quakeforge/libs/video/renderer/vulkan/vulkan_lighting.c
Bill Currie b02da2c0a6 [vulkan] Implement shadow map culling
The rendering of the shadow maps now takes the culling information into
account resulting in a drastic reduction of work. There's still more
work to be done, but demo1 peaks at over 1000fps at 640x480, gmsp3v2 now
gets 14fps (1920x1080) near the front gate (used to be 3, then 6),
ad_tears is up to 3fps, but marcher is still unhappy, but it has
infinite radius lights, so needs more culling work (clipped light
volumes will help, I think). Also, culling lights for which nothing has
moved within their volumes will help somewhat (though not as much for
most id maps, I suspect).
2023-12-17 18:45:02 +09:00

2782 lines
81 KiB
C

/*
vulkan_lighting.c
Vulkan lighting pass pipeline
Copyright (C) 2021 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2021/2/23
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include "qfalloca.h"
#include "QF/cvar.h"
#include "QF/dstring.h"
#include "QF/heapsort.h"
#include "QF/plist.h"
#include "QF/progs.h"
#include "QF/script.h"
#include "QF/set.h"
#include "QF/sys.h"
#include "QF/va.h"
#include "QF/scene/scene.h"
#include "QF/ui/imui.h"
#define IMUI_context imui_ctx
#include "QF/Vulkan/qf_bsp.h"
#include "QF/Vulkan/qf_draw.h"
#include "QF/Vulkan/qf_lighting.h"
#include "QF/Vulkan/qf_matrices.h"
#include "QF/Vulkan/qf_texture.h"
#include "QF/Vulkan/qf_translucent.h"
#include "QF/Vulkan/barrier.h"
#include "QF/Vulkan/buffer.h"
#include "QF/Vulkan/debug.h"
#include "QF/Vulkan/device.h"
#include "QF/Vulkan/dsmanager.h"
#include "QF/Vulkan/image.h"
#include "QF/Vulkan/instance.h"
#include "QF/Vulkan/projection.h"
#include "QF/Vulkan/render.h"
#include "QF/Vulkan/resource.h"
#include "QF/Vulkan/staging.h"
#include "compat.h"
#include "r_internal.h"
#include "vid_vulkan.h"
#include "vkparse.h"
#define shadow_quanta 128
#define lnearclip 4
#define num_cascade 4
#define max_views 29 // FIXME should be 32 (or really, maxMultiviewViewCount,
// but there are other problems there), but nvidia's
// drivers segfault for > 29
static vec4f_t ref_direction = { 1, 0, 0, 0 };
#define ico_verts 12
#define cone_verts 7
static int ico_inds[] = {
0, 4, 6, 9, 2, 8, 4, -1,
3, 1, 10, 5, 7, 11, 1, -1,
1, 11, 6, 4, 10, -1,
9, 6, 11, 7, 2, -1,
5, 10, 8, 2, 7, -1,
4, 8, 10,
};
#define num_ico_inds (sizeof (ico_inds) / sizeof (ico_inds[0]))
static int cone_inds[] = {
0, 1, 2, 3, 4, 5, 6, 1, -1,
1, 6, 5, 4, 3, 2,
};
#define num_cone_inds (sizeof (cone_inds) / sizeof (cone_inds[0]))
#define dynlight_max 32
static int dynlight_size;
static cvar_t dynlight_size_cvar = {
.name = "dynlight_size",
.description =
"Effective radius of dynamic light shadow maps. Needs map reload to "
"take effect",
.default_value = "256",
.flags = CVAR_NONE,
.value = { .type = &cexpr_int, .value = &dynlight_size },
};
static const light_t *
get_light (uint32_t ent, ecs_registry_t *reg)
{
return Ent_GetComponent (ent, scene_light, reg);
}
static const dlight_t *
get_dynlight (entity_t ent)
{
return Ent_GetComponent (ent.id, scene_dynlight, ent.reg);
}
static bool
has_dynlight (entity_t ent)
{
return Ent_HasComponent (ent.id, scene_dynlight, ent.reg);
}
static uint32_t
get_lightstyle (entity_t ent)
{
return *(uint32_t *) Ent_GetComponent (ent.id, scene_lightstyle, ent.reg);
}
static uint32_t
get_lightleaf (entity_t ent)
{
return *(uint32_t *) Ent_GetComponent (ent.id, scene_lightleaf, ent.reg);
}
static uint32_t
get_lightid (entity_t ent)
{
return *(uint32_t *) Ent_GetComponent (ent.id, scene_lightid, ent.reg);
}
static void
set_lightid (uint32_t ent, ecs_registry_t *reg, uint32_t id)
{
Ent_SetComponent (ent, scene_lightid, reg, &id);
}
static void
lighting_setup_shadow (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
qfZoneNamed (zone, true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto lctx = ctx->lighting_context;
if (!lctx->ldata) {
return;
}
auto pass = Vulkan_Bsp_GetPass (ctx, QFV_bspShadow);
auto brush = pass->brush;
if (brush->submodels) {
lctx->world_mins = loadvec3f (brush->submodels[0].mins);
lctx->world_maxs = loadvec3f (brush->submodels[0].maxs);
} else {
// FIXME better bounds
lctx->world_mins = (vec4f_t) { -512, -512, -512, 0 };
lctx->world_maxs = (vec4f_t) { 512, 512, 512, 0 };
}
set_t leafs = SET_STATIC_INIT (brush->modleafs, alloca);
set_empty (&leafs);
auto entqueue = r_ent_queue; //FIXME fetch from scene
for (size_t i = 0; i < entqueue->ent_queues[mod_light].size; i++) {
entity_t ent = entqueue->ent_queues[mod_light].a[i];
if (!has_dynlight (ent)) {
auto ls = get_lightstyle (ent);
if (!d_lightstylevalue[ls]) {
continue;
}
}
auto leafnum = get_lightleaf (ent);
if (leafnum != ~0u) {
set_add (&leafs, leafnum);
}
}
set_t pvs = SET_STATIC_INIT (brush->visleafs, alloca);
auto iter = set_first (&leafs);
if (!iter) {
return;
}
if (iter->element == 0) {
set_assign (&pvs, lctx->ldata->sun_pvs);
} else {
Mod_LeafPVS_set (brush->leafs + iter->element, brush, 0, &pvs);
}
for (iter = set_next (iter); iter; iter = set_next (iter)) {
Mod_LeafPVS_mix (brush->leafs + iter->element, brush, 0, &pvs);
}
visstate_t visstate = {
.node_visframes = pass->node_frames,
.leaf_visframes = pass->leaf_frames,
.face_visframes = pass->face_frames,
.visframecount = pass->vis_frame,
.brush = pass->brush,
};
R_MarkLeavesPVS (&visstate, &pvs);
pass->vis_frame = visstate.visframecount;
}
static VkFramebuffer
create_framebuffer (vulkan_ctx_t *ctx, int size,
VkImageView view, VkRenderPass renderpass)
{
auto device = ctx->device;
auto dfunc = device->funcs;
VkFramebuffer framebuffer;
dfunc->vkCreateFramebuffer (device->dev,
&(VkFramebufferCreateInfo) {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.renderPass = renderpass,
.attachmentCount = 1,
.pAttachments = &view,
.width = size,
.height = size,
.layers = 1,
}, 0, &framebuffer);
return framebuffer;
}
static void
copy_maps (uint32_t start, uint32_t count, int stage_id,
lightingframe_t *lframe, lightingctx_t *lctx, vulkan_ctx_t *ctx,
qfv_taskctx_t *taskctx)
{
qfZoneScoped (true);
auto device = ctx->device;
auto dfunc = device->funcs;
int num_regions = 0;
int num_copies = 0;
uint32_t last = ~0u;
for (uint32_t j = 0; j < count; j++) {
auto tgt = lframe->stage_targets[start + j];
// if the map id is different or if the layers aren't sequential
if (tgt != last + 0x20) {
num_regions++;
if ((tgt & 0x1f) != (last & 0x1f)) {
num_copies++;
}
}
last = tgt;
}
auto ib = imageBarriers[qfv_LT_TransferDst_to_ShaderReadOnly];
ib.barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
ib.barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS;
ib.barrier.subresourceRange.layerCount = 0;
VkImageMemoryBarrier barriers[num_regions];
VkImageCopy2 regions[num_regions];
VkCopyImageInfo2 copies[num_copies];
num_regions = 0;
num_copies = 0;
last = ~0u;
for (uint32_t j = 0; j < count; j++) {
auto tgt = lframe->stage_targets[start + j];
int ind = num_regions - 1;
// if the map id is different or if the layers aren't sequential
if (tgt != last + 0x20) {
int cpind = num_copies - 1;
if ((tgt & 0x1f) != (last & 0x1f)) {
cpind = num_copies++;
copies[cpind] = (VkCopyImageInfo2) {
.sType = VK_STRUCTURE_TYPE_COPY_IMAGE_INFO_2,
.srcImage = lctx->stage_images[stage_id],
.srcImageLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
.dstImage = lctx->map_images[tgt & 0x1f],
.dstImageLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.pRegions = &regions[num_regions],
};
}
copies[cpind].regionCount++;
ind = num_regions++;
barriers[ind] = ib.barrier;
barriers[ind].subresourceRange.baseArrayLayer = tgt >> 5;
barriers[ind].image = lctx->map_images[tgt & 0x1f];
regions[ind] = (VkImageCopy2) {
.sType = VK_STRUCTURE_TYPE_IMAGE_COPY_2,
.srcSubresource = {
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.baseArrayLayer = j,
},
.dstSubresource = {
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.baseArrayLayer = tgt >> 5,
},
.extent = {
.width = (stage_id + 1) * shadow_quanta,
.height = (stage_id + 1) * shadow_quanta,
.depth = 1,
},
};
}
barriers[ind].subresourceRange.layerCount++;
regions[ind].srcSubresource.layerCount++;
regions[ind].dstSubresource.layerCount++;
last = tgt;
}
auto cmd = QFV_GetCmdBuffer (ctx, false);
dfunc->vkBeginCommandBuffer (cmd, &(VkCommandBufferBeginInfo) {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
});
{
qftVkScopedZoneC (taskctx->frame->qftVkCtx, cmd, "copy stage",
0xa0c060);
for (int i = 0; i < num_copies; i++) {
dfunc->vkCmdCopyImage2 (cmd, &copies[i]);
}
dfunc->vkCmdPipelineBarrier (cmd, ib.srcStages, ib.dstStages,
0, 0, 0, 0, 0, num_regions, barriers);
}
dfunc->vkEndCommandBuffer (cmd);
QFV_AppendCmdBuffer (ctx, cmd);
}
static void
lighting_draw_shadow_maps (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
qfZoneNamed (zone, true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto lctx = ctx->lighting_context;
auto shadow = QFV_GetStep (params[0], ctx->render_context->job);
auto render = shadow->render;
auto lframe = &lctx->frames.a[ctx->curFrame];
if (!lctx->num_maps) {
return;
}
uint32_t id_base = 0;
for (int i = 0; i < LIGHTING_STAGES; i++) {
auto queue = &lframe->stage_queue[i];
int count;
for (int remaining = queue->count; remaining > 0; remaining -= count) {
count = min (remaining, max_views);
int rpind = count - 1;
auto renderpass = &render->renderpasses[rpind];
auto fbuffer = lctx->stage_framebuffers[rpind][i];
