quakeforge/libs/video/renderer/r_light.c
Bill Currie 2383c12a4a [renderer] Move r_framecount update out of render_scene
This fixes the broken dynamic lighting in fisheye rendering. It does
mean that frustum culling of lit surfaces needed to be removed, but if
not doing frustum culling on lit surfaces was good enough for a P90,
it's probably good enough for an i7-6850K.
2023-01-16 00:38:43 +09:00

557 lines
12 KiB
C

/*
r_light.c
common lightmap code.
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <math.h>
#include <stdio.h>
#include "qfalloca.h"
#include "QF/cvar.h"
#include "QF/render.h"
#include "compat.h"
#include "r_internal.h"
dlight_t *r_dlights;
vec3_t ambientcolor;
unsigned int r_maxdlights;
static int r_dlightframecount;
void
R_FindNearLights (vec4f_t pos, int count, dlight_t **lights)
{
float *scores = alloca (count * sizeof (float));
float score;
dlight_t *dl;
unsigned i;
int num = 0, j;
vec3_t d;
dl = r_dlights;
for (i = 0; i < r_maxdlights; i++, dl++) {
if (dl->die < r_data->realtime || !dl->radius)
continue;
VectorSubtract (dl->origin, pos, d);
score = DotProduct (d, d) / dl->radius;
if (!num) {
scores[0] = score;
lights[0] = dl;
num = 1;
} else if (score <= scores[0]) {
memmove (&lights[1], &lights[0],
(count - 1) * sizeof (dlight_t *));
memmove (&scores[1], &scores[0], (count - 1) * sizeof (float));
scores[0] = score;
lights[0] = dl;
if (num < count)
num++;
} else if (score > scores[num - 1]) {
if (num < count) {
scores[num] = score;
lights[num] = dl;
num++;
}
} else {
for (j = num - 1; j > 0; j--) {
if (score > scores[j - 1]) {
memmove (&lights[j + 1], &lights[j],
(count - j) * sizeof (dlight_t *));
memmove (&scores[j + 1], &scores[j],
(count - j) * sizeof (float));
scores[j] = score;
lights[j] = dl;
if (num < count)
num++;
break;
}
}
}
}
for (j = num; j < count; j++)
lights[j] = 0;
}
void
R_MaxDlightsCheck (int max_dlights)
{
r_maxdlights = bound (0, max_dlights, MAX_DLIGHTS);
if (r_dlights)
free (r_dlights);
r_dlights=0;
if (r_maxdlights)
r_dlights = (dlight_t *) calloc (r_maxdlights, sizeof (dlight_t));
R_ClearDlights();
}
void
R_AnimateLight (void)
{
int i, j, k;
if (!r_data->lightstyle) {
return;
}
// light animations
// 'm' is normal light, 'a' is no light, 'z' is double bright
i = (int) (r_data->realtime * 10);
for (j = 0; j < MAX_LIGHTSTYLES; j++) {
if (!r_data->lightstyle[j].length) {
d_lightstylevalue[j] = 256;
continue;
}
if (r_flatlightstyles == 2) {
k = r_data->lightstyle[j].peak - 'a';
} else if (r_flatlightstyles == 1) {
k = r_data->lightstyle[j].average - 'a';
} else {
k = i % r_data->lightstyle[j].length;
k = r_data->lightstyle[j].map[k] - 'a';
}
d_lightstylevalue[j] = k * 22;
}
}
static inline void
real_mark_surfaces (float dist, msurface_t *surf, vec4f_t lightorigin,
dlight_t *light, unsigned lightnum)
{
float dist2, is, it;
float maxdist = light->radius * light->radius;
vec3_t impact;
unsigned ind, bit;
dist2 = maxdist - dist * dist;
VectorMultSub (light->origin, dist, surf->plane->normal, impact);
is = DotProduct (impact, surf->texinfo->vecs[0])
+ surf->texinfo->vecs[0][3] - surf->texturemins[0];
it = DotProduct (impact, surf->texinfo->vecs[1])
+ surf->texinfo->vecs[1][3] - surf->texturemins[1];
// compress the square to a point
if (is > surf->extents[0])
is -= surf->extents[0];
else if (is > 0)
is = 0;
if (it > surf->extents[1])
it -= surf->extents[1];
else if (it > 0)
it = 0;
if (is * is + it * it > dist2)
return;
if (surf->dlightframe != r_dlightframecount) {
memset (surf->dlightbits, 0, sizeof (surf->dlightbits));
surf->dlightframe = r_dlightframecount;
}
ind = lightnum / 32;
bit = 1 << (lightnum % 32);
surf->dlightbits[ind] |= bit;
}
static inline void
mark_surfaces (msurface_t *surf, vec4f_t lightorigin, dlight_t *light,
int lightnum)
{
float dist;
dist = PlaneDiff(lightorigin, surf->plane);
if (surf->flags & SURF_PLANEBACK)
dist = -dist;
if ((dist < 0 && !(surf->flags & SURF_LIGHTBOTHSIDES))
|| dist > light->radius)
return;
real_mark_surfaces (dist, surf, lightorigin, light, lightnum);
}
// LordHavoc: heavily modified, to eliminate unnecessary texture uploads,
// and support bmodel lighting better
void
R_RecursiveMarkLights (mod_brush_t *brush, vec4f_t lightorigin,
dlight_t *light, int lightnum, int node_id)
{
unsigned i;
float ndist, maxdist;
msurface_t *surf;
maxdist = light->radius;
loc0:
if (node_id < 0)
return;
mnode_t *node = brush->nodes + node_id;
ndist = dotf (lightorigin, node->plane)[0];
if (ndist > maxdist * maxdist) {
// Save time by not pushing another stack frame.
