quakeforge/libs/video/renderer/vulkan/vulkan_translucent.c
Bill Currie 743b06d5c1 [vulkan] Script render graph initialization sequence
While every possible subsystem needs an initialization call, all that
does is add the actual initialization task to the render graph system.
This allows the render graph to be fully configurable, initializing only
those subsystems that the graph needs.

Scripted initialization is still separated from startup as render graph
creation needs various resources (eg, attachments) defined before
creating render and compute passes, but all those need to be created
before the subsystems can actually start up.
2024-01-30 23:13:16 +09:00

385 lines
11 KiB
C

/*
vulkan_translucent.c
Vulkan translucent pass pipeline
Copyright (C) 2022 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2022/11/30
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include "qfalloca.h"
#include "QF/cvar.h"
#include "QF/sys.h"
#include "QF/va.h"
#include "QF/Vulkan/qf_translucent.h"
#include "QF/Vulkan/barrier.h"
#include "QF/Vulkan/debug.h"
#include "QF/Vulkan/device.h"
#include "QF/Vulkan/dsmanager.h"
#include "QF/Vulkan/image.h"
#include "QF/Vulkan/instance.h"
#include "QF/Vulkan/render.h"
#include "QF/Vulkan/resource.h"
#include "QF/Vulkan/staging.h"
#include "QF/Vulkan/swapchain.h"
#include "r_internal.h"
#include "vid_vulkan.h"
static void
trans_create_buffers (vulkan_ctx_t *ctx)
{
auto device = ctx->device;
auto dfunc = device->funcs;
auto tctx = ctx->translucent_context;
size_t frames = tctx->frames.size;
if (tctx->resources->memory) {
QFV_DestroyResource (device, tctx->resources);
}
for (uint32_t i = 0; i < tctx->resources->num_objects; i++) {
auto obj = &tctx->resources->objects[i];
if (obj->type == qfv_res_image) {
auto img = &obj->image;
if (img->num_layers == 6) {
auto e = min (tctx->extent.width, tctx->extent.height);
img->extent.width = e;
img->extent.height = e;
} else {
img->extent.width = tctx->extent.width;
img->extent.height = tctx->extent.height;
}
}
}
QFV_CreateResource (device, tctx->resources);
for (size_t i = 0; i < frames; i++) {
auto tframe = &tctx->frames.a[i];
auto heads_view = tframe->heads_view->image_view.view;
auto cube_heads_view = tframe->cube_heads_view->image_view.view;
auto state = tframe->state->buffer.buffer;
auto frags = tframe->frags->buffer.buffer;
VkDescriptorImageInfo flat_imageInfo[] = {
{ 0, heads_view, VK_IMAGE_LAYOUT_GENERAL },
};
VkDescriptorImageInfo cube_imageInfo[] = {
{ 0, cube_heads_view, VK_IMAGE_LAYOUT_GENERAL },
};
VkDescriptorBufferInfo bufferInfo[] = {
{ state, 0, VK_WHOLE_SIZE },
{ frags, 0, VK_WHOLE_SIZE },
};
VkWriteDescriptorSet write[] = {
{ VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0,
tframe->flat, 2, 0, 1,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.pImageInfo = flat_imageInfo },
{ VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0,
tframe->flat, 0, 0, 2,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = bufferInfo },
{ VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0,
tframe->cube, 2, 0, 1,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.pImageInfo = cube_imageInfo },
{ VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0,
tframe->cube, 0, 0, 2,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = bufferInfo },
};
dfunc->vkUpdateDescriptorSets (device->dev, 4, write, 0, 0);
}
}
static void
clear_translucent (const exprval_t **params, exprval_t *result, exprctx_t *ectx)
{