uint32_t size = (i + 1) * shadow_quanta;
auto bi = &renderpass->beginInfo;
if (!fbuffer) {
auto view = lctx->stage_views[i];
fbuffer = create_framebuffer (ctx, size, view, bi->renderPass);
lctx->stage_framebuffers[rpind][i] = fbuffer;
}
bi->framebuffer = fbuffer;
QFV_RunRenderPass (ctx, renderpass, size, size, &id_base);
bi->framebuffer = 0;
copy_maps (id_base, count, i, lframe, lctx, ctx, taskctx);
id_base += count;
}
}
}
typedef enum : uint32_t {
style_enable,
style_disable = 0x80000000,
} style_e;
static uint32_t
make_id (const light_control_t *cont, style_e style)
{
uint32_t matrix_index = cont->matrix_id;
uint32_t map_index = cont->map_index;
uint32_t layer = cont->layer;
uint32_t type = cont->mode;
if (type == ST_CUBE) {
// on the GPU, layer is the cube layer, and one cube layer is 6
// flat image layers
layer /= 6;
}
return ((matrix_index & 0x3fff) << 0)
| ((map_index & 0x1f) << 14)
| ((layer & 0x7ff) << 19)
| style;
}
static void
cube_mats (mat4f_t *mat, vec4f_t position)
{
mat4f_t view;
mat4fidentity (view);
view[3] = -position;
view[3][3] = 1;
mat4f_t proj;
QFV_PerspectiveTan (proj, 1, 1, lnearclip);
for (int j = 0; j < 6; j++) {
mat4f_t side_view;
mat4f_t rotinv;
mat4ftranspose (rotinv, qfv_box_rotations[j]);
mmulf (side_view, rotinv, view);
mmulf (side_view, qfv_z_up, side_view);
mmulf (mat[j], proj, side_view);
}
}
static void
frustum_corners (vec4f_t corners[8], float minz, float maxz,
const mat4f_t invproj)
{
for (int i = 0; i < 8; i++) {
vec4f_t p = {
(i & 1) ? 1 : -1,
(i & 2) ? 1 : -1,
(i & 4) ? maxz : minz,
1
};
p = mvmulf (invproj, p);
corners[i] = p / p[3];
}
}
static vec4f_t
vec_select (vec4i_t c, vec4f_t a, vec4f_t b)
{
return (vec4f_t) ((c & (vec4i_t) a) | (~c & (vec4i_t) b));
}
static void
transform_corners (vec4f_t *mins, vec4f_t *maxs, const vec4f_t corners[8],
const mat4f_t lightview)
{
*mins = (vec4f_t) { INFINITY, INFINITY, INFINITY, INFINITY };
*maxs = (vec4f_t) { -INFINITY, -INFINITY, -INFINITY, -INFINITY };
for (int i = 0; i < 8; i++) {
vec4f_t p = mvmulf (lightview, corners[i]);
vec4i_t tmin = p <= *mins;
vec4i_t tmax = p >= *maxs;
*mins = vec_select (tmin, p, *mins);
*maxs = vec_select (tmax, p, *maxs);
}
}
static void
cascade_mats (mat4f_t *mat, vec4f_t position, vulkan_ctx_t *ctx)
{
auto mctx = ctx->matrix_context;
auto lctx = ctx->lighting_context;
mat4f_t invproj;
QFV_InversePerspectiveTanFar (invproj, mctx->fov_x, mctx->fov_y,
r_nearclip, r_farclip);
mat4f_t inv_z_up;
mat4ftranspose (inv_z_up, qfv_z_up);
mmulf (invproj, inv_z_up, invproj);
mmulf (invproj, r_refdef.camera, invproj);
mat4f_t lightview;
// position points towards the light, but the view needs to be from the
// light.
mat4fquat (lightview, qrotf (-position, ref_direction));
// Find the world corner closest to the light in order to ensure the
// entire world between the focal point and the light is included in the
// depth range
vec4i_t d = position >= (vec4f_t) {0, 0, 0, 0};
vec4f_t lightcorner = vec_select (d, lctx->world_maxs, lctx->world_mins);
// assumes position is a unit vector (which it will be for directional
// lights loaded from quake maps)
float corner_dist = dotf (lightcorner-r_refdef.camera[3], position)[0];
// Pre-swizzle the light view so it's done only once (and so the
// frustum bounds get swizzled correctly for creating the orthographic
// projection matrix).
// Also, no need (actually, undesirable) to include any translation in
// the light view matrix as the orthographic matrix setup includes
// translation based on the bounds.
mmulf (lightview, qfv_z_up, lightview);
vec2f_t z_range[] = {
{ r_nearclip / 32, 1 },
{ r_nearclip / 256, r_nearclip / 32 },
{ r_nearclip / 1024, r_nearclip / 256 },
{ 0, r_nearclip / 1024 },
};
for (int i = 0; i < num_cascade; i++) {
vec4f_t corners[8];
vec4f_t fmin, fmax;
frustum_corners (corners, z_range[i][0], z_range[i][1], invproj);
transform_corners (&fmin, &fmax, corners, lightview);
// ensure evertything between the light and the far frustum corner
// is in the depth range
fmin[2] = min(fmin[2], -corner_dist);
QFV_OrthographicV (mat[i], fmin, fmax);
mmulf (mat[i], mat[i], lightview);
}
}
static uint16_t
make_target (uint16_t map_index, uint16_t layer)
{
return (map_index & 0x1f) | ((layer & 0x7ff) << 5);
}
static void
enqueue_map (uint32_t *ids, lightingframe_t *lframe, light_control_t *r)
{
auto q = &lframe->stage_queue[r->stage_index];
auto tgt = lframe->stage_targets;
for (uint32_t i = 0; i < r->numLayers; i++) {
ids[q->start + q->count + i] = r->matrix_id + i;
tgt[q->start + q->count + i] = make_target (r->map_index, r->layer + i);
}
q->count += r->numLayers;
}
static void
transition_shadow_targets (lightingframe_t *lframe, vulkan_ctx_t *ctx)
{
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
int num_barriers = 0;
uint32_t last = ~0u;
for (int i = 0; i < LIGHTING_STAGES; i++) {
auto q = lframe->stage_queue[i];
for (uint32_t j = 0; j < q.count; j++) {
auto tgt = lframe->stage_targets[q.start + j];
// if the map id is different or if the layers aren't sequential
if (tgt != last + 0x20) {
num_barriers++;
}
last = tgt;
}
}
auto ib = imageBarriers[qfv_LT_ShaderReadOnly_to_TransferDst];
ib.barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
ib.barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS;
ib.barrier.subresourceRange.layerCount = 0;
VkImageMemoryBarrier barriers[num_barriers];
num_barriers = 0;
last = ~0u;
for (int i = 0; i < LIGHTING_STAGES; i++) {
auto q = lframe->stage_queue[i];
for (uint32_t j = 0; j < q.count; j++) {
auto tgt = lframe->stage_targets[q.start + j];
int ind = num_barriers - 1;
// if the map id is different or if the layers aren't sequential
if (tgt != last + 0x20) {
barriers[num_barriers++] = ib.barrier;
ind = num_barriers - 1;
barriers[ind].subresourceRange.baseArrayLayer = tgt >> 5;
barriers[ind].image = lctx->map_images[tgt & 0x1f];
}
barriers[ind].subresourceRange.layerCount++;
last = tgt;
}
}
auto cmd = QFV_GetCmdBuffer (ctx, false);
dfunc->vkBeginCommandBuffer (cmd, &(VkCommandBufferBeginInfo) {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
});
dfunc->vkCmdPipelineBarrier (cmd, ib.srcStages, ib.dstStages,
0, 0, 0, 0, 0, num_barriers, barriers);
dfunc->vkEndCommandBuffer (cmd);
QFV_AppendCmdBuffer (ctx, cmd);
}
static float
light_radius (const light_t *l)
{
return l->attenuation[3] > 0 ? 1 / l->attenuation[3]
: l->attenuation[0] > 0 ? sqrt(abs(l->color[3]/l->attenuation[0]))
: l->attenuation[1] > 0 ? abs(l->color[3]/l->attenuation[1])
// FIXME ambient lights. not right, but at least it will render
: sqrt(abs(l->color[3]));
}
static void
lighting_update_lights (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
qfZoneNamed (zone, true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto lctx = ctx->lighting_context;
auto lframe = &lctx->frames.a[ctx->curFrame];
memset (lframe->light_queue, 0, sizeof (lframe->light_queue));
if (!lctx->scene || !lctx->scene->lights) {
return;
}
auto bb = &bufferBarriers[qfv_BB_TransferWrite_to_UniformRead];
uint32_t light_ids[ST_COUNT][MaxLights];
float light_radii[ST_COUNT][MaxLights];
vec4f_t light_positions[ST_COUNT][MaxLights];
uint32_t entids[ST_COUNT][MaxLights];
uint32_t light_count = 0;
auto queue = lframe->light_queue;
uint32_t dynamic_light_entities[MaxLights];
const dlight_t *dynamic_lights[MaxLights];
int ndlight = 0;
auto entqueue = r_ent_queue; //FIXME fetch from scene
for (size_t i = 0; i < entqueue->ent_queues[mod_light].size; i++) {
entity_t ent = entqueue->ent_queues[mod_light].a[i];
if (has_dynlight (ent)) {
dynamic_light_entities[ndlight] = ent.id;
dynamic_lights[ndlight] = get_dynlight (ent);
ndlight++;
continue;
}
auto ls = get_lightstyle (ent);
if (!d_lightstylevalue[ls]) {
continue;
}
light_count++;
uint32_t id = lctx->light_control.a[get_lightid (ent)].light_id;
auto r = &lctx->light_control.a[id];
int mode = r->mode;
auto light = get_light (ent.id, ent.reg);
uint32_t ind = queue[mode].count++;
light_ids[mode][ind] = id;
light_radii[mode][ind] = light_radius (light);
light_positions[mode][ind] = light->position;
entids[mode][ind] = ent.id;
}
size_t packet_size = 0;
packet_size += sizeof (vec4f_t[NumStyles]);
if (queue[ST_CASCADE].count) {
uint32_t mat_count = queue[ST_CASCADE].count * num_cascade;
packet_size += sizeof (mat4f_t[mat_count]);
}
if (ndlight) {
packet_size += sizeof (mat4f_t[ndlight * 6]);
packet_size += sizeof (light_t[ndlight]);
packet_size += sizeof (qfv_light_render_t[ndlight]);
}
if (light_count) {
// light ids
packet_size += sizeof (uint32_t[light_count]);
// light radii
packet_size += sizeof (float[light_count]);
// ent ids
packet_size += sizeof (uint32_t[light_count]);
}
auto packet = QFV_PacketAcquire (ctx->staging);
byte *packet_start = QFV_PacketExtend (packet, packet_size);
byte *packet_data = packet_start;
qfv_scatter_t style_scatter = {
.srcOffset = 0,
.dstOffset = 0,
.length = sizeof (vec4f_t[NumStyles]),
};
auto styles = (vec4f_t *) packet_data;
packet_data += style_scatter.length;
for (int i = 0; i < NumStyles; i++) {
styles[i] = (vec4f_t) { 1, 1, 1, d_lightstylevalue[i] / 65536.0};
}
QFV_PacketScatterBuffer (packet, lframe->style_buffer,
1, &style_scatter, bb);
if (queue[ST_CASCADE].count) {
uint32_t mat_count = queue[ST_CASCADE].count * num_cascade;
auto mats = (mat4f_t *) packet_data;
auto base = packet_data - packet_start;
packet_data += sizeof (mat4f_t[mat_count]);
