quakeforge/tools/qfcc/source/expr.c
Bill Currie bcfd1b7660 [qfcc] Split out the call related expression code
I've long felt build_function_call was getting a bit big, and expr.c
especially so. This should make it easier to rewrite build_function_call
for dealing with target-specific code. As a bonus, the int through ...
warning is already cleaned up.
2024-11-04 20:28:30 +09:00

2715 lines
60 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
expr.c
expression construction and manipulations
Copyright (C) 2001 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2001/06/15
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include "QF/alloc.h"
#include "QF/dstring.h"
#include "QF/mathlib.h"
#include "QF/va.h"
#include "tools/qfcc/include/qfcc.h"
#include "tools/qfcc/include/algebra.h"
#include "tools/qfcc/include/class.h"
#include "tools/qfcc/include/def.h"
#include "tools/qfcc/include/defspace.h"
#include "tools/qfcc/include/diagnostic.h"
#include "tools/qfcc/include/emit.h"
#include "tools/qfcc/include/evaluate.h"
#include "tools/qfcc/include/expr.h"
#include "tools/qfcc/include/function.h"
#include "tools/qfcc/include/idstuff.h"
#include "tools/qfcc/include/method.h"
#include "tools/qfcc/include/options.h"
#include "tools/qfcc/include/reloc.h"
#include "tools/qfcc/include/rua-lang.h"
#include "tools/qfcc/include/shared.h"
#include "tools/qfcc/include/strpool.h"
#include "tools/qfcc/include/struct.h"
#include "tools/qfcc/include/symtab.h"
#include "tools/qfcc/include/type.h"
#include "tools/qfcc/include/value.h"
ALLOC_STATE (expr_t, exprs);
ALLOC_STATE (ex_listitem_t, listitems);
const expr_t *
convert_name (const expr_t *e)
{
symbol_t *sym;
if (!e || e->type != ex_symbol || e->symbol->is_constexpr)
return e;
sym = e->symbol;
if (!strcmp (sym->name, "__PRETTY_FUNCTION__")
&& current_func) {
return new_string_expr (current_func->name);
}
if (!strcmp (sym->name, "__FUNCTION__")
&& current_func) {
return new_string_expr (current_func->def->name);
}
if (!strcmp (sym->name, "__LINE__")
&& current_func) {
return new_int_expr (e->loc.line, false);
}
if (!strcmp (sym->name, "__INFINITY__")
&& current_func) {
return new_float_expr (INFINITY, false);
}
if (!strcmp (sym->name, "__FILE__")
&& current_func) {
return new_string_expr (GETSTR (e->loc.file));
}
if (!sym->table) {
e = error (e, "%s undefined", sym->name);
sym->type = type_default;
//FIXME need a def
return e;
}
if (sym->sy_type == sy_convert) {
return sym->convert.conv (sym, sym->convert.data);
}
if (sym->sy_type == sy_expr) {
return sym->expr;
}
if (sym->sy_type == sy_type)
internal_error (e, "unexpected typedef");
// var, const and func shouldn't need extra handling
return e;
}
const type_t *
get_type (const expr_t *e)
{
const type_t *type = nullptr;
e = convert_name (e);
switch (e->type) {
case ex_inout:
if (!e->inout.out) {
internal_error (e, "inout with no out");
}
type = get_type (e->inout.out);
break;
case ex_branch:
type = e->branch.ret_type;
break;
case ex_labelref:
case ex_adjstk:
case ex_with:
return &type_void;
case ex_memset:
return nullptr;
case ex_error:
return nullptr;
case ex_return:
case ex_decl:
internal_error (e, "unexpected expression type");
case ex_label:
case ex_compound:
return nullptr;
case ex_bool:
if (options.code.progsversion == PROG_ID_VERSION)
return &type_float;
return &type_int;
case ex_nil:
if (e->nil) {
return e->nil;
}
// fall through
case ex_state:
return &type_void;
case ex_block:
if (e->block.result)
return get_type (e->block.result);
return &type_void;
case ex_expr:
case ex_uexpr:
type = e->expr.type;
break;
case ex_def:
type = e->def->type;
break;
case ex_symbol:
type = e->symbol->type;
break;
case ex_temp:
type = e->temp.type;
break;
case ex_value:
type = e->value->type;
break;
case ex_vector:
return e->vector.type;
case ex_selector:
return &type_SEL;
case ex_alias:
type = e->alias.type;
break;
case ex_address:
type = e->address.type;
break;
case ex_assign:
return get_type (e->assign.dst);
case ex_args:
return &type_va_list;
case ex_horizontal:
return e->hop.type;
case ex_swizzle:
return e->swizzle.type;
case ex_extend:
return e->extend.type;
case ex_multivec:
return e->multivec.type;
case ex_list:
if (e->list.head) {
auto last = (ex_listitem_t *) e->list.tail;
return get_type (last->expr);
}
return nullptr;
case ex_type:
return nullptr;
case ex_incop:
return get_type (e->incop.expr);
case ex_cond:
//FIXME true_expr and false_expr need to have the same type,
//unless one is nil
return get_type (e->cond.true_expr);
case ex_field:
return e->field.type;
case ex_array:
return e->array.type;
case ex_count:
internal_error (e, "invalid expression");
}
return unalias_type (type);
}
etype_t
extract_type (const expr_t *e)
{
auto type = get_type (e);
if (type)
return type->type;
return ev_type_count;
}
const expr_t *
type_mismatch (const expr_t *e1, const expr_t *e2, int op)
{
if (options.verbosity >= 2) {
print_expr (e1);
print_expr (e2);
}
return error (e1, "type mismatch: %s %s %s",
get_type_string (get_type (e1)), get_op_string (op),
get_type_string (get_type (e2)));
}
const expr_t *
param_mismatch (const expr_t *e, int param, const char *fn,
const type_t *t1, const type_t *t2)
{
return error (e, "type mismatch for parameter %d of %s: "
"expected %s, got %s", param, fn, get_type_string (t1),
get_type_string (t2));
}
const expr_t *
reference_error (const expr_t *e, const type_t *dst, const type_t *src)
{
return error (e, "cannot bind reference of type %s to %s",
get_type_string (dst), get_type_string (src));
}
const expr_t *
test_error (const expr_t *e, const type_t *t)
{
dstring_t *s = dstring_newstr ();
print_type_str (s, t);
auto err = error (e, "%s cannot be tested", s->str);
dstring_delete (s);
return err;
}
expr_t *
new_expr (void)
{
expr_t *e;
ALLOC (16384, expr_t, exprs, e);
e->loc = pr.loc;
return e;
}
void
restore_src_loc (expr_t **e)
{
if (*e) {
pr.loc = (*e)->loc;
FREE (exprs, *e);
}
}
expr_t *
set_src_loc (const expr_t *e)
{
if (!e) {
return nullptr;
}
// save the current source location
auto n = new_expr ();
n->type = ex_error;
pr.loc = e->loc;
return n;
}
ex_listitem_t *
new_listitem (const expr_t *e)
{
ex_listitem_t *li;
ALLOC (16384, ex_listitem_t, listitems, li);
li->expr = e;
return li;
}
void
list_append (ex_list_t *list, const expr_t *expr)
{
if (!list->tail) {
list->tail = &list->head;
}
auto li = new_listitem (expr);
*list->tail = li;
list->tail = &li->next;
}
void
list_append_list (ex_list_t *dst, const ex_list_t *src)
{
if (!dst->tail) {
dst->tail = &dst->head;
}
for (auto s = src->head; s; s = s->next) {
auto li = new_listitem (s->expr);
*dst->tail = li;
dst->tail = &li->next;
}
}
void
list_prepend (ex_list_t *list, const expr_t *expr)
{
if (!list->tail) {
list->tail = &list->head;
}
auto li = new_listitem (expr);
li->next = list->head;
list->head = li;
if (list->tail == &list->head) {
list->tail = &li->next;
}
}
expr_t *
expr_append_expr (expr_t *list, const expr_t *expr)
{
if (list->type != ex_list) {
internal_error (list, "not a list expression");
}
list_append (&list->list, expr);