qfZoneNamed (zone, true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto tctx = ctx->translucent_context;
auto tframe = &tctx->frames.a[ctx->curFrame];
auto job = ctx->render_context->job;
auto step = QFV_GetStep (params[0], job);
auto render = step->render;
if (tctx->extent.width != render->output.extent.width
|| tctx->extent.height != render->output.extent.height) {
tctx->extent = render->output.extent;
trans_create_buffers (ctx);
}
VkCommandBuffer cmd = QFV_GetCmdBuffer (ctx, false);
VkCommandBufferBeginInfo beginInfo = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
};
dfunc->vkBeginCommandBuffer (cmd, &beginInfo);
auto img = scr_fisheye ? tframe->cube_heads : tframe->heads;
auto image = img->image.image;
qfv_imagebarrier_t ib = imageBarriers[qfv_LT_Undefined_to_TransferDst];
ib.barrier.image = image;
ib.barrier.subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS;
dfunc->vkCmdPipelineBarrier (cmd, ib.srcStages, ib.dstStages,
0, 0, 0, 0, 0,
1, &ib.barrier);
VkClearColorValue clear_color[] = {
{ .int32 = {-1, -1, -1, -1} },
};
VkImageSubresourceRange ranges[] = {
{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, VK_REMAINING_ARRAY_LAYERS },
};
dfunc->vkCmdClearColorImage (cmd, image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
clear_color, 1, ranges);
ib = imageBarriers[qfv_LT_TransferDst_to_General];
ib.barrier.image = image;
ib.barrier.subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS;
dfunc->vkCmdPipelineBarrier (cmd, ib.srcStages, ib.dstStages,
0, 0, 0, 0, 0,
1, &ib.barrier);
dfunc->vkEndCommandBuffer (cmd);
QFV_AppendCmdBuffer (ctx, cmd);
qfv_packet_t *packet = QFV_PacketAcquire (ctx->staging);
qfv_transtate_t *state = QFV_PacketExtend (packet, 2 * sizeof (*state));
*state = (qfv_transtate_t) { 0, tctx->maxFragments };
auto bb = &bufferBarriers[qfv_BB_TransferWrite_to_ShaderRW];
QFV_PacketCopyBuffer (packet, tframe->state->buffer.buffer, 0, bb);
QFV_PacketSubmit (packet);
}
static void
trans_create_resources (vulkan_ctx_t *ctx)
{
auto tctx = ctx->translucent_context;
size_t frames = tctx->frames.size;
tctx->resources = calloc (1, sizeof (qfv_resource_t)
// heads images (flat + cube)
+ sizeof (qfv_resobj_t[frames]) * 2
// heads image views (flat + cube)
+ sizeof (qfv_resobj_t[frames]) * 2
// fragment buffer
+ sizeof (qfv_resobj_t[frames])
// fragment count
+ sizeof (qfv_resobj_t[frames]));
auto heads_objs = (qfv_resobj_t *) &tctx->resources[1];
auto cube_heads_objs = &heads_objs[frames];
auto head_views_objs = &cube_heads_objs[frames];
auto cube_head_views_objs = &head_views_objs[frames];
auto buffer_objs = &cube_head_views_objs[frames];
auto count_objs = &buffer_objs[frames];
tctx->resources[0] = (qfv_resource_t) {
.name = "oit",
.va_ctx = ctx->va_ctx,
.memory_properties = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.num_objects = 6 * frames,
.objects = heads_objs,
};
for (size_t i = 0; i < frames; i++) {
heads_objs[i] = (qfv_resobj_t) {
.name = nva ("heads:%zd", i),
.type = qfv_res_image,
.image = {
.type = VK_IMAGE_TYPE_2D,
.format = VK_FORMAT_R32_SINT,
.extent = { 0, 0, 1 },
.num_mipmaps = 1,
.num_layers = 1,
.samples = VK_SAMPLE_COUNT_1_BIT,
.usage = VK_IMAGE_USAGE_STORAGE_BIT
| VK_IMAGE_USAGE_TRANSFER_DST_BIT,
},
};
cube_heads_objs[i] = heads_objs[i];
cube_heads_objs[i].name = nva ("cube_heads:%zd", i);
cube_heads_objs[i].image.extent = (VkExtent3D) { 0, 0, 1 };
cube_heads_objs[i].image.num_layers = 6;
head_views_objs[i] = (qfv_resobj_t) {
.name = strdup (heads_objs[i].name),
.type = qfv_res_image_view,
.image_view = {