qfv_scatter_t scatter[queue[ST_CASCADE].count];
for (uint32_t i = 0; i < queue[ST_CASCADE].count; i++) {
auto r = &lctx->light_control.a[light_ids[ST_CASCADE][i]];
auto light = get_light (entids[ST_CASCADE][i], lctx->scene->reg);
cascade_mats (&mats[i * num_cascade], light->position, ctx);
scatter[i] = (qfv_scatter_t) {
.srcOffset = base + sizeof (mat4f_t[i * num_cascade]),
.dstOffset = sizeof (mat4f_t[r->matrix_id]),
.length = sizeof (mat4f_t[num_cascade]),
};
}
QFV_PacketScatterBuffer (packet, lframe->shadowmat_buffer,
queue[ST_CASCADE].count, scatter, bb);
}
if (ndlight) {
light_count += ndlight;
auto mats = (mat4f_t *) packet_data;
qfv_scatter_t mat_scatter = {
.srcOffset = packet_data - packet_start,
.dstOffset = sizeof (mat4f_t[lctx->dynamic_matrix_base]),
.length = sizeof (mat4f_t[ndlight * 6]),
};
packet_data += mat_scatter.length;
for (int i = 0; i < ndlight; i++) {
cube_mats (&mats[i * 6], dynamic_lights[i]->origin);
}
QFV_PacketScatterBuffer (packet, lframe->shadowmat_buffer,
1, &mat_scatter, bb);
auto lights = (light_t *) packet_data;
qfv_scatter_t light_scatter = {
.srcOffset = packet_data - packet_start,
.dstOffset = sizeof (light_t[lctx->dynamic_base]),
.length = sizeof (light_t[ndlight]),
};
packet_data += light_scatter.length;
for (int i = 0; i < ndlight; i++) {
light_t light = {
.color = {
VectorExpand (dynamic_lights[i]->color),
// dynamic lights seem a tad faint, so 16x map lights
dynamic_lights[i]->radius / 16,
},
// dlights are local point sources
.position = { VectorExpand (dynamic_lights[i]->origin), 1 },
// full sphere, normal light (not ambient)
.direction = { 0, 0, 1, 1 },
.attenuation = { 0, 0, 1, 1/dynamic_lights[i]->radius },
};
uint32_t id = lctx->dynamic_base + i;
set_lightid (dynamic_light_entities[i], lctx->scene->reg, id);
uint32_t ind = queue[ST_CUBE].count++;
light_ids[ST_CUBE][ind] = id;
light_radii[ST_CUBE][ind] = light_radius (&light);
light_positions[ST_CUBE][ind] = light.position;
entids[ST_CUBE][ind] = dynamic_light_entities[i];
lights[i] = light;
}
QFV_PacketScatterBuffer (packet, lframe->light_buffer,
1, &light_scatter, bb);
auto render = (qfv_light_render_t *) packet_data;
qfv_scatter_t render_scatter = {
.srcOffset = packet_data - packet_start,
.dstOffset = sizeof (qfv_light_render_t[lctx->dynamic_base]),
.length = sizeof (qfv_light_render_t[ndlight]),
};
packet_data += render_scatter.length;
for (int i = 0; i < ndlight; i++) {
auto r = &lctx->light_control.a[lctx->dynamic_base + i];
render[i] = (qfv_light_render_t) {
.id_data = make_id(r, style_disable),
};
}
QFV_PacketScatterBuffer (packet, lframe->render_buffer,
1, &render_scatter, bb);
}
if (developer & SYS_lighting) {
Vulkan_Draw_String (vid.width - 32, 8,
va (ctx->va_ctx, "%3d", light_count),
ctx);
}
if (light_count) {
for (int i = 1; i < ST_COUNT; i++) {
queue[i].start = queue[i - 1].start + queue[i - 1].count;
}
auto lids = (uint32_t *) packet_data;
qfv_scatter_t lid_scatter = {
.srcOffset = packet_data - packet_start,
.dstOffset = 0,
.length = sizeof (uint32_t[light_count]),
};
packet_data += lid_scatter.length;
for (int i = 0; i < ST_COUNT; i++) {
memcpy (lids + queue[i].start, light_ids[i],
sizeof (uint32_t[queue[i].count]));
}
QFV_PacketScatterBuffer (packet, lframe->id_buffer,
1, &lid_scatter,
&bufferBarriers[qfv_BB_TransferWrite_to_IndexRead]);
auto lradii = (float *) packet_data;
qfv_scatter_t lradius_scatter = {
.srcOffset = packet_data - packet_start,
.dstOffset = 0,
.length = sizeof (float[light_count]),
};
packet_data += lradius_scatter.length;
for (int i = 0; i < ST_COUNT; i++) {
memcpy (lradii + queue[i].start, light_radii[i],
sizeof (float[queue[i].count]));
}
QFV_PacketScatterBuffer (packet, lframe->radius_buffer,
1, &lradius_scatter,
&bufferBarriers[qfv_BB_TransferWrite_to_IndexRead]);
auto eids = (uint32_t *) packet_data;
qfv_scatter_t eid_scatter = {
.srcOffset = packet_data - packet_start,
.dstOffset = 0,
.length = sizeof (uint32_t[light_count]),
};
packet_data += eid_scatter.length;
for (int i = 0; i < ST_COUNT; i++) {
memcpy (eids + queue[i].start, entids[i],
sizeof (uint32_t[queue[i].count]));
}
auto ir_barrier = &bufferBarriers[qfv_BB_TransferWrite_to_IndexRead];
QFV_PacketScatterBuffer (packet, lframe->entid_buffer, 1, &eid_scatter,
ir_barrier);
for (int i = 0; i < ST_COUNT; i++) {
auto q = queue[i];
auto idr = &lframe->id_radius[q.start];
auto pos = &lframe->positions[q.start];
for (uint32_t j = 0; j < q.count; j++) {
idr[j] = (light_idrad_t) {
.id = light_ids[i][j],
.radius = light_radii[i][j],
};
pos[j] = light_positions[i][j];
}
}
}
QFV_PacketSubmit (packet);
}
static void
lighting_update_descriptors (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
qfZoneNamed (zone, true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto lframe = &lctx->frames.a[ctx->curFrame];
auto job = ctx->render_context->job;
auto step = QFV_GetStep (params[0], job);
auto render = step->render;
auto fb = &render->active->framebuffer;
VkDescriptorImageInfo attachInfo[] = {
{ .imageView = fb->views[QFV_attachColor],
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
{ .imageView = fb->views[QFV_attachEmission],
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
{ .imageView = fb->views[QFV_attachNormal],
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
{ .imageView = fb->views[QFV_attachPosition],
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL },
};
VkWriteDescriptorSet attachWrite[] = {
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->attach_set,
.dstBinding = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
.pImageInfo = &attachInfo[0], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->attach_set,
.dstBinding = 1,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
.pImageInfo = &attachInfo[1], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->attach_set,
.dstBinding = 2,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
.pImageInfo = &attachInfo[2], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->attach_set,
.dstBinding = 3,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
.pImageInfo = &attachInfo[3], },
};
dfunc->vkUpdateDescriptorSets (device->dev,
LIGHTING_ATTACH_INFOS, attachWrite,
0, 0);
}
static void
lighting_bind_descriptors (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
qfZoneNamed (zone, true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
if (!lctx->num_maps) {
return;
}
auto cmd = taskctx->cmd;
auto layout = taskctx->pipeline->layout;
auto lframe = &lctx->frames.a[ctx->curFrame];
auto shadow_type = *(int *) params[0]->value;
auto stage = *(int *) params[1]->value;
if (stage == lighting_hull) {
bool planes = shadow_type == ST_PLANE;
VkDescriptorSet sets[] = {
Vulkan_Matrix_Descriptors (ctx, ctx->curFrame),
lframe->lights_set,
planes ? Vulkan_Translucent_Descriptors (ctx, ctx->curFrame) : 0,
};
dfunc->vkCmdBindDescriptorSets (cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
layout, 0, 2 + planes, sets, 0, 0);
VkBuffer buffers[] = {
lframe->id_buffer,
lframe->radius_buffer,
lctx->splat_verts,
};
VkDeviceSize offsets[] = { 0, 0, 0 };
dfunc->vkCmdBindVertexBuffers (cmd, 0, 3, buffers, offsets);
dfunc->vkCmdBindIndexBuffer (cmd, lctx->splat_inds, 0,
VK_INDEX_TYPE_UINT32);
} else {
VkDescriptorSet sets[] = {
lframe->shadowmat_set,
lframe->lights_set,
lframe->attach_set,
(VkDescriptorSet[]) {
lctx->shadow_2d_set,
lctx->shadow_2d_set,
lctx->shadow_2d_set,
lctx->shadow_cube_set
}[shadow_type],
};
dfunc->vkCmdBindDescriptorSets (cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
layout, 0, 4, sets, 0, 0);
}
}
static void
lighting_draw_splats (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
qfZoneNamed (zone, true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto cmd = taskctx->cmd;
auto lframe = &lctx->frames.a[ctx->curFrame];
if (lframe->light_queue[ST_CUBE].count) {
auto q = lframe->light_queue[ST_CUBE];
dfunc->vkCmdDrawIndexed (cmd, num_ico_inds, q.count, 0, 0, q.start);
}
if (lframe->light_queue[ST_PLANE].count) {
auto q = lframe->light_queue[ST_PLANE];
dfunc->vkCmdDrawIndexed (cmd, num_cone_inds, q.count,
num_ico_inds, 12, q.start);
}
}
static void
lighting_rewrite_ids (lightingframe_t *lframe, vulkan_ctx_t *ctx)
{
uint32_t count = 0;
auto lctx = ctx->lighting_context;
for (int i = 0; i < ST_COUNT; i++) {
auto q = &lframe->light_queue[i];
count += q->count;
}
uint32_t light_ids[count];
float light_radii[count];
uint32_t light_count = 0;
light_queue_t queue[ST_COUNT] = {};
for (int i = 0; i < ST_COUNT; i++) {
auto q = &lframe->light_queue[i];
for (uint32_t j = 0; j < q[0].count; j++) {
uint32_t id = lframe->id_radius[q[0].start + j].id;
float radius = lframe->id_radius[q[0].start + j].radius;
if (id != ~0u) {
light_ids[queue[i].start + queue[i].count] = id;
light_radii[queue[i].start + queue[i].count] = radius;
queue[i].count++;
}
}
if (i < ST_COUNT - 1) {
queue[i + 1].start = queue[i].start + queue[i].count;
} else {
light_count = queue[i].start + queue[i].count;
}
}
for (int i = 0; i < ST_COUNT; i++) {
lframe->light_queue[i] = queue[i];
}
for (int i = 0; i < LIGHTING_STAGES; i++) {
lframe->stage_queue[i].count = 0;
}
int matrix_id_count = 0;
for (uint32_t i = 0; i < light_count; i++) {
auto r = &lctx->light_control.a[light_ids[i]];
if (r->light_id != light_ids[i]) {
Sys_Error ("%d != %d", r->light_id, light_ids[i]);
}