return list;
}
expr_t *
expr_prepend_expr (expr_t *list, const expr_t *expr)
{
if (list->type != ex_list) {
internal_error (list, "not a list expression");
}
list_prepend (&list->list, expr);
return list;
}
expr_t *
expr_append_list (expr_t *list, ex_list_t *append)
{
if (list->type != ex_list) {
internal_error (list, "not a list expression");
}
*list->list.tail = append->head;
list->list.tail = append->tail;
return list;
}
expr_t *
expr_prepend_list (expr_t *list, ex_list_t *prepend)
{
if (list->type != ex_list) {
internal_error (list, "not a list expression");
}
if (!list->list.head) {
list->list.tail = prepend->tail;
}
*prepend->tail = list->list.head;
list->list.head = prepend->head;
return list;
}
expr_t *
new_list_expr (const expr_t *first)
{
auto list = new_expr ();
list->type = ex_list;
list->list.head = 0;
list->list.tail = &list->list.head;
if (first) {
expr_append_expr (list, first);
}
return list;
}
int
list_count (const ex_list_t *list)
{
int count = 0;
for (auto li = list->head; li; li = li->next) {
count++;
}
return count;
}
void
list_scatter (const ex_list_t *list, const expr_t **exprs)
{
for (auto li = list->head; li; li = li->next) {
*exprs++ = li->expr;
}
}
void
list_scatter_rev (const ex_list_t *list, const expr_t **exprs)
{
int count = list_count (list);
for (auto li = list->head; li; li = li->next) {
exprs[--count] = li->expr;
}
}
void
list_gather (ex_list_t *list, const expr_t **exprs, int count)
{
if (!list->tail) {
list->tail = &list->head;
}
while (count-- > 0) {
auto li = new_listitem (*exprs++);
*list->tail = li;
list->tail = &li->next;
}
}
const char *
new_label_name (void)
{
static int label = 0;
int lnum = ++label;
const char *fname = current_func->sym->name;
const char *lname;
lname = save_string (va (0, "$%s_%d", fname, lnum));
return lname;
}
expr_t *
new_error_expr (void)
{
expr_t *e = new_expr ();
e->type = ex_error;
return e;
}
expr_t *
new_state_expr (const expr_t *frame, const expr_t *think, const expr_t *step)
{
expr_t *s = new_expr ();
s->type = ex_state;
s->state.frame = frame;
s->state.think = think;
s->state.step = step;
return s;
}
expr_t *
new_bool_expr (ex_boollist_t *true_list, ex_boollist_t *false_list, const expr_t *e)
{
expr_t *b = new_expr ();
b->type = ex_bool;
b->boolean.true_list = true_list;
b->boolean.false_list = false_list;
b->boolean.e = e;
return b;
}
expr_t *
new_label_expr (void)
{
expr_t *l = new_expr ();
l->type = ex_label;
l->label.name = new_label_name ();
return l;
}
const expr_t *
named_label_expr (symbol_t *label)
{
symbol_t *sym;
expr_t *l;
if (!current_func) {
// XXX this might be only an error
internal_error (0, "label defined outside of function scope");
}
sym = symtab_lookup (current_func->label_scope, label->name);
if (sym) {
return sym->expr;
}
l = new_label_expr ();
l->label.name = save_string (va (0, "%s_%s", l->label.name,
label->name));
l->label.symbol = label;
label->sy_type = sy_expr;
label->expr = l;
symtab_addsymbol (current_func->label_scope, label);
return label->expr;
}
expr_t *
new_label_ref (const ex_label_t *label)
{
expr_t *l = new_expr ();
l->type = ex_labelref;
l->labelref.label = label;
((ex_label_t *) label)->used++;
return l;
}
expr_t *
new_block_expr (const expr_t *old)
{
scoped_src_loc (old);
expr_t *b = new_expr ();
b->type = ex_block;
if (old) {
if (old->type != ex_block) {
internal_error (old, "not a block expression");
}
b->block = old->block;
}
b->block.return_addr = __builtin_return_address (0);
return b;
}
expr_t *
new_binary_expr (int op, const expr_t *e1, const expr_t *e2)
{
if (e1->type == ex_error) {
internal_error (e1, "error expr in new_binary_expr");
}
if (e2 && e2->type == ex_error) {
internal_error (e2, "error expr in new_binary_expr");
}
expr_t *e = new_expr ();
e->type = ex_expr;
e->nodag = e1->nodag | e2->nodag;
e->expr.constant = is_constexpr (e1) && is_constexpr (e2);
e->expr.op = op;
e->expr.e1 = e1;
e->expr.e2 = e2;
return e;
}
expr_t *
build_block_expr (expr_t *list, bool set_result)
{
if (list->type != ex_list) {
return list;
}
expr_t *b = new_block_expr (0);
b->block.list = list->list;
if (set_result && b->block.list.tail != &b->block.list.head) {
auto last = (ex_listitem_t *) b->block.list.tail;
b->block.result = last->expr;
}
return b;
}
expr_t *
new_unary_expr (int op, const expr_t *e1)
{
if (e1 && e1->type == ex_error) {
internal_error (e1, "error expr in new_unary_expr");
}
expr_t *e = new_expr ();
e->type = ex_uexpr;
e->nodag = e1->nodag;
e->expr.constant = is_constexpr (e1);
e->expr.op = op;
e->expr.e1 = e1;
return e;
}
const expr_t *
paren_expr (const expr_t *e)
{
auto paren = new_expr ();
*paren = *e;
paren->paren = 1;
return paren;
}
expr_t *
new_horizontal_expr (int op, const expr_t *vec, type_t *type)
{
vec = convert_name (vec);
if (vec->type == ex_error) {
return (expr_t *) vec;
}
auto vec_type = get_type (vec);
if (!is_math (vec_type) || is_scalar (vec_type)) {
internal_error (vec, "horizontal operand not a vector type");
}
if (!is_scalar (type)) {
internal_error (vec, "horizontal result not a scalar type");
}
expr_t *e = new_expr ();
e->type = ex_horizontal;
e->hop.op = op;
e->hop.vec = vec;
e->hop.type = type;
return e;
}
const expr_t *
new_swizzle_expr (const expr_t *src, const char *swizzle)
{
src = convert_name (src);
if (src->type == ex_error) {
return (expr_t *) src;
}
auto src_type = get_type (src);
int src_width = type_width (src_type);
ex_swizzle_t swiz = {};
#define m(x) (1 << ((x) - 'a'))
#define v(x, mask) (((x) & 0x60) == 0x60 && (m(x) & (mask)))
#define vind(x) ((x) & 3)
#define cind(x) (-(((x) >> 3) ^ (x)) & 3)
#define tind(x) ((((~(x+1)>>2)&1) + x + 1) & 3)
const int color = m('r') | m('g') | m('b') | m('a');
const int vector = m('x') | m('y') | m('z') | m('w');
const int texture = m('s') | m('t') | m('p') | m('q');
int type_mask = 0;
int comp_count = 0;
for (const char *s = swizzle; *s; s++) {
if (comp_count >= 4) {
return error (src, "too many components in swizzle");
}
if (*s == '0') {
swiz.zero |= 1 << comp_count;
comp_count++;
} else if (*s == '-') {
swiz.neg |= 1 << comp_count;
} else {
int ind = 0;
int mask = 0;
if (v (*s, vector)) {
ind = vind (*s);
mask = 1;
} else if (v (*s, color)) {
ind = cind (*s);
mask = 2;
} else if (v (*s, texture)) {
ind = tind (*s);
mask = 4;
}
if (!mask) {
return error (src, "invalid component in swizzle");
}
if (type_mask & ~mask) {
return error (src, "mixed components in swizzle");
}
if (ind >= src_width) {
return error (src, "swizzle component out of bounds");
}
type_mask |= mask;
swiz.source[comp_count++] = ind;
}
}
swiz.zero |= (0xf << comp_count) & 0xf;
swiz.src = src;
swiz.type = vector_type (base_type (src_type), comp_count);
expr_t *expr = new_expr ();
expr->type = ex_swizzle;
expr->swizzle = swiz;
return expr;
}
const expr_t *
new_extend_expr (const expr_t *src, const type_t *type, int ext, bool rev)
{
expr_t *expr = new_expr ();
expr->type = ex_extend;
expr->extend.src = src;
expr->extend.extend = ext;
expr->extend.reverse = rev;
expr->extend.type = type;
return evaluate_constexpr (expr);