if (node->children[0] >= 0) {
node_id = node->children[0];
goto loc0;
}
return;
}
if (ndist < -maxdist * maxdist) {
if (node->children[1] >= 0) {
node_id = node->children[1];
goto loc0;
}
return;
}
// mark the polygons
surf = brush->surfaces + node->firstsurface;
for (i = 0; i < node->numsurfaces; i++, surf++) {
mark_surfaces (surf, lightorigin, light, lightnum);
}
if (node->children[0] >= 0) {
if (node->children[1] >= 0)
R_RecursiveMarkLights (brush, lightorigin, light, lightnum,
node->children[1]);
node_id = node->children[0];
goto loc0;
} else if (node->children[1] >= 0) {
node_id = node->children[1];
goto loc0;
}
}
static void
R_MarkLights (vec4f_t lightorigin, dlight_t *light, int lightnum,
model_t *model)
{
mod_brush_t *brush = &model->brush;
mleaf_t *pvsleaf = Mod_PointInLeaf (lightorigin, model);
if (!pvsleaf->compressed_vis) {
int node_id = brush->hulls[0].firstclipnode;
R_RecursiveMarkLights (brush, lightorigin, light, lightnum, node_id);
} else {
float radius = light->radius;
vec3_t mins, maxs;
unsigned leafnum = 0;
byte *in = pvsleaf->compressed_vis;
byte vis_bits;
mins[0] = lightorigin[0] - radius;
mins[1] = lightorigin[1] - radius;
mins[2] = lightorigin[2] - radius;
maxs[0] = lightorigin[0] + radius;
maxs[1] = lightorigin[1] + radius;
maxs[2] = lightorigin[2] + radius;
while (leafnum < brush->visleafs) {
int b;
if (!(vis_bits = *in++)) {
leafnum += (*in++) * 8;
continue;
}
for (b = 1; b < 256 && leafnum < brush->visleafs;
b <<= 1, leafnum++) {
int m;
mleaf_t *leaf = &brush->leafs[leafnum + 1];
if (!(vis_bits & b))
continue;
if (r_leaf_visframes[leafnum + 1] != r_visframecount)
continue;
if (leaf->mins[0] > maxs[0] || leaf->maxs[0] < mins[0]
|| leaf->mins[1] > maxs[1] || leaf->maxs[1] < mins[1]
|| leaf->mins[2] > maxs[2] || leaf->maxs[2] < mins[2])
continue;
msurface_t **msurf = brush->marksurfaces + leaf->firstmarksurface;
for (m = 0; m < leaf->nummarksurfaces; m++) {
msurface_t *surf = *msurf++;
int surf_id = surf - brush->surfaces;
if (r_face_visframes[surf_id] != r_visframecount)
continue;
mark_surfaces (surf, lightorigin, light, lightnum);
}
}
}
}
}
void
R_PushDlights (const vec3_t entorigin)
{
unsigned int i;
dlight_t *l;
r_dlightframecount = r_framecount;
if (!r_dlight_lightmap)
return;
l = r_dlights;
for (i = 0; i < r_maxdlights; i++, l++) {
if (l->die < r_data->realtime || !l->radius)
continue;
vec4f_t lightorigin;
VectorSubtract (l->origin, entorigin, lightorigin);
lightorigin[3] = 1;
R_MarkLights (lightorigin, l, i, r_refdef.worldmodel);
}
}
/* LIGHT SAMPLING */
vec3_t lightspot;
static int
calc_lighting_1 (msurface_t *surf, int ds, int dt)
{
int se_s = ((surf->extents[0] >> 4) + 1);
int se_t = ((surf->extents[0] >> 4) + 1);
int se_size = se_s * se_t;
int r = 0, maps;
byte *lightmap;
unsigned int scale;
ds >>= 4;
dt >>= 4;
lightmap = surf->samples;
if (lightmap) {
lightmap += dt * se_s + ds;
for (maps = 0; maps < MAXLIGHTMAPS && surf->styles[maps] != 255;
maps++) {
scale = d_lightstylevalue[surf->styles[maps]];
r += *lightmap * scale;
lightmap += se_size;
}
r >>= 8;
}
ambientcolor[2] = ambientcolor[1] = ambientcolor[0] = r;
return r;
}
static int
calc_lighting_3 (msurface_t *surf, int ds, int dt)
{
int se_s = ((surf->extents[0] >> 4) + 1);
int se_t = ((surf->extents[0] >> 4) + 1);
int se_size = se_s * se_t * 3;
int r = 0, maps;
byte *lightmap;
