quakeforge/tools/qfcc/source/expr_assign.c
Bill Currie 6d5ffa9f8e [build] Move to non-recursive make
There's still some cleanup to do, but everything seems to be working
nicely: `make -j` works, `make distcheck` passes. There is probably
plenty of bitrot in the package directories (RPM, debian), though.

The vc project files have been removed since those versions are way out
of date and quakeforge is pretty much dependent on gcc now anyway.

Most of the old Makefile.am files  are now Makemodule.am.  This should
allow for new Makefile.am files that allow local building (to be added
on an as-needed bases).  The current remaining Makefile.am files are for
standalone sub-projects.a

The installable bins are currently built in the top-level build
directory. This may change if the clutter gets to be too much.

While this does make a noticeable difference in build times, the main
reason for the switch was to take care of the growing dependency issues:
now it's possible to build tools for code generation (eg, using qfcc and
ruamoko programs for code-gen).
2020-06-25 11:35:37 +09:00

360 lines
8.9 KiB
C

/*
expr_assign.c
assignment expression construction and manipulations
Copyright (C) 2001 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2001/06/15
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include "QF/alloc.h"
#include "QF/dstring.h"
#include "QF/mathlib.h"
#include "QF/sys.h"
#include "QF/va.h"
#include "tools/qfcc/include/qfcc.h"
#include "tools/qfcc/include/class.h"
#include "tools/qfcc/include/def.h"
#include "tools/qfcc/include/defspace.h"
#include "tools/qfcc/include/diagnostic.h"
#include "tools/qfcc/include/emit.h"
#include "tools/qfcc/include/expr.h"
#include "tools/qfcc/include/function.h"
#include "tools/qfcc/include/idstuff.h"
#include "tools/qfcc/include/method.h"
#include "tools/qfcc/include/options.h"
#include "tools/qfcc/include/reloc.h"
#include "tools/qfcc/include/shared.h"
#include "tools/qfcc/include/strpool.h"
#include "tools/qfcc/include/struct.h"
#include "tools/qfcc/include/symtab.h"
#include "tools/qfcc/include/type.h"
#include "tools/qfcc/include/value.h"
static expr_t *
check_assign_logic_precedence (expr_t *dst, expr_t *src)
{
if (src->type == ex_expr && !src->paren && is_logic (src->e.expr.op)) {
// traditional QuakeC gives = higher precedence than && and ||
expr_t *assignment;
notice (src, "precedence of `=' and `%s' inverted for "
"traditional code", get_op_string (src->e.expr.op));
// change {a = (b logic c)} to {(a = b) logic c}
assignment = assign_expr (dst, src->e.expr.e1);
assignment->paren = 1; // protect assignment from binary_expr
return binary_expr (src->e.expr.op, assignment, src->e.expr.e2);
}
return 0;
}
int
is_lvalue (const expr_t *expr)
{
switch (expr->type) {
case ex_def:
return !expr->e.def->constant;
case ex_symbol:
switch (expr->e.symbol->sy_type) {
case sy_name:
break;
case sy_var:
return 1;
case sy_const:
break;
case sy_type:
break;
case sy_expr:
break;
case sy_func:
break;
case sy_class:
break;
case sy_convert:
break;
}
break;
case ex_temp:
return 1;
case ex_expr:
if (expr->e.expr.op == '.') {
return 1;
}
if (expr->e.expr.op == 'A') {
return is_lvalue (expr->e.expr.e1);
}
break;
case ex_uexpr:
if (expr->e.expr.op == '.') {
return 1;
}
if (expr->e.expr.op == 'A') {
return is_lvalue (expr->e.expr.e1);
}
break;
case ex_memset:
case ex_compound:
case ex_state:
case ex_bool:
case ex_label:
case ex_labelref:
case ex_block:
case ex_vector:
case ex_nil:
case ex_value:
case ex_error:
break;
}
return 0;
}
static expr_t *
check_valid_lvalue (expr_t *expr)
{
if (!is_lvalue (expr)) {
if (options.traditional) {
warning (expr, "invalid lvalue in assignment");
return 0;
}
return error (expr, "invalid lvalue in assignment");
}
return 0;
}
static expr_t *
check_types_compatible (expr_t *dst, expr_t *src)
{
type_t *dst_type = get_type (dst);
type_t *src_type = get_type (src);
if (dst_type == src_type) {
return 0;
}
if (type_assignable (dst_type, src_type)) {
if (is_scalar (dst_type) && is_scalar (src_type)) {
if (!src->implicit) {
if (is_double (src_type)) {
warning (dst, "assignment of double to %s (use a cast)\n",
dst_type->name);
}
}
// the types are different but cast-compatible
expr_t *new = cast_expr (dst_type, src);
// the cast was a no-op, so the types are compatible at the
// low level (very true for default type <-> enum)