}
expr_t *
new_def_expr (def_t *def)
{
expr_t *e = new_expr ();
e->type = ex_def;
e->def = def;
return e;
}
expr_t *
new_symbol_expr (symbol_t *symbol)
{
expr_t *e = new_expr ();
e->type = ex_symbol;
e->symbol = symbol;
return e;
}
expr_t *
new_temp_def_expr (const type_t *type)
{
expr_t *e = new_expr ();
e->type = ex_temp;
e->temp.type = unalias_type (type);
return e;
}
expr_t *
new_nil_expr (void)
{
expr_t *e = new_expr ();
e->type = ex_nil;
return e;
}
expr_t *
new_args_expr (void)
{
expr_t *e = new_expr ();
e->type = ex_args;
return e;
}
const expr_t *
new_value_expr (ex_value_t *value, bool implicit)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->value = value;
e->implicit = implicit;
return e;
}
const expr_t *
new_zero_expr (const type_t *type)
{
pr_type_t zero[type_size (type)] = {};
return new_value_expr (new_type_value (type, zero), false);
}
const expr_t *
new_name_expr (const char *name)
{
expr_t *e = new_expr ();
symbol_t *sym;
sym = symtab_lookup (current_symtab, name);
if (!sym)
sym = new_symbol (name);
e->type = ex_symbol;
e->symbol = sym;
return e;
}
const expr_t *
new_string_expr (const char *string_val)
{
return new_value_expr (new_string_val (string_val), false);
}
const expr_t *
new_double_expr (double double_val, bool implicit)
{
return new_value_expr (new_double_val (double_val), implicit);
}
const expr_t *
new_float_expr (float float_val, bool implicit)
{
return new_value_expr (new_float_val (float_val), implicit);
}
const expr_t *
new_vector_expr (const float *vector_val)
{
return new_value_expr (new_vector_val (vector_val), false);
}
const expr_t *
new_entity_expr (int entity_val)
{
return new_value_expr (new_entity_val (entity_val), false);
}
const expr_t *
new_deffield_expr (int field_val, const type_t *type, def_t *def)
{
return new_value_expr (new_field_val (field_val, type, def), false);
}
const expr_t *
new_func_expr (int func_val, const type_t *type)
{
return new_value_expr (new_func_val (func_val, type), false);
}
const expr_t *
new_pointer_expr (int val, const type_t *type, def_t *def)
{
return new_value_expr (new_pointer_val (val, type, def, 0), false);
}
const expr_t *
new_quaternion_expr (const float *quaternion_val)
{
return new_value_expr (new_quaternion_val (quaternion_val), false);
}
const expr_t *
new_int_expr (int int_val, bool implicit)
{
return new_value_expr (new_int_val (int_val), implicit);
}
const expr_t *
new_uint_expr (unsigned uint_val)
{
return new_value_expr (new_uint_val (uint_val), false);
}
const expr_t *
new_long_expr (pr_long_t long_val, bool implicit)
{
return new_value_expr (new_long_val (long_val), implicit);
}
bool
is_long_val (const expr_t *e)
{
if (e->type == ex_nil) {
return true;
}
if (e->type == ex_value && e->value->lltype == ev_long) {
return true;
}
if (e->type == ex_symbol && e->symbol->sy_type == sy_const) {
auto type = e->symbol->type;
if (is_long (type)) {
return true;
}
}
if (e->type == ex_def && e->def->constant) {
auto type = e->def->type;
if (is_long (type)) {
return true;
}
}
return false;
}
bool
is_ulong_val (const expr_t *e)
{
if (e->type == ex_nil) {
return true;
}
if (e->type == ex_value && e->value->lltype == ev_ulong) {
return true;
}
if (e->type == ex_symbol && e->symbol->sy_type == sy_const) {
auto type = e->symbol->type;
if (is_ulong (type)) {
return true;
}
}
if (e->type == ex_def && e->def->constant) {
auto type = e->def->type;
if (is_ulong (type)) {
return true;
}
}
return false;
}
pr_long_t
expr_long (const expr_t *e)
{
if (e->type == ex_nil) {
return 0;
}
if (e->type == ex_value && e->value->lltype == ev_long) {
return e->value->long_val;
}
internal_error (e, "not a long constant");
}
const expr_t *
new_ulong_expr (pr_ulong_t ulong_val)
{
return new_value_expr (new_ulong_val (ulong_val), false);
}
pr_ulong_t
expr_ulong (const expr_t *e)
{
if (e->type == ex_nil) {
return 0;
}
if (e->type == ex_value && e->value->lltype == ev_ulong) {
return e->value->ulong_val;
}
internal_error (e, "not a ulong constant");
}
const expr_t *
new_short_expr (short short_val)
{
return new_value_expr (new_short_val (short_val), false);
}
const expr_t *
new_ushort_expr (unsigned short ushort_val)
{
return new_value_expr (new_ushort_val (ushort_val), false);
}
bool
is_error (const expr_t *e)
{
return e->type == ex_error;
}
bool
is_constant (const expr_t *e)
{
while (e->type == ex_alias) {
e = e->alias.expr;
}
if (e->type == ex_nil || e->type == ex_value || e->type == ex_labelref
|| (e->type == ex_symbol && e->symbol->sy_type == sy_const)
|| (e->type == ex_symbol && e->symbol->sy_type == sy_def
&& e->symbol->def->constant))
return true;
return false;
}
bool
is_constexpr (const expr_t *e)
{
while (e->type == ex_alias) {
e = e->alias.expr;
}
if ((e->type == ex_expr || e->type == ex_uexpr) && e->expr.constant) {
return true;
}
if (e->type == ex_symbol) {
return e->symbol->is_constexpr;
}
return is_constant (e);
}
bool
is_variable (const expr_t *e)
{
while (e->type == ex_alias) {
e = e->alias.expr;
}
if (e->type == ex_def
|| (e->type == ex_symbol && e->symbol->sy_type == sy_def)
|| e->type == ex_temp) {
return true;
}
return false;
}
bool
is_selector (const expr_t *e)
{
return e->type == ex_selector;
}
const expr_t *
constant_expr (const expr_t *e)
{
symbol_t *sym;
ex_value_t *value;
if (!is_constant (e))
return e;
if (e->type == ex_nil || e->type == ex_value || e->type == ex_labelref)
return e;
if (e->type != ex_symbol)
return e;
sym = e->symbol;
if (sym->sy_type == sy_const) {
value = sym->value;
} else if (sym->sy_type == sy_def && sym->def->constant) {
//FIXME pointers and fields
internal_error (e, "what to do here?");
//memset (&value, 0, sizeof (value));
//memcpy (&value.v, &D_INT (sym->def),
//type_size (sym->def->type) * sizeof (pr_type_t));
} else {
return e;
}
scoped_src_loc (e);
return new_value_expr (value, false);
}
bool
is_nil (const expr_t *e)
{
return e->type == ex_nil;
}
bool
is_string_val (const expr_t *e)
{
if (e->type == ex_nil)
return true;
if (e->type == ex_value && e->value->lltype == ev_string)
return true;
if (e->type == ex_symbol && e->symbol->sy_type == sy_const
&& e->symbol->type->type == ev_string)
return true;
return false;
}
const char *
expr_string (const expr_t *e)
{
if (e->type == ex_nil)
return nullptr;
if (e->type == ex_value && e->value->lltype == ev_string)
return e->value->string_val;
internal_error (e, "not a string constant");
}
bool
is_float_val (const expr_t *e)
{
if (e->type == ex_nil)
return true;
if (e->type == ex_value && e->value->lltype == ev_float)
return true;
if (e->type == ex_symbol && e->symbol->sy_type == sy_const
&& is_float (e->symbol->type))
return true;
return false;
}
bool
is_double_val (const expr_t *e)
{
if (e->type == ex_nil)
return true;
if (e->type == ex_value && e->value->lltype == ev_double)
return true;
if (e->type == ex_symbol && e->symbol->sy_type == sy_const
&& is_double (e->symbol->type))
return true;
return false;
}
double
expr_double (const expr_t *e)
{
if (e->type == ex_nil)
return 0;
if (e->type == ex_value && e->value->lltype == ev_double)