lframe->stage_queue[r->stage_index].count += r->numLayers;
matrix_id_count += r->numLayers;
}
lframe->stage_queue[0].start = 0;
for (int i = 1; i < LIGHTING_STAGES; i++) {
auto q = &lframe->stage_queue[i];
q[0].start = q[-1].start + q[-1].count;
q[-1].count = 0;
}
lframe->stage_queue[LIGHTING_STAGES - 1].count = 0;
size_t packet_size = 0;
packet_size += sizeof (uint32_t[light_count]);
packet_size += sizeof (float[light_count]);
packet_size += sizeof (uint32_t[matrix_id_count]);
auto bb = &bufferBarriers[qfv_BB_TransferWrite_to_UniformRead];
auto packet = QFV_PacketAcquire (ctx->staging);
byte *packet_start = QFV_PacketExtend (packet, packet_size);
byte *packet_data = packet_start;
qfv_scatter_t id_scatter = {
.srcOffset = packet_data - packet_start,
.dstOffset = 0,
.length = sizeof (uint32_t[light_count]),
};
auto id_data = (uint32_t *) packet_data;
packet_data += id_scatter.length;
qfv_scatter_t radius_scatter = {
.srcOffset = packet_data - packet_start,
.dstOffset = 0,
.length = sizeof (uint32_t[light_count]),
};
auto radius_data = (uint32_t *) packet_data;
packet_data += radius_scatter.length;
qfv_scatter_t matrix_id_scater = {
.srcOffset = packet_data - packet_start,
.dstOffset = 0,
.length = sizeof (uint32_t[matrix_id_count]),
};
auto matrix_ids = (uint32_t *) packet_data;
packet_data += matrix_id_scater.length;
memcpy (id_data, light_ids, packet_size);
memcpy (radius_data, light_radii, packet_size);
for (uint32_t i = 0; i < light_count; i++) {
auto r = &lctx->light_control.a[light_ids[i]];
enqueue_map (matrix_ids, lframe, r);
}
QFV_PacketScatterBuffer (packet, lframe->id_buffer, 1, &id_scatter, bb);
QFV_PacketScatterBuffer (packet, lframe->radius_buffer,
1, &radius_scatter, bb);
QFV_PacketScatterBuffer (packet, lframe->shadowmat_id_buffer,
1, &matrix_id_scater, bb);
QFV_PacketSubmit (packet);
transition_shadow_targets (lframe, ctx);
if (developer & SYS_lighting) {
Vulkan_Draw_String (vid.width - 32, 16,
va (ctx->va_ctx, "%3d", light_count),
ctx);
}
}
static void
lighting_cull_lights (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto lframe = &lctx->frames.a[ctx->curFrame];
auto queue = lframe->light_queue;
uint32_t count = queue[ST_CUBE].count + queue[ST_PLANE].count;
if (!count) {
return;
}
auto light_cull = QFV_GetStep (params[0], ctx->render_context->job);
auto render = light_cull->render;
auto cmd = QFV_GetCmdBuffer (ctx, false);
dfunc->vkBeginCommandBuffer (cmd, &(VkCommandBufferBeginInfo) {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
});
qftCVkCollect (lframe->qftVkCtx, cmd);
dfunc->vkCmdResetQueryPool (cmd, lframe->query, 0, MaxLights);
auto qftVkCtx = taskctx->frame->qftVkCtx;
taskctx->frame->qftVkCtx = lframe->qftVkCtx;
auto renderpass = &render->renderpasses[0];
QFV_RunRenderPassCmd (cmd, ctx, renderpass, 0);
taskctx->frame->qftVkCtx = qftVkCtx;
dfunc->vkEndCommandBuffer (cmd);
qfMessageL ("submit");
auto dev_queue = &device->queue;
VkSubmitInfo submitInfo = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.commandBufferCount = 1,
.pCommandBuffers = &cmd,
};
dfunc->vkResetFences (device->dev, 1, &lframe->fence);
dfunc->vkQueueSubmit (dev_queue->queue, 1, &submitInfo, lframe->fence);
dfunc->vkWaitForFences (device->dev, 1, &lframe->fence, VK_TRUE, 200000000);
uint32_t frag_counts[count];
VkDeviceSize size = sizeof (frag_counts);
dfunc->vkGetQueryPoolResults (device->dev, lframe->query, 0, count,
size, frag_counts, sizeof (uint32_t),
VK_QUERY_RESULT_WAIT_BIT);
uint32_t c = 0;
uint32_t ci = 0;
vec4f_t cam = r_refdef.camera[3];
uint32_t id = 0;
if (lframe->light_queue[ST_CUBE].count) {
auto q = lframe->light_queue[ST_CUBE];
for (uint32_t i = 0; i < q.count; i++) {
uint32_t fc = frag_counts[id++];
c += fc != 0;
if (!fc) {
uint32_t hull = q.start + i;
vec4f_t dist = cam - lframe->positions[hull];
dist[3] = 0;
float rad = lframe->id_radius[hull].radius;
constexpr float s = 1.5835921350012616f;
bool inside = dotf(dist, dist)[0] < rad * rad * s;
ci += inside;
if (!inside) {
lframe->id_radius[hull].id = ~0u;
}
}
}
}
if (lframe->light_queue[ST_PLANE].count) {
auto q = lframe->light_queue[ST_PLANE];
for (uint32_t i = 0; i < q.count; i++) {
uint32_t fc = frag_counts[id++];
c += fc != 0;
if (!fc) {
uint32_t hull = q.start + i;
vec4f_t dist = cam - lframe->positions[hull];
dist[3] = 0;
float rad = lframe->id_radius[hull].radius;
bool inside = dotf(dist, dist)[0] < rad * rad;
ci += inside;
if (!inside) {
lframe->id_radius[hull].id = ~0u;
}
}
}
}
lighting_rewrite_ids (lframe, ctx);
}
static void
draw_hull (uint32_t indexCount, uint32_t firstIndex, int32_t vertOffset,
uint32_t hull, uint32_t id, VkCommandBuffer cmd, VkQueryPool query,
qfv_devfuncs_t *dfunc, qftVkCtx_t *vk)
{
qfZoneNamed (zone, true);
// qftVkScopedZoneC (vk, cmd, "draw_hull", 0xc0a000);
dfunc->vkCmdBeginQuery (cmd, query, id, 0);
dfunc->vkCmdDrawIndexed (cmd, indexCount, 1, firstIndex, vertOffset, hull);
dfunc->vkCmdEndQuery (cmd, query, id);
}
static void
lighting_draw_hulls (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
qfZoneNamed (zone, true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto cmd = taskctx->cmd;
auto lframe = &lctx->frames.a[ctx->curFrame];
uint32_t id = 0;
if (lframe->light_queue[ST_CUBE].count) {
auto q = lframe->light_queue[ST_CUBE];
for (uint32_t i = 0; i < q.count; i++) {
uint32_t hull = q.start + i;
draw_hull (num_ico_inds, 0, 0, hull, id++,
cmd, lframe->query, dfunc, taskctx->frame->qftVkCtx);
}
}
if (lframe->light_queue[ST_PLANE].count) {
auto q = lframe->light_queue[ST_PLANE];
for (uint32_t i = 0; i < q.count; i++) {
uint32_t hull = q.start + i;
draw_hull (num_cone_inds, num_ico_inds, 12, hull, id++,
cmd, lframe->query, dfunc, taskctx->frame->qftVkCtx);
}
}
}
static void
lighting_draw_lights (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
qfZoneNamed (zone, true);
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
auto layout = taskctx->pipeline->layout;
auto cmd = taskctx->cmd;
auto lframe = &lctx->frames.a[ctx->curFrame];
auto shadow_type = *(int *) params[0]->value;
auto queue = lframe->light_queue[shadow_type];
if (!queue.count) {
return;
}
//FIXME dup of z_range (sort of)
vec4f_t depths = {
r_nearclip / 32, r_nearclip / 256, r_nearclip / 1024, 0,
};
qfv_push_constants_t push_constants[] = {
{ VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof (depths), &depths },
{ VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(depths), sizeof(queue), &queue },
};
QFV_PushConstants (device, cmd, layout, 2, push_constants);
dfunc->vkCmdDraw (cmd, 3, 1, 0, 0);
}
static exprenum_t lighting_stage_enum;
static exprtype_t lighting_stage_type = {
.name = "lighting_stage",
.size = sizeof (int),
.get_string = cexpr_enum_get_string,
.data = &lighting_stage_enum,
};
static int lighting_stage_values[] = {
lighting_main,
lighting_shadow,
lighting_hull,
};
static exprsym_t lighting_stage_symbols[] = {
{"main", &lighting_stage_type, lighting_stage_values + 0},
{"shadow", &lighting_stage_type, lighting_stage_values + 1},
{"hull", &lighting_stage_type, lighting_stage_values + 2},
{}
};
static exprtab_t lighting_stage_symtab = { .symbols = lighting_stage_symbols };
static exprenum_t lighting_stage_enum = {
&lighting_stage_type,
&lighting_stage_symtab,
};
static exprenum_t shadow_type_enum;
static exprtype_t shadow_type_type = {
.name = "shadow_type",
.size = sizeof (int),
.get_string = cexpr_enum_get_string,
.data = &shadow_type_enum,
};
static int shadow_type_values[] = { ST_NONE, ST_PLANE, ST_CASCADE, ST_CUBE };
static exprsym_t shadow_type_symbols[] = {
{"none", &shadow_type_type, shadow_type_values + 0},
{"plane", &shadow_type_type, shadow_type_values + 1},
{"cascade", &shadow_type_type, shadow_type_values + 2},
{"cube", &shadow_type_type, shadow_type_values + 3},
{}
};
static exprtab_t shadow_type_symtab = { .symbols = shadow_type_symbols };
static exprenum_t shadow_type_enum = {
&shadow_type_type,
&shadow_type_symtab,
};
static exprtype_t *shadow_type_param[] = {
&shadow_type_type,
&lighting_stage_type,
};
static exprtype_t *stepref_param[] = {
&cexpr_string,
};
static exprfunc_t lighting_update_lights_func[] = {
{ .func = lighting_update_lights },
{}
};
static exprfunc_t lighting_update_descriptors_func[] = {
{ .func = lighting_update_descriptors, .num_params = 1,
.param_types = stepref_param },
{}
};
static exprfunc_t lighting_bind_descriptors_func[] = {
{ .func = lighting_bind_descriptors, .num_params = 2,
.param_types = shadow_type_param },
{}
};
static exprfunc_t lighting_draw_splats_func[] = {
{ .func = lighting_draw_splats },
{}
};
static exprfunc_t lighting_cull_lights_func[] = {
{ .func = lighting_cull_lights, .num_params = 1,
.param_types = stepref_param },
{}
};
static exprfunc_t lighting_draw_hulls_func[] = {
{ .func = lighting_draw_hulls },
{}
};
static exprfunc_t lighting_draw_lights_func[] = {
{ .func = lighting_draw_lights, .num_params = 2,
.param_types = shadow_type_param },
{}
};
static exprfunc_t lighting_setup_shadow_func[] = {
{ .func = lighting_setup_shadow },
{}
};
static exprfunc_t lighting_draw_shadow_maps_func[] = {
{ .func = lighting_draw_shadow_maps, .num_params = 1,
.param_types = stepref_param },
{}
};
static exprsym_t lighting_task_syms[] = {
{ "lighting_update_lights", &cexpr_function, lighting_update_lights_func },
{ "lighting_update_descriptors", &cexpr_function,
lighting_update_descriptors_func },
{ "lighting_bind_descriptors", &cexpr_function,
