quakeforge/tools/qfcc/include/algebra.h
Bill Currie 5f22fd07d9 [qfcc] Implement 3d PGA dot products
Also, correct the handling of scalars in dot and wedge products: it
turns out s.v and s^v both scale. However, it seems the CSE code loses
things sometimes.
2023-08-24 15:49:52 +09:00

111 lines
3.7 KiB
C

/*
algebra.h
QC geometric algebra support code
Copyright (C) 2023 Bill Currie <bill@taniwha.org>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifndef __algebra_h
#define __algebra_h
#include "QF/set.h"
#include "QF/progs/pr_comp.h"
typedef struct basis_blade_s {
pr_uint_t mask; ///< bit-mask of basis vectors
int scale; ///< 1, 0, or -1
} basis_blade_t;
typedef struct basis_group_s {
int count;
pr_uint_t group_mask;
pr_uivec2_t range;
basis_blade_t *blades;
int *map;
set_t *set;
} basis_group_t;
typedef struct basis_layout_s {
int count;
pr_uivec2_t range;
basis_group_t *groups;
pr_ivec3_t *group_map;
int *mask_map;
int blade_count;
set_t *set;
} basis_layout_t;
typedef struct metric_s {
pr_uint_t plus; ///< mask of elements that square to +1
pr_uint_t minus; ///< mask of elements that square to -1
pr_uint_t zero; ///< mask of elements that square to 0
} metric_t;
typedef struct algebra_s {
struct type_s *type; ///< underlying type (float or double)
struct type_s *algebra_type;///< type for algebra
metric_t metric;
basis_layout_t layout;
basis_group_t *groups;
struct type_s **mvec_types;
int num_components; ///< number of componets (2^d)
int dimension; ///< number of dimensions (plus + minus + zero)
int plus; ///< number of elements squaring to +1
int minus; ///< number of elements squaring to -1
int zero; ///< number of elements squaring to 0
} algebra_t;
typedef struct multivector_s {
int num_components;
int group_mask;
algebra_t *algebra;
} multivector_t;
struct expr_s;
bool is_algebra (const struct type_s *type) __attribute__((pure));
struct type_s *algebra_type (struct type_s *type, struct expr_s *params);
struct type_s *algebra_mvec_type (algebra_t *algebra, pr_uint_t group_mask);
struct ex_value_s *algebra_blade_value (algebra_t *alg, const char *name);
struct symtab_s *algebra_scope (struct type_s *type, struct symtab_s *curscope);
void algebra_print_type_str (struct dstring_s *str, const struct type_s *type);
void algebra_encode_type (struct dstring_s *encoding,
const struct type_s *type);
int algebra_type_size (const struct type_s *type) __attribute__((pure));
int algebra_type_width (const struct type_s *type) __attribute__((pure));
int metric_apply (const metric_t *metric, pr_uint_t a, pr_uint_t b) __attribute__((pure));
algebra_t *algebra_get (const struct type_s *type) __attribute__((pure));
int algebra_type_assignable (const struct type_s *dst,
const struct type_s *src) __attribute__((pure));
struct type_s *algebra_base_type (const struct type_s *type) __attribute__((pure));
struct expr_s *algebra_binary_expr (int op, struct expr_s *e1,
struct expr_s *e2);
struct expr_s *algebra_negate (struct expr_s *e);
struct expr_s *algebra_dual (struct expr_s *e);
struct expr_s *algebra_reverse (struct expr_s *e);
struct expr_s *algebra_cast_expr (struct type_s *dstType, struct expr_s *e);
struct expr_s *algebra_assign_expr (struct expr_s *dst, struct expr_s *src);
#endif//__algebra_h