return e->value->double_val;
if (e->type == ex_symbol && e->symbol->sy_type == sy_const
&& e->symbol->type->type == ev_double)
return e->symbol->value->double_val;
if (e->type == ex_symbol && e->symbol->sy_type == sy_def
&& e->symbol->def->constant
&& is_double (e->symbol->def->type))
return D_DOUBLE (e->symbol->def);
internal_error (e, "not a double constant");
}
float
expr_float (const expr_t *e)
{
if (e->type == ex_nil)
return 0;
if (e->type == ex_value && e->value->lltype == ev_float)
return e->value->float_val;
if (e->type == ex_symbol && e->symbol->sy_type == sy_const
&& e->symbol->type->type == ev_float)
return e->symbol->value->float_val;
if (e->type == ex_symbol && e->symbol->sy_type == sy_def
&& e->symbol->def->constant
&& is_float (e->symbol->def->type))
return D_FLOAT (e->symbol->def);
internal_error (e, "not a float constant");
}
bool
is_vector_val (const expr_t *e)
{
if (e->type == ex_nil)
return true;
if (e->type == ex_value && e->value->lltype == ev_vector)
return true;
if (e->type == ex_symbol && e->symbol->sy_type == sy_const
&& e->symbol->type->type == ev_vector)
return true;
return false;
}
const float *
expr_vector (const expr_t *e)
{
if (e->type == ex_nil)
return vec3_origin;
if (e->type == ex_value && e->value->lltype == ev_vector)
return e->value->vector_val;
if (e->type == ex_symbol && e->symbol->sy_type == sy_const
&& e->symbol->type->type == ev_vector)
return e->symbol->value->vector_val;
if (e->type == ex_symbol && e->symbol->sy_type == sy_def
&& e->symbol->def->constant
&& e->symbol->def->type->type == ev_vector)
return D_VECTOR (e->symbol->def);
internal_error (e, "not a vector constant");
}
bool
is_quaternion_val (const expr_t *e)
{
if (e->type == ex_nil)
return true;
if (e->type == ex_value && e->value->lltype == ev_quaternion)
return true;
if (e->type == ex_symbol && e->symbol->sy_type == sy_const
&& e->symbol->type->type == ev_quaternion)
return true;
return false;
}
const float *
expr_quaternion (const expr_t *e)
{
if (e->type == ex_nil)
return quat_origin;
if (e->type == ex_value && e->value->lltype == ev_quaternion)
return e->value->quaternion_val;
if (e->type == ex_symbol && e->symbol->sy_type == sy_const
&& e->symbol->type->type == ev_quaternion)
return e->symbol->value->quaternion_val;
if (e->type == ex_symbol && e->symbol->sy_type == sy_def
&& e->symbol->def->constant
&& e->symbol->def->type->type == ev_quaternion)
return D_QUAT (e->symbol->def);
internal_error (e, "not a quaternion constant");
}
bool
is_int_val (const expr_t *e)
{
if (e->type == ex_nil) {
return true;
}
if (e->type == ex_value && e->value->lltype == ev_int) {
return true;
}
if (e->type == ex_symbol && e->symbol->sy_type == sy_const) {
auto type = e->symbol->type;
if (!is_long (type) && !is_ulong (type) && is_integral (type)) {
return true;
}
}
if (e->type == ex_def && e->def->constant) {
auto type = e->def->type;
if (!is_long (type) && !is_ulong (type) && is_integral (type)) {
return true;
}
}
return false;
}
int
expr_int (const expr_t *e)
{
if (e->type == ex_nil) {
return 0;
}
if (e->type == ex_value && e->value->lltype == ev_int) {
return e->value->int_val;
}
if (e->type == ex_value && e->value->lltype == ev_short) {
return e->value->short_val;
}
if (e->type == ex_symbol && e->symbol->sy_type == sy_const
&& (e->symbol->type->type == ev_int
|| is_enum (e->symbol->type))) {
return e->symbol->value->int_val;
}
if (e->type == ex_symbol && e->symbol->sy_type == sy_def
&& e->symbol->def->constant
&& is_integral (e->symbol->def->type)) {
return D_INT (e->symbol->def);
}
if (e->type == ex_def && e->def->constant
&& is_integral (e->def->type)) {
return D_INT (e->def);
}
internal_error (e, "not an int constant");
}
bool
is_uint_val (const expr_t *e)
{
if (e->type == ex_nil) {
return true;
}
if (e->type == ex_value && e->value->lltype == ev_uint) {
return true;
}
if (e->type == ex_symbol && e->symbol->sy_type == sy_const
&& is_integral (e->symbol->type)) {
return true;
}
if (e->type == ex_def && e->def->constant
&& is_integral (e->def->type)) {
return true;
}
return false;
}
unsigned
expr_uint (const expr_t *e)
{
if (e->type == ex_nil) {
return 0;
}
if (e->type == ex_value && e->value->lltype == ev_uint) {
return e->value->uint_val;
}
if (e->type == ex_symbol && e->symbol->sy_type == sy_const
&& e->symbol->type->type == ev_uint) {
return e->symbol->value->uint_val;
}
if (e->type == ex_symbol && e->symbol->sy_type == sy_def
&& e->symbol->def->constant
&& is_integral (e->symbol->def->type)) {
return D_INT (e->symbol->def);
}
if (e->type == ex_def && e->def->constant
&& is_integral (e->def->type)) {
return D_INT (e->def);
}
internal_error (e, "not an unsigned constant");
}
bool
is_short_val (const expr_t *e)
{
if (e->type == ex_nil) {
return true;
}
if (e->type == ex_value && e->value->lltype == ev_short) {
return true;
}
if (e->type == ex_symbol && e->symbol->sy_type == sy_const
&& e->symbol->type->type == ev_short) {
return true;
}
return false;
}
short
expr_short (const expr_t *e)
{
if (e->type == ex_nil) {
return 0;
}
if (e->type == ex_value && e->value->lltype == ev_short) {
return e->value->short_val;
}
if (e->type == ex_symbol && e->symbol->sy_type == sy_const
&& e->symbol->type->type == ev_short) {
return e->symbol->value->short_val;
}
internal_error (e, "not a short constant");
}
unsigned short
expr_ushort (const expr_t *e)
{
if (e->type == ex_nil) {
return 0;
}
if (e->type == ex_value && e->value->lltype == ev_ushort) {
return e->value->ushort_val;
}
if (e->type == ex_symbol && e->symbol->sy_type == sy_const
&& e->symbol->type->type == ev_ushort) {
return e->symbol->value->ushort_val;
}
internal_error (e, "not a ushort constant");
}
bool
is_integral_val (const expr_t *e)
{
if (is_constant (e)) {
if (is_int_val (e)) {
return true;
}
if (is_uint_val (e)) {
return true;
}
if (is_short_val (e)) {
return true;
}
if (is_long_val (e)) {
return true;
}
if (is_ulong_val (e)) {
return true;
}
}
return false;
}
bool
is_floating_val (const expr_t *e)
{
if (is_constant (e)) {
if (is_float_val (e)) {
return true;
}
if (is_double_val (e)) {
return true;
}
}
return false;
}
pr_long_t
expr_integral (const expr_t *e)
{
if (is_constant (e)) {
if (is_int_val (e)) {
return expr_int (e);
}
if (is_uint_val (e)) {
return expr_uint (e);
}
if (is_short_val (e)) {
return expr_short (e);
}
if (is_long_val (e)) {
return expr_long (e);
}
if (is_ulong_val (e)) {
return expr_ulong (e);
}
}
internal_error (e, "not an integral constant");
}
double
expr_floating (const expr_t *e)
{
if (is_constant (e)) {
if (is_float_val (e)) {
return expr_float (e);
}
if (is_double_val (e)) {
return expr_double (e);
}
}
internal_error (e, "not an integral constant");
}
bool
is_pointer_val (const expr_t *e)
{
if (e->type == ex_value && e->value->lltype == ev_ptr) {
return true;
}
return false;
}
bool
is_math_val (const expr_t *e)
{
while (e->type == ex_alias) {
e = e->alias.expr;
}
if (e->type == ex_value && is_math (e->value->type)) {
return true;
}
if (e->type == ex_symbol && e->symbol->sy_type == sy_const
&& is_math (e->symbol->value->type)) {
