void _VectorAdd (vec3_t va, vec3_t vb, vec3_t out) { out[0] = va[0]+vb[0]; out[1] = va[1]+vb[1]; out[2] = va[2]+vb[2]; } void _VectorCopy (vec3_t in, vec3_t out) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } vec_t VectorNormalize (vec3_t v) { int i; float length; length = 0.0f; for (i=0 ; i< 3 ; i++) length += v[i]*v[i]; length = (float)sqrt (length); if (length == 0) return (vec_t)0; for (i=0 ; i< 3 ; i++) v[i] /= length; return length; } void VectorInverse (vec3_t v) { v[0] = -v[0]; v[1] = -v[1]; v[2] = -v[2]; } void VectorScale (vec3_t v, vec_t scale, vec3_t out) { out[0] = v[0] * scale; out[1] = v[1] * scale; out[2] = v[2] * scale; } void VectorRotate (vec3_t vIn, vec3_t vRotation, vec3_t out) { vec3_t vWork, va; VectorCopy(vIn, va); VectorCopy(va, vWork); int nIndex[3][2]; nIndex[0][0] = 1; nIndex[0][1] = 2; nIndex[1][0] = 2; nIndex[1][1] = 0; nIndex[2][0] = 0; nIndex[2][1] = 1; for (int i = 0; i < 3; i++) { if (vRotation[i] != 0) { double dAngle = vRotation[i] / 180 * Q_PI; double c = cos(dAngle); double s = sin(dAngle); vWork[nIndex[i][0]] = va[nIndex[i][0]] * c - va[nIndex[i][1]] * s; vWork[nIndex[i][1]] = va[nIndex[i][0]] * s + va[nIndex[i][1]] * c; } VectorCopy(vWork, va); } VectorCopy(vWork, out); } void VectorRotate (vec3_t vIn, vec3_t vRotation, vec3_t vOrigin, vec3_t out) { vec3_t vTemp, vTemp2; VectorSubtract(vIn, vOrigin, vTemp); VectorRotate(vTemp, vRotation, vTemp2); VectorAdd(vTemp2, vOrigin, out); } void VectorPolar(vec3_t v, float radius, float theta, float phi) { v[0]=float(radius * cos(theta) * cos(phi)); v[1]=float(radius * sin(theta) * cos(phi)); v[2]=float(radius * sin(phi)); } void VectorSnap(vec3_t v) { for (int i = 0; i < 3; i++) { v[i] = floor (v[i] + 0.5); } }