//Anything above this #include will be ignored by the compiler #include "../qcommon/exe_headers.h" #include "tr_local.h" /* for a projection shadow: point[x] += light vector * ( z - shadow plane ) point[y] += point[z] = shadow plane 1 0 light[x] / light[z] */ #define _STENCIL_REVERSE typedef struct { int i2; int facing; } edgeDef_t; #define MAX_EDGE_DEFS 32 static edgeDef_t edgeDefs[SHADER_MAX_VERTEXES][MAX_EDGE_DEFS]; static int numEdgeDefs[SHADER_MAX_VERTEXES]; static int facing[SHADER_MAX_INDEXES/3]; void R_AddEdgeDef( int i1, int i2, int facing ) { int c; c = numEdgeDefs[ i1 ]; if ( c == MAX_EDGE_DEFS ) { return; // overflow } edgeDefs[ i1 ][ c ].i2 = i2; edgeDefs[ i1 ][ c ].facing = facing; numEdgeDefs[ i1 ]++; } void R_RenderShadowEdges( void ) { int i; int c; int j; int i2; int c_edges, c_rejected; #if 0 int c2, k; int hit[2]; #endif #ifdef _STENCIL_REVERSE int numTris; int o1, o2, o3; #endif // an edge is NOT a silhouette edge if its face doesn't face the light, // or if it has a reverse paired edge that also faces the light. // A well behaved polyhedron would have exactly two faces for each edge, // but lots of models have dangling edges or overfanned edges c_edges = 0; c_rejected = 0; for ( i = 0 ; i < tess.numVertexes ; i++ ) { c = numEdgeDefs[ i ]; for ( j = 0 ; j < c ; j++ ) { if ( !edgeDefs[ i ][ j ].facing ) { continue; } //with this system we can still get edges shared by more than 2 tris which //produces artifacts including seeing the shadow through walls. So for now //we are going to render all edges even though it is a tiny bit slower. -rww #if 1 i2 = edgeDefs[ i ][ j ].i2; qglBegin( GL_TRIANGLE_STRIP ); qglVertex3fv( tess.xyz[ i ] ); qglVertex3fv( tess.xyz[ i + tess.numVertexes ] ); qglVertex3fv( tess.xyz[ i2 ] ); qglVertex3fv( tess.xyz[ i2 + tess.numVertexes ] ); qglEnd(); #else hit[0] = 0; hit[1] = 0; i2 = edgeDefs[ i ][ j ].i2; c2 = numEdgeDefs[ i2 ]; for ( k = 0 ; k < c2 ; k++ ) { if ( edgeDefs[ i2 ][ k ].i2 == i ) { hit[ edgeDefs[ i2 ][ k ].facing ]++; } } // if it doesn't share the edge with another front facing // triangle, it is a sil edge if (hit[1] != 1) { qglBegin( GL_TRIANGLE_STRIP ); qglVertex3fv( tess.xyz[ i ] ); qglVertex3fv( tess.xyz[ i + tess.numVertexes ] ); qglVertex3fv( tess.xyz[ i2 ] ); qglVertex3fv( tess.xyz[ i2 + tess.numVertexes ] ); qglEnd(); c_edges++; } else { c_rejected++; } #endif } } #ifdef _STENCIL_REVERSE //Carmack Reverse method requires that volumes //be capped properly -rww numTris = tess.numIndexes / 3; for ( i = 0 ; i < numTris ; i++ ) { if ( !facing[i] ) { continue; } o1 = tess.indexes[ i*3 + 0 ]; o2 = tess.indexes[ i*3 + 1 ]; o3 = tess.indexes[ i*3 + 2 ]; qglBegin(GL_TRIANGLES); qglVertex3fv(tess.xyz[o1]); qglVertex3fv(tess.xyz[o2]); qglVertex3fv(tess.xyz[o3]); qglEnd(); qglBegin(GL_TRIANGLES); qglVertex3fv(tess.xyz[o3 + tess.numVertexes]); qglVertex3fv(tess.xyz[o2 + tess.numVertexes]); qglVertex3fv(tess.xyz[o1 + tess.numVertexes]); qglEnd(); } #endif } //#define _DEBUG_STENCIL_SHADOWS /* ================= RB_ShadowTessEnd