return true;
}
return false;
}
const expr_t *
new_alias_expr (const type_t *type, const expr_t *expr)
{
if (is_pointer (type) && expr->type == ex_address) {
auto new = new_address_expr (type, expr->address.lvalue,
expr->address.offset);
new->address.type = type;
return new;
}
if (expr->type == ex_alias) {
if (expr->alias.offset) {
return new_offset_alias_expr (type, expr, 0);
}
expr = expr->alias.expr;
}
// this can happen when constant folding an offset pointer results in
// a noop due to the offset being 0 and thus casting back to the original
// type
if (type == get_type (expr)) {
return (expr_t *) expr;
}
expr_t *alias = new_expr ();
alias->type = ex_alias;
alias->alias.type = type;
alias->alias.expr = expr;
alias->loc = expr->loc;
return edag_add_expr (alias);
}
const expr_t *
new_offset_alias_expr (const type_t *type, const expr_t *expr, int offset)
{
if (expr->type == ex_alias && expr->alias.offset) {
const expr_t *ofs_expr = expr->alias.offset;
if (!is_constant (ofs_expr)) {
internal_error (ofs_expr, "non-constant offset for alias expr");
}
offset += expr_int (ofs_expr);
if (expr->alias.expr->type == ex_alias) {
internal_error (expr, "alias expr of alias expr");
}
expr = expr->alias.expr;
}
expr_t *alias = new_expr ();
alias->type = ex_alias;
alias->alias.type = type;
alias->alias.expr = edag_add_expr (expr);
alias->alias.offset = edag_add_expr (new_int_expr (offset, false));
alias->loc = expr->loc;
return edag_add_expr (evaluate_constexpr (alias));
}
expr_t *
new_address_expr (const type_t *lvtype, const expr_t *lvalue,
const expr_t *offset)
{
expr_t *addr = new_expr ();
addr->type = ex_address;
addr->address.type = pointer_type (lvtype);
addr->address.lvalue = lvalue;
addr->address.offset = offset;
return addr;
}
expr_t *
new_assign_expr (const expr_t *dst, const expr_t *src)
{
expr_t *addr = new_expr ();
addr->type = ex_assign;
addr->assign.dst = dst;
addr->assign.src = src;
return addr;
}
expr_t *
new_return_expr (const expr_t *ret_val)
{
expr_t *retrn = new_expr ();
retrn->type = ex_return;
retrn->retrn.ret_val = ret_val;
return retrn;
}
expr_t *
new_adjstk_expr (int mode, int offset)
{
expr_t *adj = new_expr ();
adj->type = ex_adjstk;
adj->adjstk.mode = mode;
adj->adjstk.offset = offset;
return adj;
}
expr_t *
new_with_expr (int mode, int reg, const expr_t *val)
{
expr_t *with = new_expr ();
with->type = ex_with;
with->with.mode = mode;
with->with.reg = reg;
with->with.with = val;
return with;
}
static const expr_t *
param_expr (const char *name, const type_t *type)
{
symbol_t *sym;
expr_t *sym_expr;
sym = make_symbol (name, &type_param, pr.symtab->space, sc_extern);
if (!sym->table)
symtab_addsymbol (pr.symtab, sym);
sym_expr = new_symbol_expr (sym);
return new_alias_expr (type, sym_expr);
}
const expr_t *
new_ret_expr (type_t *type)
{
return param_expr (".return", type);
}
const expr_t *
new_param_expr (const type_t *type, int num)
{
return param_expr (va (0, ".param_%d", num), type);
}
expr_t *
new_memset_expr (const expr_t *dst, const expr_t *val, const expr_t *count)
{
expr_t *e = new_expr ();
e->type = ex_memset;
e->memset.dst = dst;
e->memset.val = val;
e->memset.count = count;
return e;
}
expr_t *
new_type_expr (const type_t *type)
{
expr_t *e = new_expr ();
e->type = ex_type;
e->typ.type = type;
return e;
}
expr_t *
append_expr (expr_t *block, const expr_t *e)
{
if (block->type != ex_block) {
internal_error (block, "not a block expression");
}
if (e == block) {
internal_error (block, "adding block to itself");
}
if (!e || e->type == ex_error)
return block;
list_append (&block->block.list, e);
return block;
}
expr_t *
prepend_expr (expr_t *block, const expr_t *e)
{
if (block->type != ex_block)
internal_error (block, "not a block expression");
if (!e || e->type == ex_error)
return block;
list_prepend (&block->block.list, e);
return block;
}
symbol_t *
get_name (const expr_t *e)
{
if (e->type == ex_symbol) {
return e->symbol;
}
return nullptr;
}
symbol_t *
get_struct_field (const type_t *t1, const expr_t *e1, const expr_t *e2)
{
symtab_t *strct = t1->symtab;
symbol_t *sym = get_name (e2);
symbol_t *field;
if (!strct) {
error (e1, "dereferencing pointer to incomplete type");
return nullptr;
}
if (!sym) {
error (e2, "field reference is not a name");
return nullptr;
}
field = symtab_lookup (strct, sym->name);
if (!field && !is_entity(t1) && !is_nonscalar (t1)) {
const char *name = t1->name;
if (!strncmp (name, "tag ", 4)) {
name += 4;
}
error (e2, "'%s' has no member named '%s'", name, sym->name);
}
return field;
}
static const expr_t *
swizzle_expr (const expr_t *vec, const expr_t *swizzle)
{
auto sym = get_name (swizzle);
if (!sym) {
// error already reported
return vec;
}
return new_swizzle_expr (vec, sym->name);
}
const expr_t *
field_expr (const expr_t *e1, const expr_t *e2)
{
const type_t *t1, *t2;
expr_t *e;
e1 = convert_name (e1);
if (e1->type == ex_error)
return e1;
if (e1->type == ex_symbol && e1->symbol->sy_type == sy_namespace) {
if (e2->type != ex_symbol) {
return error (e2, "symbol required for namespace access");
}
auto namespace = e1->symbol->namespace;
auto sym = symtab_lookup (namespace, e2->symbol->name);
if (!sym) {
return error (e2, "%s not in %s namespace",
e2->symbol->name, e1->symbol->name);
}
return new_symbol_expr (sym);
}
t1 = get_type (e1);
if (!t1) {
return new_error_expr ();
}
if (is_entity (t1)) {
symbol_t *field = 0;
if (e2->type == ex_symbol)
field = get_struct_field (&type_entity, e1, e2);
if (field) {
e2 = new_deffield_expr (0, field->type, field->def);
e = new_binary_expr ('.', e1, e2);
e->expr.type = field->type;
return e;
} else {
e2 = convert_name (e2);
t2 = get_type (e2);
if (e2->type == ex_error)
return e2;
if (t2->type == ev_field) {
e = new_binary_expr ('.', e1, e2);
e->expr.type = t2->fldptr.type;
return e;
}
}
} else if (is_pointer (t1)) {
if (is_struct (t1->fldptr.type) || is_union (t1->fldptr.type)) {
symbol_t *field;
field = get_struct_field (t1->fldptr.type, e1, e2);
if (!field)
return e1;
const expr_t *offset = new_short_expr (field->offset);
e1 = offset_pointer_expr (e1, offset);
if (e1->type == ex_error) {
return e1;
}
e1 = cast_expr (pointer_type (field->type), e1);
return unary_expr ('.', e1);
} else if (is_class (t1->fldptr.type)) {
class_t *class = t1->fldptr.type->class;
symbol_t *sym = e2->symbol;//FIXME need to check
symbol_t *ivar;
int protected = class_access (current_class, class);
ivar = class_find_ivar (class, protected, sym->name);
if (!ivar)
return new_error_expr ();
const expr_t *offset = new_short_expr (ivar->offset);
e1 = offset_pointer_expr (e1, offset);
e1 = cast_expr (pointer_type (ivar->type), e1);
if (e1->type == ex_error) {
return e1;
}
return unary_expr ('.', e1);
}
} else if (is_algebra (t1)) {
return algebra_field_expr (e1, e2);
} else if (is_nonscalar (t1) || is_struct (t1) || is_union (t1)) {
symbol_t *field;
field = get_struct_field (t1, e1, e2);
if (!field) {
if (is_nonscalar (t1)) {
return swizzle_expr (e1, e2);
}
return e1;
}
if (e1->type == ex_expr && e1->expr.op == '.'