lighting_bind_descriptors_func },
{ "lighting_draw_splats", &cexpr_function, lighting_draw_splats_func },
{ "lighting_cull_lights", &cexpr_function, lighting_cull_lights_func },
{ "lighting_draw_hulls", &cexpr_function, lighting_draw_hulls_func },
{ "lighting_draw_lights", &cexpr_function, lighting_draw_lights_func },
{ "lighting_setup_shadow", &cexpr_function, lighting_setup_shadow_func },
{ "lighting_draw_shadow_maps", &cexpr_function,
lighting_draw_shadow_maps_func },
{}
};
static int
round_light_size (int size)
{
size = ((size + shadow_quanta - 1) / shadow_quanta) * shadow_quanta;
return min (size, 1024);
}
static void
dynlight_size_listener (void *data, const cvar_t *cvar)
{
dynlight_size = round_light_size (dynlight_size);
}
void
Vulkan_Lighting_Init (vulkan_ctx_t *ctx)
{
lightingctx_t *lctx = calloc (1, sizeof (lightingctx_t));
ctx->lighting_context = lctx;
Cvar_Register (&dynlight_size_cvar, dynlight_size_listener, 0);
QFV_Render_AddTasks (ctx, lighting_task_syms);
lctx->shadow_info = (qfv_attachmentinfo_t) {
.name = "$shadow",
.format = VK_FORMAT_X8_D24_UNORM_PACK32,
.samples = 1,
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.finalLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,//FIXME plist
};
qfv_attachmentinfo_t *attachments[] = {
&lctx->shadow_info,
};
QFV_Render_AddAttachments (ctx, 1, attachments);
}
static void
make_default_map (int size, VkImage default_map, vulkan_ctx_t *ctx)
{
auto device = ctx->device;
auto dfunc = device->funcs;
auto packet = QFV_PacketAcquire (ctx->staging);
size_t imgsize = size * size * sizeof (uint32_t);
uint32_t *img = QFV_PacketExtend (packet, imgsize);
for (int i = 0; i < 64; i++) {
for (int j = 0; j < 64; j++) {
img[i * 64 + j] = ((j ^ i) & 1) ? 0x00ffffff : 0;
}
}
auto ib = imageBarriers[qfv_LT_Undefined_to_TransferDst];
ib.barrier.image = default_map;
ib.barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
ib.barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS;
ib.barrier.subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS;
dfunc->vkCmdPipelineBarrier (packet->cmd, ib.srcStages, ib.dstStages,
0, 0, 0, 0, 0, 1, &ib.barrier);
VkBufferImageCopy copy_region[6];
for (int i = 0; i < 6; i++) {
copy_region[i] = (VkBufferImageCopy) {
.bufferOffset = packet->offset,
.bufferRowLength = 0,
.bufferImageHeight = 0,
.imageSubresource = {VK_IMAGE_ASPECT_DEPTH_BIT, 0, i, 1},
{0, 0, 0}, {size, size, 1},
};
}
dfunc->vkCmdCopyBufferToImage (packet->cmd, packet->stage->buffer,
default_map,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
6, copy_region);
ib = imageBarriers[qfv_LT_TransferDst_to_ShaderReadOnly];
ib.barrier.image = default_map;
ib.barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
ib.barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS;
ib.barrier.subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS;
dfunc->vkCmdPipelineBarrier (packet->cmd, ib.srcStages, ib.dstStages,
0, 0, 0, 0, 0, 1, &ib.barrier);
QFV_PacketSubmit (packet);
}
static void
make_ico (qfv_packet_t *packet)
{
vec3_t *verts = QFV_PacketExtend (packet, sizeof (vec3_t[ico_verts]));
float p = (sqrt(5) + 1) / 2;
float a = sqrt (3) / p;
float b = a / p;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 4; j++) {
float my = j & 1 ? a : -a;
float mz = j & 2 ? b : -b;
int vind = i * 4 + j;
int ix = i;
int iy = (i + 1) % 3;
int iz = (i + 2) % 3;
verts[vind][ix] = 0;
verts[vind][iy] = my;
verts[vind][iz] = mz;
}
}
}
static void
make_cone (qfv_packet_t *packet)
{
vec3_t *verts = QFV_PacketExtend (packet, sizeof (vec3_t[cone_verts]));
float a = 2 / sqrt (3);
float b = 1 / sqrt (3);
VectorSet ( 0, 0, 0, verts[0]);
VectorSet ( a, 0, -1, verts[1]);
VectorSet ( b, 1, -1, verts[2]);
VectorSet (-b, 1, -1, verts[3]);
VectorSet (-a, 0, -1, verts[4]);
VectorSet (-b, -1, -1, verts[5]);
VectorSet ( b, -1, -1, verts[6]);
}
static void
write_inds (qfv_packet_t *packet)
{
uint32_t *inds = QFV_PacketExtend (packet, sizeof (ico_inds)
+ sizeof (cone_inds));
memcpy (inds, ico_inds, sizeof (ico_inds));
inds += num_ico_inds;
memcpy (inds, cone_inds, sizeof (cone_inds));
}
void
Vulkan_Lighting_Setup (vulkan_ctx_t *ctx)
{
qfvPushDebug (ctx, "lighting init");
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
lctx->sampler = QFV_Render_Sampler (ctx, "shadow_sampler");
Vulkan_Script_SetOutput (ctx,
&(qfv_output_t) { .format = VK_FORMAT_X8_D24_UNORM_PACK32 });
DARRAY_INIT (&lctx->light_mats, 16);
DARRAY_INIT (&lctx->light_control, 16);
auto rctx = ctx->render_context;
size_t frames = rctx->frames.size;
DARRAY_INIT (&lctx->frames, frames);
DARRAY_RESIZE (&lctx->frames, frames);
lctx->frames.grow = 0;
lctx->light_resources = malloc (sizeof (qfv_resource_t)
// splat vertices
+ sizeof (qfv_resobj_t)
// splat indices
+ sizeof (qfv_resobj_t)
// default shadow map and views
+ 3 * sizeof (qfv_resobj_t)
// light matrices
+ sizeof (qfv_resobj_t[frames])
// light matrix ids
+ sizeof (qfv_resobj_t[frames])
// light ids
+ sizeof (qfv_resobj_t[frames])
// light radii
+ sizeof (qfv_resobj_t[frames])
// light data
+ sizeof (qfv_resobj_t[frames])
// light render
+ sizeof (qfv_resobj_t[frames])
// light styles
+ sizeof (qfv_resobj_t[frames])
// light entids
+ sizeof (qfv_resobj_t[frames]));
lctx->light_resources[0] = (qfv_resource_t) {
.name = "lights",
.va_ctx = ctx->va_ctx,
.memory_properties = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.num_objects = 2 + 3 + 8 * frames,
.objects = (qfv_resobj_t *) &lctx->light_resources[1],
};
auto splat_verts = lctx->light_resources->objects;
auto splat_inds = &splat_verts[1];
auto default_map = &splat_inds[1];
auto default_view_cube = &default_map[1];
auto default_view_2d = &default_view_cube[1];
auto light_mats = &default_view_2d[1];
auto light_mat_ids = &light_mats[frames];
auto light_ids = &light_mat_ids[frames];
auto light_radii = &light_ids[frames];
auto light_data = &light_radii[frames];
auto light_render = &light_data[frames];
auto light_styles = &light_render[frames];
auto light_entids = &light_styles[frames];
splat_verts[0] = (qfv_resobj_t) {
.name = "splat:vertices",
.type = qfv_res_buffer,
.buffer = {
.size = (20 + 7) * sizeof (vec3_t),
.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
},
};
splat_inds[0] = (qfv_resobj_t) {
.name = "splat:indices",
.type = qfv_res_buffer,
.buffer = {
.size = sizeof (ico_inds) + sizeof (cone_inds),
.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
},
};
default_map[0] = (qfv_resobj_t) {
.name = "default_map",
.type = qfv_res_image,
.image = {
.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT,
.type = VK_IMAGE_TYPE_2D,
.format = VK_FORMAT_X8_D24_UNORM_PACK32,
.extent = { 64, 64, 1 },
.num_mipmaps = 1,
.num_layers = 6,
.samples = VK_SAMPLE_COUNT_1_BIT,
.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT
| VK_IMAGE_USAGE_SAMPLED_BIT,
},
};
default_view_cube[0] = (qfv_resobj_t) {
.name = "default_map:view_cube",
.type = qfv_res_image_view,
.image_view = {
.image = default_map - lctx->light_resources->objects,
.type = VK_IMAGE_VIEW_TYPE_CUBE_ARRAY,
.format = VK_FORMAT_X8_D24_UNORM_PACK32,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.levelCount = VK_REMAINING_MIP_LEVELS,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
},
};
default_view_2d[0] = (qfv_resobj_t) {
.name = "default_map:view_2d",
.type = qfv_res_image_view,
.image_view = {
.image = default_map - lctx->light_resources->objects,
.type = VK_IMAGE_VIEW_TYPE_2D_ARRAY,
.format = VK_FORMAT_X8_D24_UNORM_PACK32,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.levelCount = VK_REMAINING_MIP_LEVELS,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
},
};
for (size_t i = 0; i < frames; i++) {
light_entids[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "entids:%zd", i),
.type = qfv_res_buffer,
.buffer = {
.size = MaxLights * sizeof (uint32_t),
.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT
| VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_ids[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "ids:%zd", i),
.type = qfv_res_buffer,
.buffer = {
.size = MaxLights * sizeof (uint32_t),
.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT
| VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_radii[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "radii:%zd", i),
.type = qfv_res_buffer,
.buffer = {
.size = MaxLights * sizeof (float),
.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_data[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "lights:%zd", i),
.type = qfv_res_buffer,
.buffer = {
.size = sizeof (light_t[MaxLights]),
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_render[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "render:%zd", i),
.type = qfv_res_buffer,
.buffer = {
.size = sizeof (qfv_light_render_t[MaxLights]),
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_styles[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "styles:%zd", i),
.type = qfv_res_buffer,
.buffer = {
.size = sizeof (vec4f_t[NumStyles]),
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_mats[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "matrices:%zd", i),
.type = qfv_res_buffer,
.buffer = {
// never need more than 6 matrices per light
.size = sizeof (mat4f_t[MaxLights * 6]),
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
light_mat_ids[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "matrix ids:%zd", i),