triangleFromEdge[ v1 ][ v2 ] set triangle from edge( v1, v2, tri ) if ( facing[ triangleFromEdge[ v1 ][ v2 ] ] && !facing[ triangleFromEdge[ v2 ][ v1 ] ) { } ================= */ void RB_DoShadowTessEnd( vec3_t lightPos ); void RB_ShadowTessEnd( void ) { #if 0 if (backEnd.currentEntity && (backEnd.currentEntity->directedLight[0] || backEnd.currentEntity->directedLight[1] || backEnd.currentEntity->directedLight[2])) { //an ent that has its light set for it RB_DoShadowTessEnd(NULL); return; } // if (!tess.dlightBits) // { // return; // } int i = 0; dlight_t *dl; R_TransformDlights( backEnd.refdef.num_dlights, backEnd.refdef.dlights, &backEnd.ori ); /* while (i < tr.refdef.num_dlights) { if (tess.dlightBits & (1 << i)) { dl = &tr.refdef.dlights[i]; RB_DoShadowTessEnd(dl->transformed); } i++; } */ dl = &tr.refdef.dlights[0]; RB_DoShadowTessEnd(dl->transformed); #else //old ents-only way RB_DoShadowTessEnd(NULL); #endif } void RB_DoShadowTessEnd( vec3_t lightPos ) { int i; int numTris; vec3_t lightDir; // we can only do this if we have enough space in the vertex buffers if ( tess.numVertexes >= SHADER_MAX_VERTEXES / 2 ) { return; } if ( glConfig.stencilBits < 4 ) { return; } #if 1 //controlled method - try to keep shadows in range so they don't show through so much -rww vec3_t worldxyz; vec3_t entLight; float groundDist; VectorCopy( backEnd.currentEntity->lightDir, entLight ); entLight[2] = 0.0f; VectorNormalize(entLight); //Oh well, just cast them straight down no matter what onto the ground plane. //This presets no chance of screwups and still looks better than a stupid //shader blob. VectorSet(lightDir, entLight[0]*0.3f, entLight[1]*0.3f, 1.0f); // project vertexes away from light direction for ( i = 0 ; i < tess.numVertexes ; i++ ) { //add or.origin to vert xyz to end up with world oriented coord, then figure //out the ground pos for the vert to project the shadow volume to VectorAdd(tess.xyz[i], backEnd.ori.origin, worldxyz); groundDist = worldxyz[2] - backEnd.currentEntity->e.shadowPlane; groundDist += 16.0f; //fudge factor VectorMA( tess.xyz[i], -groundDist, lightDir, tess.xyz[i+tess.numVertexes] ); } #else if (lightPos) { for ( i = 0 ; i < tess.numVertexes ; i++ ) { tess.xyz[i+tess.numVertexes][0] = tess.xyz[i][0]+(( tess.xyz[i][0]-lightPos[0] )*128.0f); tess.xyz[i+tess.numVertexes][1] = tess.xyz[i][1]+(( tess.xyz[i][1]-lightPos[1] )*128.0f); tess.xyz[i+tess.numVertexes][2] = tess.xyz[i][2]+(( tess.xyz[i][2]-lightPos[2] )*128.0f); } } else { VectorCopy( backEnd.currentEntity->lightDir, lightDir ); // project vertexes away from light direction for ( i = 0 ; i < tess.numVertexes ; i++ ) { VectorMA( tess.xyz[i], -512, lightDir, tess.xyz[i+tess.numVertexes] ); } } #endif // decide which triangles face the light Com_Memset( numEdgeDefs, 0, 4 * tess.numVertexes ); numTris = tess.numIndexes / 3; for ( i = 0 ; i < numTris ; i++ ) { int i1, i2, i3; vec3_t d1, d2, normal; float *v1, *v2, *v3; float d; i1 = tess.indexes[ i*3 + 0 ]; i2 = tess.indexes[ i*3 + 1 ]; i3 = tess.indexes[ i*3 + 2 ]; v1 = tess.xyz[ i1 ]; v2 = tess.xyz[ i2 ]; v3 = tess.xyz[ i3 ]; if (!lightPos) { VectorSubtract( v2, v1, d1 ); VectorSubtract( v3, v1, d2 ); CrossProduct( d1, d2, normal ); d = DotProduct( normal, lightDir ); } else { float planeEq[4]; planeEq[0] = v1[1]*(v2[2]-v3[2]) + v2[1]*(v3[2]-v1[2]) + v3[1]*(v1[2]-v2[2]); planeEq[1] = v1[2]*(v2[0]-v3[0]) + v2[2]*(v3[0]-v1[0]) + v3[2]*(v1[0]-v2[0]); planeEq[2] = v1[0]*(v2[1]-v3[1]) + v2[0]*(v3[1]-v1[1]) + v3[0]*(v1[1]-v2[1]); planeEq[3] = -( v1[0]*( v2[1]*v3[2] - v3[1]*v2[2] ) + v2[0]*(v3[1]*v1[2] - v1[1]*v3[2]) + v3[0]*(v1[1]*v2[2] - v2[1]*v1[2]) ); d = planeEq[0]*lightPos[0]+ planeEq[1]*lightPos[1]+ planeEq[2]*lightPos[2]+ planeEq[3]; } if ( d > 0 ) { facing[ i ] = 1; } else { facing[ i ] = 0; } // create the edges R_AddEdgeDef( i1, i2, facing[ i ] ); R_AddEdgeDef( i2, i3, facing[ i ] ); R_AddEdgeDef( i3, i1, facing[ i ] ); } GL_Bind( tr.whiteImage ); //qglEnable( GL_CULL_FACE ); GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ZERO ); #ifndef _DEBUG_STENCIL_SHADOWS qglColor3f( 0.2f, 0.2f, 0.2f ); // don't write to the color buffer qglColorMask( GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE ); qglEnable( GL_STENCIL_TEST ); qglStencilFunc( GL_ALWAYS, 1, 255 ); #else qglColor3f( 1.0f, 0.0f, 0.0f ); qglPolygonMode(GL_FRONT_AND_BACK, GL_LINE); //qglDisable(GL_DEPTH_TEST); #endif #ifdef _STENCIL_REVERSE qglDepthFunc(GL_LESS); //now using the Carmack Reverse -rww if ( backEnd.viewParms.isMirror ) { //qglCullFace( GL_BACK ); GL_Cull(CT_BACK_SIDED); qglStencilOp( GL_KEEP, GL_INCR, GL_KEEP ); R_RenderShadowEdges(); //qglCullFace( GL_FRONT ); GL_Cull(CT_FRONT_SIDED); qglStencilOp( GL_KEEP, GL_DECR, GL_KEEP ); R_RenderShadowEdges(); } else { //qglCullFace( GL_FRONT ); GL_Cull(CT_FRONT_SIDED); qglStencilOp( GL_KEEP, GL_INCR, GL_KEEP ); R_RenderShadowEdges(); //qglCullFace( GL_BACK ); GL_Cull(CT_BACK_SIDED); qglStencilOp( GL_KEEP, GL_DECR, GL_KEEP ); R_RenderShadowEdges(); } qglDepthFunc(GL_LEQUAL); #else // mirrors have the culling order reversed if ( backEnd.viewParms.isMirror ) { qglCullFace( GL_FRONT ); qglStencilOp( GL_KEEP, GL_KEEP, GL_INCR ); R_RenderShadowEdges(); qglCullFace( GL_BACK ); qglStencilOp( GL_KEEP, GL_KEEP, GL_DECR ); R_RenderShadowEdges(); } else { qglCullFace( GL_BACK ); qglStencilOp( GL_KEEP, GL_KEEP, GL_INCR ); R_RenderShadowEdges(); qglCullFace( GL_FRONT ); qglStencilOp( GL_KEEP, GL_KEEP, GL_DECR ); R_RenderShadowEdges(); } #endif // reenable writing to the color buffer qglColorMask( GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE ); #ifdef _DEBUG_STENCIL_SHADOWS qglPolygonMode(GL_FRONT_AND_BACK, GL_FILL); #endif } /* ================= RB_ShadowFinish Darken everything that is is a shadow volume. We have to delay this until everything has been shadowed, because otherwise shadows from different body parts would overlap and double darken. ================= */ void RB_ShadowFinish( void ) { if ( r_shadows->integer != 2 ) { return; } if ( glConfig.stencilBits < 4 ) { return; } #ifdef _DEBUG_STENCIL_SHADOWS return; #endif qglEnable( GL_STENCIL_TEST ); qglStencilFunc( GL_NOTEQUAL, 0, 255 ); qglStencilOp( GL_KEEP, GL_KEEP, GL_KEEP ); bool planeZeroBack = false; if (qglIsEnabled(GL_CLIP_PLANE0)) { planeZeroBack = true; qglDisable (GL_CLIP_PLANE0); } GL_Cull(CT_TWO_SIDED); //qglDisable (GL_CULL_FACE); GL_Bind( tr.whiteImage ); qglPushMatrix(); qglLoadIdentity (); // qglColor3f( 0.6f, 0.6f, 0.6f ); // GL_State( GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ZERO ); // qglColor3f( 1, 0, 0 ); // GL_State( GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ZERO ); qglColor4f( 0.0f, 0.0f, 0.0f, 0.5f ); //GL_State( GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA ); GL_State( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA ); qglBegin( GL_QUADS ); qglVertex3f( -100, 100, -10 ); qglVertex3f( 100, 100, -10 ); qglVertex3f( 100, -100, -10 ); qglVertex3f( -100, -100, -10 ); qglEnd (); qglColor4f(1,1,1,1); qglDisable( GL_STENCIL_TEST ); if (planeZeroBack) { qglEnable (GL_CLIP_PLANE0); } qglPopMatrix(); } /* ================= RB_ProjectionShadowDeform ================= */ void RB_ProjectionShadowDeform( void ) { float *xyz; int i; float h; vec3_t ground; vec3_t light; float groundDist; float d; vec3_t lightDir; xyz = ( float * ) tess.xyz; ground[0] = backEnd.ori.axis[0][2]; ground[1] = backEnd.ori.axis[1][2]; ground[2] = backEnd.ori.axis[2][2]; groundDist = backEnd.ori.origin[2] - backEnd.currentEntity->e.shadowPlane; VectorCopy( backEnd.currentEntity->lightDir, lightDir ); d = DotProduct( lightDir, ground ); // don't let the shadows get too long or go negative if ( d < 0.5 ) { VectorMA( lightDir, (0.5 - d), ground, lightDir ); d = DotProduct( lightDir, ground ); } d = 1.0 / d; light[0] = lightDir[0] * d; light[1] = lightDir[1] * d; light[2] = lightDir[2] * d; for ( i = 0; i < tess.numVertexes; i++, xyz += 4 ) { h = DotProduct( xyz, ground ) + groundDist; xyz[0] -= light[0] * h; xyz[1] -= light[1] * h; xyz[2] -= light[2] * h; } } //update tr.screenImage void RB_CaptureScreenImage(void) { int radX = 2048; int radY = 2048; int x = glConfig.vidWidth/2; int y = glConfig.vidHeight/2; int cX, cY; GL_Bind( tr.screenImage ); //using this method, we could pixel-filter the texture and all sorts of crazy stuff. //but, it is slow as hell. /* static byte *tmp = NULL; if (!tmp) { tmp = (byte *)Z_Malloc((sizeof(byte)*4)*(glConfig.vidWidth*glConfig.vidHeight), TAG_ICARUS, qtrue); } qglReadPixels(0, 0, glConfig.vidWidth, glConfig.vidHeight, GL_RGBA, GL_UNSIGNED_BYTE, tmp); qglTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 512, 512, 0, GL_RGBA, GL_UNSIGNED_BYTE, tmp); */ if (radX > glConfig.maxTextureSize) { radX = glConfig.maxTextureSize; } if (radY > glConfig.maxTextureSize) { radY = glConfig.maxTextureSize; } while (glConfig.vidWidth < radX) { radX /= 2; } while (glConfig.vidHeight < radY) { radY /= 2; } cX = x-(radX/2); cY = y-(radY/2); if (cX+radX > glConfig.vidWidth) { //would it go off screen? cX = glConfig.vidWidth-radX; } else if (cX < 0) { //cap it off