&& is_entity(get_type (e1->expr.e1))) {
// undo the . expression
e2 = e1->expr.e2;
e1 = e1->expr.e1;
// offset the field expresion
if (e2->type == ex_symbol) {
symbol_t *sym;
def_t *def;
sym = symtab_lookup (pr.entity_fields, e2->symbol->name);
if (!sym) {
internal_error (e2, "failed to find entity field %s",
e2->symbol->name);
}
def = sym->def;
e2 = new_deffield_expr (0, field->type, def);
} else if (e2->type != ex_value
|| e2->value->lltype != ev_field) {
internal_error (e2, "unexpected field exression");
}
auto fv = new_field_val (e2->value->pointer.val + field->offset, field->type, e2->value->pointer.def);
scoped_src_loc (e2);
e2 = new_value_expr (fv, false);
// create a new . expression
return field_expr (e1, e2);
} else {
if (e1->type == ex_uexpr && e1->expr.op == '.') {
const expr_t *offset = new_short_expr (field->offset);
e1 = offset_pointer_expr (e1->expr.e1, offset);
e1 = cast_expr (pointer_type (field->type), e1);
return unary_expr ('.', e1);
} else {
return new_offset_alias_expr (field->type, e1, field->offset);
}
}
} else if (is_class (t1)) {
//Class instance variables aren't allowed and thus declaring one
//is treated as an error, so this is a follow-on error.
return error (e1, "class instance access");
}
return type_mismatch (e1, e2, '.');
}
const expr_t *
convert_from_bool (const expr_t *e, const type_t *type)
{
const expr_t *zero;
const expr_t *one;
expr_t *enum_zero, *enum_one;
if (is_float (type)) {
one = new_float_expr (1, false);
zero = new_float_expr (0, false);
} else if (is_int (type)) {
one = new_int_expr (1, false);
zero = new_int_expr (0, false);
} else if (is_enum (type) && enum_as_bool (type, &enum_zero, &enum_one)) {
zero = enum_zero;
one = enum_one;
} else if (is_uint (type)) {
one = new_uint_expr (1);
zero = new_uint_expr (0);
} else {
return error (e, "can't convert from boolean value");
}
auto cond = new_expr ();
*cond = *e;
return conditional_expr (cond, one, zero);
}
const expr_t *
convert_nil (const expr_t *e, const type_t *t)
{
scoped_src_loc (e);
auto nil = new_expr ();
nil->type = ex_nil;
nil->nil = t;
return nil;
}
bool
is_compare (int op)
{
if (op == QC_EQ || op == QC_NE || op == QC_LE || op == QC_GE
|| op == QC_LT || op == QC_GT || op == '>' || op == '<')
return true;
return false;
}
bool
is_math_op (int op)
{
if (op == '*' || op == '/' || op == '+' || op == '-')
return true;
return false;
}
bool
is_logic (int op)
{
if (op == QC_OR || op == QC_AND)
return true;
return false;
}
bool
is_deref (const expr_t *e)
{
return e->type == ex_uexpr && e->expr.op == '.';
}
bool
is_temp (const expr_t *e)
{
return e->type == ex_temp;
}
bool
has_function_call (const expr_t *e)
{
switch (e->type) {
case ex_bool:
return has_function_call (e->boolean.e);
case ex_block:
if (e->block.is_call)
return true;
case ex_list:
for (auto li = e->block.list.head; li; li = li->next)
if (has_function_call (li->expr))
return true;
return false;
case ex_expr:
return (has_function_call (e->expr.e1)
|| has_function_call (e->expr.e2));
case ex_uexpr:
return has_function_call (e->expr.e1);
case ex_alias:
return has_function_call (e->alias.expr);
case ex_address:
return has_function_call (e->address.lvalue);
case ex_assign:
return (has_function_call (e->assign.dst)
|| has_function_call (e->assign.src));
case ex_branch:
if (e->branch.type == pr_branch_call) {
return true;
}
if (e->branch.type == pr_branch_jump) {
return false;
}
return has_function_call (e->branch.test);
case ex_inout:
// in is just a cast of out, if it's not null
return has_function_call (e->inout.out);
case ex_return:
return has_function_call (e->retrn.ret_val);
case ex_horizontal:
return has_function_call (e->hop.vec);
case ex_swizzle:
return has_function_call (e->swizzle.src);
case ex_extend:
return has_function_call (e->extend.src);
case ex_error:
case ex_state:
case ex_label:
case ex_labelref:
case ex_def:
case ex_symbol:
case ex_temp:
case ex_vector:
case ex_selector:
case ex_nil:
case ex_value:
case ex_compound:
case ex_memset:
case ex_adjstk:
case ex_with:
case ex_args:
case ex_type:
case ex_decl:
return false;
case ex_multivec:
for (auto c = e->multivec.components.head; c; c = c->next) {
if (has_function_call (c->expr)) {
return true;
}
}
return false;
case ex_incop:
return has_function_call (e->incop.expr);
case ex_cond:
return (has_function_call (e->cond.test)
|| has_function_call (e->cond.true_expr)
|| has_function_call (e->cond.false_expr));
case ex_field:
return has_function_call (e->field.object);
case ex_array:
return (has_function_call (e->array.base)
|| has_function_call (e->array.index));
case ex_count:
break;
}
internal_error (e, "invalid expression type");
}
bool
is_function_call (const expr_t *e)
{
if (e->type != ex_block || !e->block.is_call) {
return false;
}
e = e->block.result;
return e->type == ex_branch && e->branch.type == pr_branch_call;
}
const expr_t *
asx_expr (int op, const expr_t *e1, const expr_t *e2)
{
if (e1->type == ex_error)
return e1;
else if (e2->type == ex_error)
return e2;
else {
e2 = paren_expr (e2);
return assign_expr (e1, binary_expr (op, e1, e2));
}
}
const expr_t *
branch_expr (int op, const expr_t *test, const expr_t *label)
{
// need to translate op due to precedence rules dictating the layout
// of the token ids
static pr_branch_e branch_type [] = {
pr_branch_eq,
pr_branch_ne,
pr_branch_lt,
pr_branch_gt,
pr_branch_le,
pr_branch_ge,
};
if (op < QC_EQ || op > QC_LE) {
internal_error (label, "invalid op: %d", op);
}
if (label && label->type != ex_label) {
internal_error (label, "not a label");
}
if (label) {
((expr_t *) label)->label.used++;
}
expr_t *branch = new_expr ();
branch->type = ex_branch;
branch->branch.type = branch_type[op - QC_EQ];
branch->branch.target = label;
branch->branch.test = test;
return branch;
}
const expr_t *
goto_expr (const expr_t *label)
{
if (label && label->type != ex_label) {
internal_error (label, "not a label");
}
if (label) {
((expr_t *) label)->label.used++;//FIXME cast
}
expr_t *branch = new_expr ();
branch->type = ex_branch;
branch->branch.type = pr_branch_jump;
branch->branch.target = label;
return branch;
}
const expr_t *
jump_table_expr (const expr_t *table, const expr_t *index)
{
expr_t *branch = new_expr ();
branch->type = ex_branch;
branch->branch.type = pr_branch_jump;
branch->branch.target = table;//FIXME separate? all branch types can
branch->branch.index = index;
return branch;
}
const expr_t *
new_call_expr (const expr_t *func, const expr_t *args, const type_t *ret_type)
{
expr_t *branch = new_expr ();
branch->type = ex_branch;
branch->branch.type = pr_branch_call;
branch->branch.target = func;
branch->branch.args = args;
branch->branch.ret_type = ret_type;
return branch;
}
const expr_t *
conditional_expr (const expr_t *cond, const expr_t *e1, const expr_t *e2)
{
if (cond->type == ex_error)
return cond;
if (e1->type == ex_error)
return e1;
if (e2->type == ex_error)
return e2;
expr_t *c = (expr_t *) convert_bool (cond, 1);
if (c->type == ex_error)
return c;
scoped_src_loc (cond);
expr_t *block = new_block_expr (0);
auto type1 = get_type (e1);
auto type2 = get_type (e2);
expr_t *tlabel = new_label_expr ();
expr_t *flabel = new_label_expr ();
expr_t *elabel = new_label_expr ();