float scale;
ds >>= 4;
dt >>= 4;
VectorZero (ambientcolor);
lightmap = surf->samples;
if (lightmap) {
lightmap += (dt * se_s + ds) * 3;
for (maps = 0; maps < MAXLIGHTMAPS && surf->styles[maps] != 255;
maps++) {
scale = d_lightstylevalue[surf->styles[maps]] / 256.0;
VectorMultAdd (ambientcolor, scale, lightmap, ambientcolor);
lightmap += se_size;
}
}
r = (ambientcolor[0] + ambientcolor[1] + ambientcolor[2]) / 3;
return r;
}
static int
RecursiveLightPoint (mod_brush_t *brush, int node_id, vec4f_t start,
vec4f_t end)
{
unsigned i;
int r, s, t, ds, dt, side;
float front, back, frac;
msurface_t *surf;
mtexinfo_t *tex;
loop:
if (node_id < 0)
return -1; // didn't hit anything
// calculate mid point
mnode_t *node = brush->nodes + node_id;
front = dotf (start, node->plane)[0];
back = dotf (end, node->plane)[0];
side = front < 0;
if ((back < 0) == side) {
node_id = node->children[side];
goto loop;
}
frac = front / (front - back);
vec4f_t mid = start + (end - start) * frac;
// go down front side
r = RecursiveLightPoint (brush, node->children[side], start, mid);
if (r >= 0)
return r; // hit something
if ((back < 0) == side)
return -1; // didn't hit anything
// check for impact on this node
VectorCopy (mid, lightspot);
surf = brush->surfaces + node->firstsurface;
for (i = 0; i < node->numsurfaces; i++, surf++) {
if (surf->flags & SURF_DRAWTILED)
continue; // no lightmaps
tex = surf->texinfo;
s = DotProduct (mid, tex->vecs[0]) + tex->vecs[0][3];
t = DotProduct (mid, tex->vecs[1]) + tex->vecs[1][3];
if (s < surf->texturemins[0] || t < surf->texturemins[1])
continue;
ds = s - surf->texturemins[0];
dt = t - surf->texturemins[1];
if (ds > surf->extents[0] || dt > surf->extents[1])
continue;
if (!surf->samples)
return 0;
if (mod_lightmap_bytes == 1)
return calc_lighting_1 (surf, ds, dt);
else
return calc_lighting_3 (surf, ds, dt);
return r;
}
// go down back side
return RecursiveLightPoint (brush, node->children[side ^ 1], mid, end);
}
int
R_LightPoint (mod_brush_t *brush, vec4f_t p)
{
if (!brush->lightdata) {
// allow dlights to have some effect, so don't go /quite/ fullbright
ambientcolor[2] = ambientcolor[1] = ambientcolor[0] = 200;
return 200;
}
vec4f_t end = p - (vec4f_t) { 0, 0, 2048, 0 };
int r = RecursiveLightPoint (brush, 0, p, end);
if (r == -1)
r = 0;
return r;
}
dlight_t *
R_AllocDlight (int key)
{
unsigned int i;
dlight_t *dl;
if (!r_maxdlights) {
return NULL;
}
// first look for an exact key match
if (key) {
dl = r_dlights;
for (i = 0; i < r_maxdlights; i++, dl++) {
if (dl->key == key) {
memset (dl, 0, sizeof (*dl));
dl->key = key;
dl->color[0] = dl->color[1] = dl->color[2] = 1;
return dl;
}
}
}
// then look for anything else
dl = r_dlights;
for (i = 0; i < r_maxdlights; i++, dl++) {
if (dl->die < r_data->realtime) {
memset (dl, 0, sizeof (*dl));
dl->key = key;
dl->color[0] = dl->color[1] = dl->color[2] = 1;
return dl;
}
}
dl = &r_dlights[0];
memset (dl, 0, sizeof (*dl));
dl->key = key;
return dl;
}
void
R_DecayLights (double frametime)
{
unsigned int i;
dlight_t *dl;
dl = r_dlights;
for (i = 0; i < r_maxdlights; i++, dl++) {
if (dl->die < r_data->realtime || !dl->radius)
continue;
dl->radius -= frametime * dl->decay;
if (dl->radius < 0)
dl->radius = 0;
}
}
void
R_ClearDlights (void)
{
if (r_maxdlights)
memset (r_dlights, 0, r_maxdlights * sizeof (dlight_t));
}