.image = i,
.type = VK_IMAGE_VIEW_TYPE_2D_ARRAY,
.format = VK_FORMAT_R32_SINT,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.levelCount = VK_REMAINING_MIP_LEVELS,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
},
};
cube_head_views_objs[i] = head_views_objs[i];
cube_head_views_objs[i].name = strdup (cube_heads_objs[i].name);
cube_head_views_objs[i].image_view.image = i + frames;
buffer_objs[i] = (qfv_resobj_t) {
.name = nva ("frags:%zd", i),
.type = qfv_res_buffer,
.buffer = {
.size = sizeof (qfv_transfrag_t) * tctx->maxFragments,
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
},
};
count_objs[i] = (qfv_resobj_t) {
.name = nva ("count:%zd", i),
.type = qfv_res_buffer,
.buffer = {
.size = 2 * sizeof (qfv_transtate_t),
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
}
for (size_t i = 0; i < frames; i++) {
auto tframe = &tctx->frames.a[i];
tframe->heads = &heads_objs[i];
tframe->cube_heads = &cube_heads_objs[i];
tframe->heads_view = &head_views_objs[i];
tframe->cube_heads_view = &cube_head_views_objs[i];
tframe->state = &count_objs[i];
tframe->frags = &buffer_objs[i];
}
}
static void
translucent_shutdown (exprctx_t *ectx)
{
qfZoneScoped (true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
qfv_device_t *device = ctx->device;
translucentctx_t *tctx = ctx->translucent_context;
if (tctx->resources) {
if (tctx->resources->memory) {
QFV_DestroyResource (device, tctx->resources);
}
for (uint32_t i = 0; i < tctx->resources->num_objects; i++) {
auto obj = &tctx->resources->objects[i];
free ((char *) obj->name);
}
}
free (tctx->resources);
free (tctx->frames.a);
free (tctx);
}
static void
translucent_startup (exprctx_t *ectx)
{
qfZoneScoped (true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
qfvPushDebug (ctx, "translucent init");
auto tctx = ctx->translucent_context;
auto rctx = ctx->render_context;
size_t frames = rctx->frames.size;
DARRAY_INIT (&tctx->frames, frames);
DARRAY_RESIZE (&tctx->frames, frames);
tctx->frames.grow = 0;
tctx->maxFragments = vulkan_oit_fragments * 1024 * 1024;
auto dsmanager = QFV_Render_DSManager (ctx, "oit_set");
for (size_t i = 0; i < frames; i++) {
tctx->frames.a[i] = (translucentframe_t) {
.flat = QFV_DSManager_AllocSet (dsmanager),
.cube = QFV_DSManager_AllocSet (dsmanager),
};
}
trans_create_resources (ctx);
qfvPopDebug (ctx);
}
static void
translucent_init (const exprval_t **params, exprval_t *result, exprctx_t *ectx)
{
qfZoneScoped (true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
QFV_Render_AddShutdown (ctx, translucent_shutdown);
QFV_Render_AddStartup (ctx, translucent_startup);
translucentctx_t *tctx = calloc (1, sizeof (translucentctx_t));
ctx->translucent_context = tctx;
}
static exprtype_t *clear_translucent_params[] = {
&cexpr_string,
};
static exprfunc_t clear_translucent_func[] = {
{ .func = clear_translucent, .num_params = 1, clear_translucent_params },
{}
};
static exprfunc_t translucent_init_func[] = {
{ .func = translucent_init },
{}
};
static exprsym_t translucent_task_syms[] = {
{ "clear_translucent", &cexpr_function, clear_translucent_func },
{ "translucent_init", &cexpr_function, translucent_init_func },
{}
};
void
Vulkan_Translucent_Init (vulkan_ctx_t *ctx)
{
qfZoneScoped (true);
QFV_Render_AddTasks (ctx, translucent_task_syms);
}
VkDescriptorSet
Vulkan_Translucent_Descriptors (vulkan_ctx_t *ctx, int frame)
{
auto tctx = ctx->translucent_context;
auto tframe = &tctx->frames.a[frame];
return scr_fisheye ? tframe->cube : tframe->flat;
}