backpatch (c->boolean.true_list, tlabel);
backpatch (c->boolean.false_list, flabel);
if (!type_same (type1, type2)) {
if (!type_assignable (type1, type2)
&& !type_assignable (type2, type1)) {
type1 = 0;
}
if (!type_assignable (type1, type2)) {
type1 = type2;
}
if (type_promotes (type2, type1)) {
type1 = type2;
}
}
block->block.result = type1 ? new_temp_def_expr (type1) : 0;
append_expr (block, c);
append_expr ((expr_t *) c->boolean.e, flabel);//FIXME cast
if (block->block.result)
append_expr (block, assign_expr (block->block.result, e2));
else
append_expr (block, e2);
append_expr (block, goto_expr (elabel));
append_expr (block, tlabel);
if (block->block.result)
append_expr (block, assign_expr (block->block.result, e1));
else
append_expr (block, e1);
append_expr (block, elabel);
return block;
}
expr_t *
new_incop_expr (int op, const expr_t *e, bool postop)
{
auto incop = new_expr ();
incop->type = ex_incop;
incop->incop = (ex_incop_t) {
.op = op,
.postop = postop,
.expr = e,
};
return incop;
}
expr_t *
new_cond_expr (const expr_t *test, const expr_t *true_expr,
const expr_t *false_expr)
{
auto cond = new_expr ();
cond->type = ex_cond;
cond->cond = (ex_cond_t) {
.test = test,
.true_expr = true_expr,
.false_expr = false_expr,
};
return cond;
}
expr_t *
new_field_expr (const expr_t *object, const expr_t *member)
{
auto field = new_expr ();
field->type = ex_field;
field->field = (ex_field_t) {
.object = object,
.member = member,
};
return field;
}
expr_t *
new_array_expr (const expr_t *base, const expr_t *index)
{
auto array = new_expr ();
array->type = ex_array;
array->array = (ex_array_t) {
.base = base,
.index = index,
};
return array;
}
expr_t *
new_decl_expr (specifier_t spec)
{
auto decl = new_expr ();
decl->type = ex_decl;
decl->decl = (ex_decl_t) {
.spec = spec,
};
return decl;
}
expr_t *
append_decl (expr_t *decl, symbol_t *sym, const expr_t *init)
{
auto expr = new_symbol_expr (sym);
if (init) {
expr = new_assign_expr (expr, init);
}
list_append (&decl->decl.list, expr);
return decl;
}
expr_t *
append_decl_list (expr_t *decl, const expr_t *list)
{
if (list->type != ex_list) {
internal_error (list, "not a list expression");
}
list_append_list (&decl->decl.list, &list->list);
return decl;
}
const expr_t *
incop_expr (int op, const expr_t *e, int postop)
{
if (e->type == ex_error)
return e;
auto one = new_int_expr (1, false); // int constants get auto-cast to float
if (is_scalar (get_type (e))) {
one = cast_expr (get_type (e), one);
}
if (postop) {
expr_t *t1, *t2;
auto type = get_type (e);
expr_t *block = new_block_expr (0);
if (e->type == ex_error) // get_type failed
return e;
t1 = new_temp_def_expr (type);
t2 = new_temp_def_expr (type);
append_expr (block, assign_expr (t1, e));
append_expr (block, assign_expr (t2, binary_expr (op, t1, one)));
if (e->type == ex_uexpr && e->expr.op == '.')
e = deref_pointer_expr (address_expr (e, 0));
append_expr (block, assign_expr (e, t2));
block->block.result = t1;
return block;
} else {
return asx_expr (op, e, one);
}
}
const expr_t *
array_expr (const expr_t *array, const expr_t *index)
{
array = convert_name (array);
index = convert_name (index);
auto array_type = get_type (array);
auto index_type = get_type (index);
const type_t *ele_type;
const expr_t *base;
const expr_t *ptr;
int ind = 0;
if (array->type == ex_error)
return array;
if (index->type == ex_error)
return index;
if (!is_pointer (array_type) && !is_array (array_type)
&& !is_nonscalar (array_type))
return error (array, "not an array");
if (!is_integral (index_type))
return error (index, "invalid array index type");
if (is_short_val (index))
ind = expr_short (index);
if (is_int_val (index))
ind = expr_int (index);
if (is_array (array_type)
&& array_type->array.size
&& is_constant (index)
&& (ind < array_type->array.base
|| ind - array_type->array.base >= array_type->array.size)) {
return error (index, "array index out of bounds");
}
if (is_nonscalar (array_type) && !is_matrix (array_type)
&& is_constant (index)
&& (ind < 0 || ind >= array_type->width)) {
return error (index, "array index out of bounds");
}
if (is_matrix (array_type)
&& is_constant (index)
&& (ind < 0 || ind >= array_type->columns)) {
return error (index, "array index out of bounds");
}
if (is_array (array_type)) {
ele_type = dereference_type (array_type);
base = new_int_expr (array_type->array.base, false);
} else if (is_pointer (array_type)) {
ele_type = array_type->fldptr.type;
base = new_int_expr (0, false);
} else {
ele_type = base_type (array_type);
if (is_matrix (array_type)) {
ele_type = vector_type (ele_type, array_type->width);
}
if (array->type == ex_uexpr && array->expr.op == '.') {
auto vec = offset_pointer_expr (array->expr.e1, index);
vec = cast_expr (pointer_type (ele_type), vec);
return unary_expr ('.', vec);
}
base = new_int_expr (0, false);
}
auto scale = new_int_expr (type_size (ele_type), false);
auto offset = binary_expr ('*', base, scale);
index = binary_expr ('*', index, scale);
index = binary_expr ('-', index, offset);
if (is_short_val (index))
ind = expr_short (index);
if (is_int_val (index))
ind = expr_int (index);
if (is_array (array_type)) {
if (array->type == ex_uexpr && array->expr.op == '.') {
ptr = array->expr.e1;
} else {
auto alias = new_offset_alias_expr (ele_type, array, 0);
ptr = new_address_expr (ele_type, alias, 0);
}
} else if (is_nonscalar (array_type)) {
auto alias = new_offset_alias_expr (ele_type, array, 0);
ptr = new_address_expr (ele_type, alias, 0);
} else {
ptr = array;
}
ptr = offset_pointer_expr (ptr, index);
ptr = cast_expr (pointer_type (ele_type), ptr);
auto e = unary_expr ('.', ptr);
return e;
}
const expr_t *
deref_pointer_expr (const expr_t *pointer)
{
auto pointer_type = get_type (pointer);
if (pointer->type == ex_error)
return pointer;
if (pointer_type->type != ev_ptr)
return error (pointer, "not a pointer");
return unary_expr ('.', pointer);
}
const expr_t *
offset_pointer_expr (const expr_t *pointer, const expr_t *offset)
{
auto ptr_type = get_type (pointer);
if (!is_pointer (ptr_type)) {
internal_error (pointer, "not a pointer");
}
if (!is_integral (get_type (offset))) {
internal_error (offset, "pointer offset is not an integer type");
}
const expr_t *ptr;
if (pointer->type == ex_alias && !pointer->alias.offset
&& is_integral (get_type (pointer->alias.expr))) {
ptr = pointer->alias.expr;
} else if (pointer->type == ex_address && is_constant (offset)) {
if (pointer->address.offset) {
offset = binary_expr ('+', pointer->address.offset, offset);
}
ptr = new_address_expr (ptr_type->fldptr.type,
pointer->address.lvalue, offset);
return ptr;
} else {
ptr = cast_expr (&type_int, pointer);
}
if (ptr->type == ex_error) {
return ptr;
}
ptr = binary_expr ('+', ptr, offset);
return cast_expr (ptr_type, ptr);
}
const expr_t *
address_expr (const expr_t *e1, const type_t *t)
{
expr_t *e;
e1 = convert_name (e1);
if (e1->type == ex_error)
return e1;
if (!t)
t = get_type (e1);
switch (e1->type) {
case ex_def:
{
auto def = e1->def;
auto type = def->type;
//FIXME this test should be in statements.c
if (options.code.progsversion == PROG_VERSION
&& (def->local || def->param)) {
e = new_address_expr (t, e1, 0);
return e;
}
if (is_array (type)) {