.type = qfv_res_buffer,
.buffer = {
// never need more than 6 matrices per light
.size = sizeof (uint32_t[MaxLights * 6]),
.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT,
},
};
}
QFV_CreateResource (device, lctx->light_resources);
lctx->splat_verts = splat_verts[0].buffer.buffer;
lctx->splat_inds = splat_inds[0].buffer.buffer;
lctx->default_map = default_map[0].image.image;
lctx->default_view_cube = default_view_cube[0].image_view.view;
lctx->default_view_2d = default_view_2d[0].image_view.view;
auto shadow_mgr = QFV_Render_DSManager (ctx, "lighting_shadow");
lctx->shadow_cube_set = QFV_DSManager_AllocSet (shadow_mgr);
lctx->shadow_2d_set = QFV_DSManager_AllocSet (shadow_mgr);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET,
lctx->shadow_cube_set, "lighting:shadow_cube_set");
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET,
lctx->shadow_2d_set, "lighting:shadow_2d_set");
lctx->shadow_sampler = QFV_Render_Sampler (ctx, "shadow_sampler");
auto attach_mgr = QFV_Render_DSManager (ctx, "lighting_attach");
auto lights_mgr = QFV_Render_DSManager (ctx, "lighting_lights");
auto shadowmat_mgr = QFV_Render_DSManager (ctx, "shadowmat_set");
for (size_t i = 0; i < frames; i++) {
auto lframe = &lctx->frames.a[i];
*lframe = (lightingframe_t) {
.shadowmat_set = QFV_DSManager_AllocSet (shadowmat_mgr),
.lights_set = QFV_DSManager_AllocSet (lights_mgr),
.attach_set = QFV_DSManager_AllocSet (attach_mgr),
.shadowmat_buffer = light_mats[i].buffer.buffer,
.shadowmat_id_buffer = light_mat_ids[i].buffer.buffer,
.light_buffer = light_data[i].buffer.buffer,
.render_buffer = light_render[i].buffer.buffer,
.style_buffer = light_styles[i].buffer.buffer,
.id_buffer = light_ids[i].buffer.buffer,
.radius_buffer = light_radii[i].buffer.buffer,
.entid_buffer = light_entids[i].buffer.buffer,
};
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET,
lframe->attach_set,
va (ctx->va_ctx, "lighting:attach_set:%zd", i));
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET,
lframe->lights_set,
va (ctx->va_ctx, "lighting:lights_set:%zd", i));
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET,
lframe->shadowmat_set,
va (ctx->va_ctx, "lighting:shadowmat_set:%zd", i));
VkDescriptorBufferInfo bufferInfo[] = {
{ .buffer = lframe->shadowmat_buffer,
.offset = 0, .range = VK_WHOLE_SIZE, },
{ .buffer = lframe->shadowmat_id_buffer,
.offset = 0, .range = VK_WHOLE_SIZE, },
{ .buffer = lframe->id_buffer,
.offset = 0, .range = VK_WHOLE_SIZE, },
{ .buffer = lframe->light_buffer,
.offset = 0, .range = VK_WHOLE_SIZE, },
{ .buffer = lframe->render_buffer,
.offset = 0, .range = VK_WHOLE_SIZE, },
{ .buffer = lframe->style_buffer,
.offset = 0, .range = VK_WHOLE_SIZE, },
{ .buffer = lframe->entid_buffer,
.offset = 0, .range = VK_WHOLE_SIZE, },
};
VkWriteDescriptorSet bufferWrite[] = {
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->shadowmat_set,
.dstBinding = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo[0], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->shadowmat_set,
.dstBinding = 1,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo[1], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->lights_set,
.dstBinding = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo[2], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->lights_set,
.dstBinding = 1,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo[3], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->lights_set,
.dstBinding = 2,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo[4], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->lights_set,
.dstBinding = 3,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo[5], },
{ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lframe->lights_set,
.dstBinding = 4,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.pBufferInfo = &bufferInfo[6], },
};
dfunc->vkUpdateDescriptorSets (device->dev, 7, bufferWrite, 0, 0);
dfunc->vkCreateQueryPool (device->dev, &(VkQueryPoolCreateInfo) {
.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO,
.queryType = VK_QUERY_TYPE_OCCLUSION,
.queryCount = MaxLights,
}, 0, &lframe->query);
lframe->fence = QFV_CreateFence (device, 1);
#ifdef TRACY_ENABLE
auto instance = ctx->instance->instance;
auto physdev = ctx->device->physDev->dev;
auto gipa = ctx->vkGetInstanceProcAddr;
auto gdpa = ctx->instance->funcs->vkGetDeviceProcAddr;
lframe->qftVkCtx = qftCVkContextHostCalibrated (instance, physdev,
device->dev,
gipa, gdpa);
#endif
}
size_t target_count = MaxLights * 6;
size_t target_size = frames * sizeof (uint16_t[target_count]);
size_t idr_size = frames * sizeof (light_idrad_t[MaxLights]);
size_t position_size = frames * sizeof (vec4f_t[MaxLights]);
lctx->frames.a[0].stage_targets = malloc (target_size);
lctx->frames.a[0].id_radius = malloc (idr_size);
lctx->frames.a[0].positions = malloc (position_size);
for (size_t i = 1; i < frames; i++) {
auto lframe = &lctx->frames.a[i];
lframe[0].stage_targets = lframe[-1].stage_targets + target_count;
lframe[0].id_radius = lframe[-1].id_radius + MaxLights;
lframe[0].positions = lframe[-1].positions + MaxLights;
}
make_default_map (64, lctx->default_map, ctx);
auto packet = QFV_PacketAcquire (ctx->staging);
make_ico (packet);
make_cone (packet);
QFV_PacketCopyBuffer (packet, splat_verts[0].buffer.buffer, 0,
&bufferBarriers[qfv_BB_TransferWrite_to_UniformRead]);
QFV_PacketSubmit (packet);
packet = QFV_PacketAcquire (ctx->staging);
write_inds (packet);
QFV_PacketCopyBuffer (packet, splat_inds[0].buffer.buffer, 0,
&bufferBarriers[qfv_BB_TransferWrite_to_IndexRead]);
QFV_PacketSubmit (packet);
qfvPopDebug (ctx);
}
static void
clear_shadows (vulkan_ctx_t *ctx)
{
qfZoneScoped (true);
qfv_device_t *device = ctx->device;
auto dfunc = device->funcs;
lightingctx_t *lctx = ctx->lighting_context;
if (lctx->shadow_resources) {
QFV_DestroyResource (device, lctx->shadow_resources);
free (lctx->shadow_resources);
lctx->shadow_resources = 0;
}
for (int i = 0; i < LIGHTING_STAGES; i++) {
for (int j = 0; j < 32; j++) {
auto framebuffer = lctx->stage_framebuffers[j][i];
if (framebuffer) {
dfunc->vkDestroyFramebuffer (device->dev, framebuffer, 0);
}
lctx->stage_framebuffers[j][i] = 0;
}
// images and views freed via shadow_resources
lctx->stage_images[i] = 0;
lctx->stage_views[i] = 0;
}
free (lctx->map_images);
free (lctx->map_views);
free (lctx->map_cube);
lctx->map_images = 0;
lctx->map_views = 0;
lctx->map_cube = 0;
lctx->num_maps = 0;
lctx->light_control.size = 0;
}
void
Vulkan_Lighting_Shutdown (vulkan_ctx_t *ctx)
{
auto device = ctx->device;
auto dfunc = device->funcs;
auto lctx = ctx->lighting_context;
clear_shadows (ctx);
QFV_DestroyResource (device, lctx->light_resources);
free (lctx->light_resources);
for (size_t i = 0; i < lctx->frames.size; i++) {
auto lframe = &lctx->frames.a[i];
dfunc->vkDestroyQueryPool (device->dev, lframe->query, 0);
dfunc->vkDestroyFence (device->dev, lframe->fence, 0);
}
free (lctx->frames.a[0].stage_targets);
DARRAY_CLEAR (&lctx->light_mats);
DARRAY_CLEAR (&lctx->light_control);
free (lctx->map_images);
free (lctx->map_views);
free (lctx->map_cube);
free (lctx->frames.a);
free (lctx);
}
static void
create_light_matrices (lightingctx_t *lctx)
{
auto reg = lctx->scene->reg;
auto light_pool = &reg->comp_pools[scene_light];
auto light_data = (light_t *) light_pool->data;
uint16_t mat_count = 0;
for (uint32_t i = 0; i < light_pool->count; i++) {
entity_t ent = { .reg = reg, .id = light_pool->dense[i] };
uint32_t id = get_lightid (ent);
auto r = &lctx->light_control.a[id];
r->matrix_id = mat_count;
mat_count += r->numLayers;
}
DARRAY_RESIZE (&lctx->light_mats, mat_count);
lctx->dynamic_matrix_base = mat_count;
for (uint32_t i = 0; i < dynlight_max; i++) {
auto r = &lctx->light_control.a[lctx->dynamic_base + i];
r->matrix_id = lctx->dynamic_matrix_base + i * 6;
}
for (uint32_t i = 0; i < light_pool->count; i++) {
light_t *light = &light_data[i];
entity_t ent = { .reg = reg, .id = light_pool->dense[i] };
uint32_t id = get_lightid (ent);
auto r = &lctx->light_control.a[id];
auto lm = &lctx->light_mats.a[r->matrix_id];
mat4f_t view;
mat4f_t proj;
vec4f_t dir;
switch (r->mode) {
default:
case ST_NONE:
continue;
case ST_CUBE:
mat4fidentity (view);
break;
case ST_CASCADE:
case ST_PLANE:
//FIXME will fail for -ref_direction
dir = light->direction;
dir[3] = 0;
mat4fquat (view, qrotf (dir, ref_direction));
break;
}
vec4f_t pos = -light->position;
pos[3] = 1;
view[3] = mvmulf (view, pos);
switch (r->mode) {
case ST_NONE:
continue;
case ST_CUBE:
QFV_PerspectiveTan (proj, 1, 1, lnearclip);
for (int j = 0; j < 6; j++) {
mat4f_t side_view;
mat4f_t rotinv;
mat4ftranspose (rotinv, qfv_box_rotations[j]);
mmulf (side_view, rotinv, view);
mmulf (side_view, qfv_z_up, side_view);
mmulf (lm[j], proj, side_view);
}
break;
case ST_CASCADE:
// dependent on view fustrum and cascade level
mat4fidentity (proj);
mmulf (view, qfv_z_up, view);
for (int j = 0; j < num_cascade; j++) {
mmulf (lm[j], proj, view);
}
break;
case ST_PLANE:
QFV_PerspectiveCos (proj, -light->direction[3], lnearclip);
mmulf (view, qfv_z_up, view);
mmulf (lm[0], proj, view);
break;
}
}
}
static void
upload_light_matrices (lightingctx_t *lctx, vulkan_ctx_t *ctx)
{
auto packet = QFV_PacketAcquire (ctx->staging);
size_t mat_size = sizeof (mat4f_t[lctx->light_mats.size]);
void *mat_data = QFV_PacketExtend (packet, mat_size);