at 0 cX = 0; } if (cY+radY > glConfig.vidHeight) { //would it go off screen? cY = glConfig.vidHeight-radY; } else if (cY < 0) { //cap it off at 0 cY = 0; } qglCopyTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16, cX, cY, radX, radY, 0); } //yeah.. not really shadow-related.. but it's stencil-related. -rww float tr_distortionAlpha = 1.0f; //opaque float tr_distortionStretch = 0.0f; //no stretch override qboolean tr_distortionPrePost = qfalse; //capture before postrender phase? qboolean tr_distortionNegate = qfalse; //negative blend mode void RB_DistortionFill(void) { float alpha = tr_distortionAlpha; float spost = 0.0f; float spost2 = 0.0f; if ( glConfig.stencilBits < 4 ) { return; } //ok, cap the stupid thing now I guess if (!tr_distortionPrePost) { RB_CaptureScreenImage(); } qglEnable(GL_STENCIL_TEST); qglStencilFunc(GL_NOTEQUAL, 0, 0xFFFFFFFF); qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); qglDisable (GL_CLIP_PLANE0); GL_Cull( CT_TWO_SIDED ); //reset the view matrices and go into ortho mode qglMatrixMode(GL_PROJECTION); qglPushMatrix(); qglLoadIdentity(); qglOrtho(0, glConfig.vidWidth, glConfig.vidHeight, 32, -1, 1); qglMatrixMode(GL_MODELVIEW); qglPushMatrix(); qglLoadIdentity(); if (tr_distortionStretch) { //override spost = tr_distortionStretch; spost2 = tr_distortionStretch; } else { //do slow stretchy effect spost = sin(tr.refdef.time*0.0005f); if (spost < 0.0f) { spost = -spost; } spost *= 0.2f; spost2 = sin(tr.refdef.time*0.0005f); if (spost2 < 0.0f) { spost2 = -spost2; } spost2 *= 0.08f; } if (alpha != 1.0f) { //blend GL_State(GLS_SRCBLEND_SRC_ALPHA|GLS_DSTBLEND_SRC_ALPHA); } else { //be sure to reset the draw state GL_State(0); } qglBegin(GL_QUADS); qglColor4f(1.0f, 1.0f, 1.0f, alpha); qglTexCoord2f(0+spost2, 1-spost); qglVertex2f(0, 0); qglTexCoord2f(0+spost2, 0+spost); qglVertex2f(0, glConfig.vidHeight); qglTexCoord2f(1-spost2, 0+spost); qglVertex2f(glConfig.vidWidth, glConfig.vidHeight); qglTexCoord2f(1-spost2, 1-spost); qglVertex2f(glConfig.vidWidth, 0); qglEnd(); if (tr_distortionAlpha == 1.0f && tr_distortionStretch == 0.0f) { //no overrides if (tr_distortionNegate) { //probably the crazy alternate saber trail alpha = 0.8f; GL_State(GLS_SRCBLEND_ZERO|GLS_DSTBLEND_ONE_MINUS_SRC_COLOR); } else { alpha = 0.5f; GL_State(GLS_SRCBLEND_SRC_ALPHA|GLS_DSTBLEND_SRC_ALPHA); } spost = sin(tr.refdef.time*0.0008f); if (spost < 0.0f) { spost = -spost; } spost *= 0.08f; spost2 = sin(tr.refdef.time*0.0008f); if (spost2 < 0.0f) { spost2 = -spost2; } spost2 *= 0.2f; qglBegin(GL_QUADS); qglColor4f(1.0f, 1.0f, 1.0f, alpha); qglTexCoord2f(0+spost2, 1-spost); qglVertex2f(0, 0); qglTexCoord2f(0+spost2, 0+spost); qglVertex2f(0, glConfig.vidHeight); qglTexCoord2f(1-spost2, 0+spost); qglVertex2f(glConfig.vidWidth, glConfig.vidHeight); qglTexCoord2f(1-spost2, 1-spost); qglVertex2f(glConfig.vidWidth, 0); qglEnd(); } //pop the view matrices back qglMatrixMode(GL_PROJECTION); qglPopMatrix(); qglMatrixMode(GL_MODELVIEW); qglPopMatrix(); qglDisable( GL_STENCIL_TEST ); }