auto ptrval = new_pointer_val (0, t, def, 0);
return new_value_expr (ptrval, false);
} else {
return new_pointer_expr (0, t, def);
}
}
break;
case ex_symbol:
if (e1->symbol->sy_type == sy_def) {
auto def = e1->symbol->def;
auto type = def->type;
//FIXME this test should be in statements.c
if (options.code.progsversion == PROG_VERSION
&& (def->local || def->param)) {
return new_address_expr (t, e1, 0);
}
if (is_array (type)) {
auto ptrval = new_pointer_val (0, t, def, 0);
return new_value_expr (ptrval, false);
} else {
return new_pointer_expr (0, t, def);
}
break;
}
return error (e1, "invalid type for unary &");
case ex_expr:
if (e1->expr.op == '.') {
e = new_address_expr (e1->expr.type,
e1->expr.e1, e1->expr.e2);
break;
}
return error (e1, "invalid type for unary &");
case ex_uexpr:
if (e1->expr.op == '.') {
auto p = e1->expr.e1;
if (p->type == ex_expr && p->expr.op == '.') {
p = new_address_expr (p->expr.type, p->expr.e1, p->expr.e2);
}
return p;
}
return error (e1, "invalid type for unary &");
case ex_label:
return new_label_ref (&e1->label);
case ex_temp:
e = new_address_expr (t, e1, 0);
break;
case ex_alias:
if (!t) {
t = e1->alias.type;
}
return new_address_expr (t, e1, 0);
default:
return error (e1, "invalid type for unary &");
}
return e;
}
const expr_t *
build_if_statement (int not, const expr_t *test, const expr_t *s1, const expr_t *els, const expr_t *s2)
{
expr_t *if_expr;
expr_t *tl = new_label_expr ();
expr_t *fl = new_label_expr ();
if (els && !s2) {
warning (els,
"suggest braces around empty body in an ‘else’ statement");
}
if (!els && !s1) {
warning (test,
"suggest braces around empty body in an ‘if’ statement");
}
auto saved_loc = pr.loc;
pr.loc = test->loc;
if_expr = new_block_expr (0);
test = convert_bool (test, 1);
if (test->type != ex_error) {
if (not) {
backpatch (test->boolean.true_list, fl);
backpatch (test->boolean.false_list, tl);
} else {
backpatch (test->boolean.true_list, tl);
backpatch (test->boolean.false_list, fl);
}
append_expr ((expr_t *) test->boolean.e, tl);//FIXME cast
append_expr (if_expr, test);
}
append_expr (if_expr, s1);
if (els) {
pr.loc = els->loc;
}
if (s2) {
expr_t *nl = new_label_expr ();
append_expr (if_expr, goto_expr (nl));
append_expr (if_expr, fl);
append_expr (if_expr, s2);
append_expr (if_expr, nl);
} else {
append_expr (if_expr, fl);
}
pr.loc = saved_loc;
return if_expr;
}
const expr_t *
build_while_statement (int not, const expr_t *test, const expr_t *statement,
const expr_t *break_label, const expr_t *continue_label)
{
const expr_t *l1 = new_label_expr ();
const expr_t *l2 = break_label;
expr_t *while_expr;
auto saved_loc = pr.loc;
pr.loc = test->loc;
while_expr = new_block_expr (0);
append_expr (while_expr, goto_expr (continue_label));
append_expr (while_expr, l1);
append_expr (while_expr, statement);
append_expr (while_expr, continue_label);
test = convert_bool (test, 1);
if (test->type != ex_error) {
if (not) {
backpatch (test->boolean.true_list, l2);
backpatch (test->boolean.false_list, l1);
} else {
backpatch (test->boolean.true_list, l1);
backpatch (test->boolean.false_list, l2);
}
append_expr ((expr_t *) test->boolean.e, l2);//FIXME cast
append_expr (while_expr, test);
}
pr.loc = saved_loc;
return while_expr;
}
const expr_t *
build_do_while_statement (const expr_t *statement, int not, const expr_t *test,
const expr_t *break_label,
const expr_t *continue_label)
{
expr_t *l1 = new_label_expr ();
auto saved_loc = pr.loc;
expr_t *do_while_expr;
if (!statement) {
warning (break_label,
"suggest braces around empty body in a ‘do’ statement");
}
pr.loc = test->loc;
do_while_expr = new_block_expr (0);
append_expr (do_while_expr, l1);
append_expr (do_while_expr, statement);
append_expr (do_while_expr, continue_label);
test = convert_bool (test, 1);
if (test->type != ex_error) {
if (not) {
backpatch (test->boolean.true_list, break_label);
backpatch (test->boolean.false_list, l1);
} else {
backpatch (test->boolean.true_list, l1);
backpatch (test->boolean.false_list, break_label);
}
append_expr ((expr_t *) test->boolean.e, break_label);//FIXME
append_expr (do_while_expr, test);
}
pr.loc = saved_loc;
return do_while_expr;
}
const expr_t *
build_for_statement (const expr_t *init, const expr_t *test, const expr_t *next,
const expr_t *statement, const expr_t *break_label,
const expr_t *continue_label)
{
expr_t *tl = new_label_expr ();
const expr_t *fl = break_label;
expr_t *l1 = 0;
const expr_t *t;
auto saved_loc = pr.loc;
expr_t *for_expr;
if (next)
t = next;
else if (test)
t = test;
else if (init)
t = init;
else
t = continue_label;
pr.loc = t->loc;
for_expr = new_block_expr (0);
append_expr (for_expr, init);
if (test) {
l1 = new_label_expr ();
append_expr (for_expr, goto_expr (l1));
}
append_expr (for_expr, tl);
append_expr (for_expr, statement);
append_expr (for_expr, continue_label);
append_expr (for_expr, next);
if (test) {
append_expr (for_expr, l1);
test = convert_bool (test, 1);
if (test->type != ex_error) {
backpatch (test->boolean.true_list, tl);
backpatch (test->boolean.false_list, fl);
append_expr ((expr_t *) test->boolean.e, fl);//FIXME cast
append_expr (for_expr, test);
}
} else {
append_expr (for_expr, goto_expr (tl));
append_expr (for_expr, fl);
}
pr.loc = saved_loc;
return for_expr;
}
const expr_t *
build_state_expr (const expr_t *e)
{
int count = e ? list_count (&e->list) : 0;
if (count < 2) {
return error (e, "not enough state arguments");
}
if (count > 3) {
return error (e, "too many state arguments");
}
const expr_t *state_args[3] = {};
list_scatter (&e->list, state_args);
const expr_t *frame = state_args[0];
const expr_t *think = state_args[1];
const expr_t *step = state_args[2];
if (think->type == ex_symbol)
think = think_expr (think->symbol);
if (is_int_val (frame))
frame = cast_expr (&type_float, frame);
if (!type_assignable (&type_float, get_type (frame)))
return error (frame, "invalid type for frame number");
if (extract_type (think) != ev_func)
return error (think, "invalid type for think");
if (step) {
if (is_int_val (step))
step = cast_expr (&type_float, step);
if (!type_assignable (&type_float, get_type (step)))
return error (step, "invalid type for step");
}
return new_state_expr (frame, think, step);
}
const expr_t *
think_expr (symbol_t *think_sym)
{
symbol_t *sym;
if (think_sym->table)
return new_symbol_expr (think_sym);
sym = symtab_lookup (current_symtab, "think");
if (sym && sym->sy_type == sy_def && sym->type
&& sym->type->type == ev_field
&& sym->type->fldptr.type->type == ev_func) {
think_sym->type = sym->type->fldptr.type;
} else {
think_sym->type = &type_func;
}
think_sym = function_symbol ((specifier_t) { .sym = think_sym });
make_function (think_sym, 0, current_symtab->space, current_storage);
return new_symbol_expr (think_sym);
}
const expr_t *
encode_expr (const type_t *type)
{
dstring_t *encoding = dstring_newstr ();
encode_type (encoding, type);
auto e = new_string_expr (encoding->str);
free (encoding);
return e;
}
const expr_t *
sizeof_expr (const expr_t *expr, const type_t *type)
{
if (!((!expr) ^ (!type)))
internal_error (0, 0);
if (!type)
type = get_type (expr);
if (type) {
expr = new_int_expr (type_aligned_size (type), false);
}
return expr;
}