memcpy (mat_data, lctx->light_mats.a, mat_size);
auto bb = &bufferBarriers[qfv_BB_TransferWrite_to_UniformRead];
for (size_t i = 0; i < lctx->frames.size; i++) {
auto lframe = &lctx->frames.a[i];
QFV_PacketCopyBuffer (packet, lframe->shadowmat_buffer, 0, bb);
}
QFV_PacketSubmit (packet);
// FIXME temporary until batched shadow rendering is implemented
packet = QFV_PacketAcquire (ctx->staging);
size_t id_size = sizeof (uint32_t[MaxLights * 6]);
uint32_t *id_data = QFV_PacketExtend (packet, id_size);
for (int i = 0; i < MaxLights * 6; i++) {
id_data[i] = i;
}
for (size_t i = 0; i < lctx->frames.size; i++) {
auto lframe = &lctx->frames.a[i];
QFV_PacketCopyBuffer (packet, lframe->shadowmat_id_buffer, 0, bb);
}
QFV_PacketSubmit (packet);
}
static void
upload_light_data (lightingctx_t *lctx, vulkan_ctx_t *ctx)
{
auto reg = lctx->scene->reg;
auto light_pool = &reg->comp_pools[scene_light];
auto lights = (light_t *) light_pool->data;
uint32_t count = light_pool->count;
auto packet = QFV_PacketAcquire (ctx->staging);
auto light_data = QFV_PacketExtend (packet, sizeof (light_t[count]));
memcpy (light_data, lights, sizeof (light_t[count]));
auto bb = &bufferBarriers[qfv_BB_TransferWrite_to_UniformRead];
for (size_t i = 0; i < lctx->frames.size; i++) {
auto lframe = &lctx->frames.a[i];
QFV_PacketCopyBuffer (packet, lframe->light_buffer, 0, bb);
}
QFV_PacketSubmit (packet);
packet = QFV_PacketAcquire (ctx->staging);
uint32_t r_size = sizeof (qfv_light_render_t[count]);
qfv_light_render_t *render = QFV_PacketExtend (packet, r_size);
for (uint32_t i = 0; i < count; i++) {
entity_t ent = { .reg = reg, .id = light_pool->dense[i] };
uint32_t id = get_lightid (ent);
if (id >= lctx->light_control.size) {
continue;
}
auto r = &lctx->light_control.a[id];
render[i] = (qfv_light_render_t) {
.id_data = make_id(r, style_enable),
.style = get_lightstyle (ent),
};
}
for (size_t i = 0; i < lctx->frames.size; i++) {
auto lframe = &lctx->frames.a[i];
QFV_PacketCopyBuffer (packet, lframe->render_buffer, 0, bb);
}
QFV_PacketSubmit (packet);
}
static int
light_shadow_type (const light_t *light)
{
if (!light->position[3]) {
if (!VectorIsZero (light->direction)) {
return ST_CASCADE;
}
} else {
if (light->direction[3] > -0.5) {
return ST_CUBE;
} else {
return ST_PLANE;
}
}
return ST_NONE;
}
static int
light_compare (const void *_li2, const void *_li1, void *_lights)
{
const int *li1 = _li1;
const int *li2 = _li2;
const light_t *lights = _lights;
const light_t *l1 = &lights[*li1];
const light_t *l2 = &lights[*li2];
int s1 = abs ((int) l1->color[3]);
int s2 = abs ((int) l2->color[3]);
if (s1 == s2) {
// same size
if (l1->position[3] == l2->position[3]) {
// same "type" (point/spot vs directional)
// sort by spot size (1 for point/directional)
return (l2->direction[3] > -0.5) - (l1->direction[3] > -0.5);
}
// sort by "type" (point/spot vs directional)
return l2->position[3] - l1->position[3];
}
// sort by size
return s1 - s2;
}
typedef struct {
int size;
int layers;
int cube;
} mapdesc_t;
typedef struct {
mapdesc_t *maps;
int numMaps;
int numLights;
const light_t *lights;
int *imageMap;
const int *lightMap;
light_control_t *control;
int maxLayers;
} mapctx_t;
static int
allocate_map (mapctx_t *mctx, int type, int (*getsize) (const light_t *light))
{
int size = -1;
int numLayers = 0;
int totalLayers = 0;
int layers = ((int[ST_COUNT]) { 0, 1, num_cascade, 6 })[type];
int cube = type == ST_CUBE;
for (int i = 0; i < mctx->numLights; i++) {
auto li = mctx->lightMap[i];
auto lr = &mctx->control[li];
if (lr->mode != type) {
continue;
}
int light_size = getsize (&mctx->lights[li]);
light_size = round_light_size (light_size);
if (size != light_size || numLayers + layers > mctx->maxLayers) {
if (numLayers) {
mctx->maps[mctx->numMaps++] = (mapdesc_t) {
.size = size,
.layers = numLayers,
.cube = cube,
};
numLayers = 0;
}
size = light_size;
}
mctx->imageMap[li] = mctx->numMaps;
lr->size = size;
lr->layer = numLayers;
lr->numLayers = layers;
numLayers += layers;
totalLayers += layers;
}
if (numLayers) {
mctx->maps[mctx->numMaps++] = (mapdesc_t) {
.size = size,
.layers = numLayers,
.cube = cube,
};
}
return totalLayers;
}
static int
allocate_dynlight_map (mapctx_t *mctx)
{
int size = -1;
int numLayers = 0;
int totalLayers = 0;
int layers = 6;
int cube = 1;
for (int i = 0; i < dynlight_max; i++) {
if (size != dynlight_size || numLayers + layers > mctx->maxLayers) {
if (numLayers) {
mctx->maps[mctx->numMaps++] = (mapdesc_t) {
.size = size,
.layers = numLayers,
.cube = cube,
};
numLayers = 0;
}
size = dynlight_size;
}
auto li = mctx->numLights + i;
auto lr = &mctx->control[li];
*lr = (light_control_t) {
.stage_index = (size / shadow_quanta) - 1,
.map_index = mctx->numMaps,
.size = size,
.layer = numLayers,
.numLayers = layers,
.mode = ST_CUBE,
.light_id = li,
};
numLayers += layers;
totalLayers += layers;
}
if (numLayers) {
mctx->maps[mctx->numMaps++] = (mapdesc_t) {
.size = size,
.layers = numLayers,
.cube = cube,
};
}
return totalLayers;
}
static int
get_point_size (const light_t *light)
{
return abs ((int) light->color[3]);
}
static int
get_spot_size (const light_t *light)
{
float c = light->direction[3];
float s = sqrt (1 - c * c);
return abs ((int) (s * light->color[3]));
}
static int
get_direct_size (const light_t *light)
{
return 1024;
}
static void
build_shadow_maps (lightingctx_t *lctx, vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_physdev_t *physDev = device->physDev;
int maxLayers = physDev->p.properties.limits.maxImageArrayLayers;
if (maxLayers > 2048) {
maxLayers = 2048;
}
auto reg = lctx->scene->reg;
auto light_pool = &reg->comp_pools[scene_light];
auto lights = (light_t *) light_pool->data;
int numLights = light_pool->count;
int totalLayers = 0;
int imageMap[numLights];
int lightMap[numLights];
mapdesc_t maps[numLights + dynlight_max];
for (int i = 0; i < numLights; i++) {
lightMap[i] = i;
}
// sort lights by size, type, spot-size
heapsort_r (lightMap, numLights, sizeof (int), light_compare, lights);
DARRAY_RESIZE (&lctx->light_control, numLights + dynlight_max);
for (int i = 0; i < numLights; i++) {
auto li = lightMap[i];
auto lr = &lctx->light_control.a[li];
*lr = (light_control_t) {
.mode = light_shadow_type (&lights[li]),
.light_id = li,
};
set_lightid (light_pool->dense[li], reg, li);
// assume all lights have no shadows
imageMap[li] = -1;
}
mapctx_t mctx = {
.maps = maps,
.numLights = numLights,
.lights = lights,
.imageMap = imageMap,
.lightMap = lightMap,
.control = lctx->light_control.a,
.maxLayers = maxLayers,
};
totalLayers += allocate_map (&mctx, ST_CUBE, get_point_size);
totalLayers += allocate_map (&mctx, ST_PLANE, get_spot_size);
totalLayers += allocate_map (&mctx, ST_CASCADE, get_direct_size);
totalLayers += allocate_dynlight_map (&mctx);
lctx->num_maps = mctx.numMaps;
int stage_layers[LIGHTING_STAGES] = {};
if (mctx.numMaps) {
for (int i = 0; i < mctx.numMaps; i++) {
int ind = (maps[i].size / shadow_quanta) - 1;
stage_layers[ind] += maps[i].layers;
}
int stage_maps = 0;
for (int i = 0; i < LIGHTING_STAGES; i++) {
stage_layers[i] = min (stage_layers[i], max_views);
if (stage_layers[i]) {
stage_maps++;
}
}
qfv_resource_t *shad = calloc (1, sizeof (qfv_resource_t)
+ sizeof (qfv_resobj_t[mctx.numMaps])
+ sizeof (qfv_resobj_t[mctx.numMaps])
+ sizeof (qfv_resobj_t[stage_maps])
+ sizeof (qfv_resobj_t[stage_maps]));
lctx->shadow_resources = shad;
*shad = (qfv_resource_t) {
.name = "shadow",
.va_ctx = ctx->va_ctx,
.memory_properties = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.num_objects = 2 * (mctx.numMaps + stage_maps),
.objects = (qfv_resobj_t *) &shad[1],
};
lctx->map_images = malloc (sizeof (VkImage[mctx.numMaps]));
lctx->map_views = malloc (sizeof (VkImageView[mctx.numMaps]));
lctx->map_cube = malloc (sizeof (bool[mctx.numMaps]));
auto images = shad->objects;
auto stage_images = &images[mctx.numMaps];
auto views = &stage_images[stage_maps];
auto stage_views = &views[mctx.numMaps];
for (int i = 0; i < mctx.numMaps; i++) {
int cube = maps[i].cube;
lctx->map_cube[i] = cube;
images[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "map:image:%02d:%d", i, maps[i].size),
.type = qfv_res_image,
.image = {
.flags = cube ? VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT : 0,
.type = VK_IMAGE_TYPE_2D,
.format = VK_FORMAT_X8_D24_UNORM_PACK32,
.extent = { maps[i].size, maps[i].size, 1 },
.num_mipmaps = 1,
.num_layers = maps[i].layers,
.samples = VK_SAMPLE_COUNT_1_BIT,
.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
| VK_IMAGE_USAGE_TRANSFER_DST_BIT
| VK_IMAGE_USAGE_SAMPLED_BIT,
},
};
views[i] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "map:view:%02d:%d", i, maps[i].size),
.type = qfv_res_image_view,
.image_view = {
.image = i,
.type = cube ? VK_IMAGE_VIEW_TYPE_CUBE_ARRAY
: VK_IMAGE_VIEW_TYPE_2D_ARRAY,
.format = VK_FORMAT_X8_D24_UNORM_PACK32,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.levelCount = VK_REMAINING_MIP_LEVELS,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
},
};
}
for (int i = 0, ind = 0; i < LIGHTING_STAGES; i++) {
if (!stage_layers[i]) {
continue;
}
int size = (i + 1) * shadow_quanta;
stage_images[ind] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "stage_map:image:%02d:%d", ind, size),
.type = qfv_res_image,
.image = {
.type = VK_IMAGE_TYPE_2D,
.format = VK_FORMAT_X8_D24_UNORM_PACK32,
.extent = { size, size, 1 },
.num_mipmaps = 1,