if (new != src) {
return assign_expr (dst, new);
}
}
return 0;
}
// traditional qcc is a little sloppy
if (!options.traditional) {
return type_mismatch (dst, src, '=');
}
if (is_func (dst_type) && is_func (src_type)) {
warning (dst, "assignment between disparate function types");
return 0;
}
if (is_float (dst_type) && is_vector (src_type)) {
warning (dst, "assignment of vector to float");
src = field_expr (src, new_name_expr ("x"));
return assign_expr (dst, src);
}
if (is_vector (dst_type) && is_float (src_type)) {
warning (dst, "assignment of float to vector");
dst = field_expr (dst, new_name_expr ("x"));
return assign_expr (dst, src);
}
return type_mismatch (dst, src, '=');
}
static expr_t *
assign_vector_expr (expr_t *dst, expr_t *src)
{
expr_t *dx, *sx;
expr_t *dy, *sy;
expr_t *dz, *sz;
expr_t *dw, *sw;
expr_t *ds, *ss;
expr_t *dv, *sv;
expr_t *block;
if (src->type == ex_vector) {
src = convert_vector (src);
if (src->type != ex_vector) {
// src was constant and thus converted
return assign_expr (dst, src);
}
}
if (src->type == ex_vector && dst->type != ex_vector) {
if (is_vector(src->e.vector.type)) {
// guaranteed to have three elements
sx = src->e.vector.list;
sy = sx->next;
sz = sy->next;
dx = field_expr (dst, new_name_expr ("x"));
dy = field_expr (dst, new_name_expr ("y"));
dz = field_expr (dst, new_name_expr ("z"));
block = new_block_expr ();
append_expr (block, assign_expr (dx, sx));
append_expr (block, assign_expr (dy, sy));
append_expr (block, assign_expr (dz, sz));
block->e.block.result = dst;
return block;
}
if (is_quaternion(src->e.vector.type)) {
// guaranteed to have two or four elements
if (src->e.vector.list->next->next) {
// four vals: x, y, z, w
sx = src->e.vector.list;
sy = sx->next;
sz = sy->next;
sw = sz->next;
dx = field_expr (dst, new_name_expr ("x"));
dy = field_expr (dst, new_name_expr ("y"));
dz = field_expr (dst, new_name_expr ("z"));
dw = field_expr (dst, new_name_expr ("w"));
block = new_block_expr ();
append_expr (block, assign_expr (dx, sx));
append_expr (block, assign_expr (dy, sy));
append_expr (block, assign_expr (dz, sz));
append_expr (block, assign_expr (dw, sw));
block->e.block.result = dst;
return block;
} else {
// v, s
sv = src->e.vector.list;
ss = sv->next;
dv = field_expr (dst, new_name_expr ("v"));
ds = field_expr (dst, new_name_expr ("s"));
block = new_block_expr ();
append_expr (block, assign_expr (dv, sv));
append_expr (block, assign_expr (ds, ss));
block->e.block.result = dst;
return block;
}
}
internal_error (src, "bogus vector expression");
}
return 0;
}
static __attribute__((pure)) int
is_memset (expr_t *e)
{
return e->type == ex_memset;
}
expr_t *
assign_expr (expr_t *dst, expr_t *src)
{
int op = '=';
expr_t *expr;
type_t *dst_type, *src_type;
convert_name (dst);
if (dst->type == ex_error) {
return dst;
}
if ((expr = check_valid_lvalue (dst))) {
return expr;
}
dst_type = get_type (dst);
if (!dst_type) {
internal_error (dst, "dst_type broke in assign_expr");
}
if (src && !is_memset (src)) {
convert_name (src);
if (src->type == ex_error) {
return src;
}
if (options.traditional
&& (expr = check_assign_logic_precedence (dst, src))) {
return expr;
}
} else {
if (!src && is_scalar (dst_type)) {
return error (dst, "empty scalar initializer");
}
src = new_nil_expr ();
}
if (src->type == ex_compound) {
src = initialized_temp_expr (dst_type, src);
if (src->type == ex_error) {
return src;
}
}
src_type = get_type (src);
if (!src_type) {
internal_error (src, "src_type broke in assign_expr");
}
if (is_pointer (dst_type) && is_array (src_type)) {
// assigning an array to a pointer is the same as taking the address of
// the array but using the type of the array elements
src = address_expr (src, 0, src_type->t.fldptr.type);
src_type = get_type (src);
}
if (src->type == ex_bool) {
// boolean expressions are chains of tests, so extract the result
// of the tests
src = convert_from_bool (src, dst_type);
if (src->type == ex_error) {
return src;
}
src_type = get_type (src);
}
if (!is_nil (src)) {
if ((expr = check_types_compatible (dst, src))) {
// expr might be a valid expression, but if so,
// check_types_compatible will take care of everything
return expr;
}
if ((expr = assign_vector_expr (dst, src))) {
return expr;
}
} else {
convert_nil (src, dst_type);
}
expr = new_binary_expr (op, dst, src);
expr->e.expr.type = dst_type;
return expr;
}