quakeforge/libs/video/renderer/vulkan/shader/lighting.frag
Bill Currie e1e4bf5659 [vulkan] Up the light limit to 768
For now, at least (I have some ideas to possibly reduce the numbers and
also to avoid the need for actual limits). I've seen gmsp3v2 use over
500 lights at once (it has over 1300), and I spent too long figuring out
that weird light behavior was due to  the limit being hit and lights
getting dropped (and even longer figuring out that more weird behavior
was due to the lack of shadows and the world being too bright in the
first place).
2022-05-19 13:26:45 +09:00

123 lines
3.6 KiB
GLSL

#version 450
layout (input_attachment_index = 0, set = 0, binding = 0) uniform subpassInput depth;
layout (input_attachment_index = 1, set = 0, binding = 1) uniform subpassInput color;
layout (input_attachment_index = 2, set = 0, binding = 2) uniform subpassInput emission;
layout (input_attachment_index = 3, set = 0, binding = 3) uniform subpassInput normal;
layout (input_attachment_index = 4, set = 0, binding = 4) uniform subpassInput position;
struct LightData {
vec4 color; // .a is intensity
vec4 position; // .w = 0 -> directional, .w = 1 -> point/cone
vec4 direction; // .w = -cos(cone_angle/2) (1 for omni/dir)
vec4 attenuation;
};
#define StyleMask 0x07f
#define ModelMask 0x380
#define ShadowMask 0xc00
#define LM_LINEAR (0 << 7) // light - dist (or radius + dist if -ve)
#define LM_INVERSE (1 << 7) // distFactor1 * light / dist
#define LM_INVERSE2 (2 << 7) // distFactor2 * light / (dist * dist)
#define LM_INFINITE (3 << 7) // light
#define LM_AMBIENT (4 << 7) // light
#define LM_INVERSE3 (5 << 7) // distFactor2 * light / (dist + distFactor2)**2
#define ST_NONE (0 << 10) // no shadows
#define ST_PLANE (1 << 10) // single plane shadow map (small spotlight)
#define ST_CASCADE (2 << 10) // cascaded shadow maps
#define ST_CUBE (3 << 10) // cubemap (omni, large spotlight)
layout (constant_id = 0) const int MaxLights = 768;
layout (set = 2, binding = 0) uniform sampler2DArrayShadow shadowCascade[MaxLights];
layout (set = 2, binding = 0) uniform sampler2DShadow shadowPlane[MaxLights];
layout (set = 2, binding = 0) uniform samplerCubeShadow shadowCube[MaxLights];
layout (set = 1, binding = 0) uniform Lights {
LightData lights[MaxLights];
int lightCount;
//mat4 shadowMat[MaxLights];
//vec4 shadowCascale[MaxLights];
};
layout (location = 0) out vec4 frag_color;
float
spot_cone (LightData light, vec3 incoming)
{
vec3 dir = light.direction.xyz;
float cone = light.direction.w;
float spotdot = dot (incoming, dir);
return 1 - smoothstep (cone, .995 * cone + 0.005, spotdot);
}
float
diffuse (vec3 incoming, vec3 normal)
{
float lightdot = dot (incoming, normal);
return clamp (lightdot, 0, 1);
}
float
shadow_cascade (sampler2DArrayShadow map)
{
return 1;
}
float
shadow_plane (sampler2DShadow map)
{
return 1;
}
float
shadow_cube (samplerCubeShadow map)
{
return 1;
}
void
main (void)
{
//float d = subpassLoad (depth).r;
vec3 c = subpassLoad (color).rgb;
vec3 e = subpassLoad (emission).rgb;
vec3 n = subpassLoad (normal).rgb;
vec3 p = subpassLoad (position).rgb;
vec3 light = vec3 (0);
if (MaxLights > 0) {
vec3 minLight = vec3 (0);
for (int i = 0; i < lightCount; i++) {
LightData l = lights[i];
vec3 dir = l.position.xyz - l.position.w * p;
float r2 = dot (dir, dir);
vec4 a = l.attenuation;
if (l.position.w * a.w * a.w * r2 >= 1) {
continue;
}
vec4 r = vec4 (r2, sqrt(r2), 1, 0);
vec3 incoming = dir / r.y;
float I = (1 - a.w * r.y) / dot (a, r);
/*int shadow = lights[i].data & ShadowMask;
if (shadow == ST_CASCADE) {
I *= shadow_cascade (shadowCascade[i]);
} else if (shadow == ST_PLANE) {
I *= shadow_plane (shadowPlane[i]);
} else if (shadow == ST_CUBE) {
I *= shadow_cube (shadowCube[i]);
}*/
float namb = dot(l.direction.xyz, l.direction.xyz);
I *= spot_cone (l, incoming) * diffuse (incoming, n);
I = mix (1, I, namb);
light += I * l.color.w * l.color.xyz;
}
light = max (light, minLight);
}
frag_color = vec4 (c * light + e, 1);
}