.num_layers = stage_layers[i],
.samples = VK_SAMPLE_COUNT_1_BIT,
.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
| VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
},
};
stage_views[ind] = (qfv_resobj_t) {
.name = va (ctx->va_ctx, "stage_map:view:%02d:%d", ind, size),
.type = qfv_res_image_view,
.image_view = {
.image = mctx.numMaps + ind,
.type = VK_IMAGE_VIEW_TYPE_2D_ARRAY,
.format = VK_FORMAT_X8_D24_UNORM_PACK32,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.levelCount = VK_REMAINING_MIP_LEVELS,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
},
};
ind++;
}
QFV_CreateResource (device, shad);
for (int i = 0; i < mctx.numMaps; i++) {
lctx->map_images[i] = images[i].image.image;
lctx->map_views[i] = views[i].image_view.view;
}
for (int i = 0, ind = 0; i < LIGHTING_STAGES; i++) {
if (!stage_layers[i]) {
continue;
}
lctx->stage_images[i] = stage_images[ind].image.image;
lctx->stage_views[i] = stage_views[ind].image_view.view;
ind++;
}
}
for (int i = 0; i < numLights; i++) {
int li = lightMap[i];
auto lr = &lctx->light_control.a[li];
if (imageMap[li] == -1) {
continue;
}
lr->stage_index = -1;
if (lr->numLayers) {
lr->stage_index = (lr->size / shadow_quanta) - 1;
}
lr->map_index = imageMap[li];
}
Sys_MaskPrintf (SYS_lighting,
"shadow maps: %d layers in %d images: %"PRId64"\n",
totalLayers, lctx->num_maps,
lctx->shadow_resources ? lctx->shadow_resources->size
: (VkDeviceSize) 0);
if (developer & SYS_lighting) {
auto images = lctx->shadow_resources->objects;
for (int i = 0; i < lctx->num_maps; i++) {
Sys_Printf ("map id:%d width:%d layers:%d\n", i,
images[i].image.extent.width,
images[i].image.num_layers);
}
for (int i = 0; i < LIGHTING_STAGES; i++) {
Sys_Printf ("stage:%d width:%d layers:%d\n", i,
(i + 1) * shadow_quanta, stage_layers[i]);
}
}
}
static void
transition_shadow_maps (lightingctx_t *lctx, vulkan_ctx_t *ctx)
{
auto device = ctx->device;
auto dfunc = device->funcs;
VkCommandBufferAllocateInfo aInfo = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
.commandPool = ctx->cmdpool,
.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
.commandBufferCount = 1,
};
VkCommandBuffer cmd;
dfunc->vkAllocateCommandBuffers (device->dev, &aInfo, &cmd);
VkCommandBufferBeginInfo bInfo = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
};
dfunc->vkBeginCommandBuffer (cmd, &bInfo);
auto ib = imageBarriers[qfv_LT_Undefined_to_ShaderReadOnly];
ib.barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
ib.barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS;
ib.barrier.subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS;
VkImageMemoryBarrier barriers[lctx->num_maps];
for (int i = 0; i < lctx->num_maps; i++) {
barriers[i] = ib.barrier;
barriers[i].image = lctx->map_images[i];
}
dfunc->vkCmdPipelineBarrier (cmd, ib.srcStages, ib.dstStages,
0, 0, 0, 0, 0, lctx->num_maps, barriers);
dfunc->vkEndCommandBuffer (cmd);
VkSubmitInfo submitInfo = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.commandBufferCount = 1,
.pCommandBuffers = &cmd,
};
dfunc->vkQueueSubmit (device->queue.queue, 1, &submitInfo, 0);
}
static void
update_shadow_descriptors (lightingctx_t *lctx, vulkan_ctx_t *ctx)
{
auto device = ctx->device;
auto dfunc = device->funcs;
VkDescriptorImageInfo imageInfoCube[32];
VkDescriptorImageInfo imageInfo2d[32];
for (int i = 0; i < 32; i++) {
VkImageView viewCube = lctx->default_view_cube;
VkImageView view2d = lctx->default_view_2d;
if (i < lctx->num_maps) {
if (lctx->map_cube[i]) {
viewCube = lctx->map_views[i];
} else {
view2d = lctx->map_views[i];
}
}
imageInfoCube[i] = (VkDescriptorImageInfo) {
.sampler = lctx->shadow_sampler,
.imageView = viewCube,
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
};
imageInfo2d[i] = (VkDescriptorImageInfo) {
.sampler = lctx->shadow_sampler,
.imageView = view2d,
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
};
}
VkWriteDescriptorSet imageWrite[2] = {
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lctx->shadow_cube_set,
.dstBinding = 0,
.descriptorCount = 32,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.pImageInfo = imageInfoCube,
},
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = lctx->shadow_2d_set,
.dstBinding = 0,
.descriptorCount = 32,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.pImageInfo = imageInfo2d,
},
};
dfunc->vkUpdateDescriptorSets (device->dev, 2, imageWrite, 0, 0);
}
static void
mark_leaves (bsp_pass_t *pass, set_t *pvs)
{
visstate_t visstate = {
.node_visframes = pass->node_frames,
.leaf_visframes = pass->leaf_frames,
.face_visframes = pass->face_frames,
.visframecount = pass->vis_frame,
.brush = pass->brush,
};
R_MarkLeavesPVS (&visstate, pvs);
pass->vis_frame = visstate.visframecount;
}
static void
show_leaves (vulkan_ctx_t *ctx, uint32_t leafnum, efrag_t *efrags)
{
auto pass = Vulkan_Bsp_GetPass (ctx, QFV_bspDebug);
auto brush = pass->brush;
set_t pvs = SET_STATIC_INIT (brush->visleafs, alloca);
set_empty (&pvs);
if (leafnum) {
set_add (&pvs, leafnum - 1);
} else {
for (auto e = efrags; e; e = e->entnext) {
set_add (&pvs, e->leaf - brush->leafs - 1);
}
}
mark_leaves (pass, &pvs);
}
static void
light_dyn_light_ui (void *comp, imui_ctx_t *imui_ctx,
ecs_registry_t *reg, uint32_t ent, void *data)
{
dlight_t *dlight = comp;
UI_Horizontal {
UI_Labelf ("Origin: ");
UI_FlexibleSpace ();
UI_Labelf ("%6.1f %6.1f %6.1f %6g", VEC4_EXP (dlight->origin));
}
UI_Horizontal {
UI_Label ("Color: ");
UI_FlexibleSpace ();
UI_Labelf ("%5.3f %5.3f %5.3f %5.3f", VEC4_EXP (dlight->color));
}
UI_Horizontal {
UI_Labelf ("Radius: ");
UI_FlexibleSpace ();
UI_Labelf ("%6g", dlight->radius);
}
UI_Horizontal {
UI_Labelf ("Die: ");
UI_FlexibleSpace ();
UI_Labelf ("%6.2f", dlight->die);
}
UI_Horizontal {
UI_Labelf ("Decay: ");
UI_FlexibleSpace ();
UI_Labelf ("%6.2f", dlight->decay);
}
UI_Horizontal {
UI_Labelf ("Min Light: ");
UI_FlexibleSpace ();
UI_Labelf ("%6g", dlight->minlight);
}
}
static void
light_light_ui (void *comp, imui_ctx_t *imui_ctx,
ecs_registry_t *reg, uint32_t ent, void *data)
{
light_t *light = comp;
UI_Horizontal {
UI_Label ("Color: ");
UI_FlexibleSpace ();
UI_Labelf ("%5.3f %5.3f %5.3f %3g", VEC4_EXP (light->color));
}
UI_Horizontal {
UI_Labelf ("Position: ");
UI_FlexibleSpace ();
UI_Labelf ("%6.1f %6.1f %6.1f %6g", VEC4_EXP (light->position));
}
UI_Horizontal {
UI_Labelf ("Direction: ");
UI_FlexibleSpace ();
UI_Labelf ("%6.3f %6.3f %6.3f %6.3g", VEC4_EXP (light->direction));
}
UI_Horizontal {
UI_Labelf ("Attenuation: ");
UI_FlexibleSpace ();
UI_Labelf ("%g %g %g %g", VEC4_EXP (light->attenuation));
}
}
static void
scene_efrags_ui (void *comp, imui_ctx_t *imui_ctx,
ecs_registry_t *reg, uint32_t ent, void *data)
{
vulkan_ctx_t *ctx = data;
auto efrags = *(efrag_t **) comp;
uint32_t len = 0;
bool valid = true;
for (auto e = efrags; e; e = e->entnext, len++) {
valid &= e->entity.id == ent;
}
UI_Horizontal {
if (UI_Button (va (ctx->va_ctx, "Show##lightefrags_ui.%08x", ent))) {
show_leaves (ctx, 0, efrags);
}
UI_FlexibleSpace ();
UI_Labelf ("%4s %5u", valid ? "good" : "bad", len);
}
}
static void
scene_lightleaf_ui (void *comp, imui_ctx_t *imui_ctx,
ecs_registry_t *reg, uint32_t ent, void *data)
{
vulkan_ctx_t *ctx = data;
auto leaf = *(uint32_t *) comp;
UI_Horizontal {
if (UI_Button (va (ctx->va_ctx, "Show##lightleaf_ui.%08x", ent))) {
show_leaves (ctx, leaf, 0);
}
UI_FlexibleSpace ();
UI_Labelf ("%5u", leaf);
auto pass = Vulkan_Bsp_GetPass (ctx, QFV_bspDebug);
auto brush = pass->brush;
set_t pvs = SET_STATIC_INIT (brush->visleafs, alloca);
Mod_LeafPVS_set (brush->leafs + leaf, brush, 0, &pvs);
UI_FlexibleSpace ();
if (UI_Button (va (ctx->va_ctx, "Vis##lightleaf_ui.%08x", ent))) {
mark_leaves (pass, &pvs);
}
UI_FlexibleSpace ();
UI_Labelf ("%5u", set_count (&pvs));
}
}
static void
scene_lightstyle_ui (void *comp, imui_ctx_t *imui_ctx,
ecs_registry_t *reg, uint32_t ent, void *data)
{
auto style = *(uint32_t *) comp;
UI_Horizontal {
UI_Labelf ("%5u", style);
UI_FlexibleSpace ();
auto val = d_lightstylevalue[style];
UI_Labelf ("%3f", val / 65536.0);
}
}
static void
scene_lightid_ui (void *comp, imui_ctx_t *imui_ctx,
ecs_registry_t *reg, uint32_t ent, void *data)
{
auto id = *(uint32_t *) comp;
UI_Horizontal {
UI_Labelf ("%5u", id);
UI_FlexibleSpace ();
}
}
void
Vulkan_LoadLights (scene_t *scene, vulkan_ctx_t *ctx)
{
qfZoneScoped (true);
lightingctx_t *lctx = ctx->lighting_context;
lctx->scene = scene;
clear_shadows (ctx);
lctx->ldata = 0;
if (lctx->scene) {
auto reg = lctx->scene->reg;
reg->components.a[scene_dynlight].ui = light_dyn_light_ui;
reg->components.a[scene_light].ui = light_light_ui;
reg->components.a[scene_efrags].ui = scene_efrags_ui;
reg->components.a[scene_lightstyle].ui = scene_lightstyle_ui;
reg->components.a[scene_lightleaf].ui = scene_lightleaf_ui;
reg->components.a[scene_lightid].ui = scene_lightid_ui;
auto light_pool = &reg->comp_pools[scene_light];
if (light_pool->count) {
lctx->dynamic_base = light_pool->count;
lctx->dynamic_count = 0;
build_shadow_maps (lctx, ctx);
transition_shadow_maps (lctx, ctx);
update_shadow_descriptors (lctx, ctx);
create_light_matrices (lctx);
upload_light_matrices (lctx, ctx);
upload_light_data (lctx, ctx);
}
lctx->ldata = scene->lights;
}
}
VkDescriptorSet
Vulkan_Lighting_Descriptors (vulkan_ctx_t *ctx, int frame)
{
auto lctx = ctx->lighting_context;
return lctx->frames.a[frame].shadowmat_set;
}