/* mathlib.h Vector math library Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA $Id$ */ #ifndef __mathlib_h #define __mathlib_h #include #include "QF/qtypes.h" #ifndef M_PI # define M_PI 3.14159265358979323846 // matches value in gcc v2 math.h #endif extern int nanmask; extern const vec_t * const vec3_origin; #define EQUAL_EPSILON 0.001 #define RINT(x) (floor ((x) + 0.5)) #define IS_NAN(x) (((*(int *)&x)&nanmask)==nanmask) #define DotProduct(a,b) ((a)[0]*(b)[0]+(a)[1]*(b)[1]+(a)[2]*(b)[2]) #define VectorSubtract(a,b,c) {(c)[0]=(a)[0]-(b)[0];(c)[1]=(a)[1]-(b)[1];(c)[2]=(a)[2]-(b)[2];} #define VectorNegate(a,b) {(b)[0]=-(a)[0];(b)[1]=-(a)[1];(b)[2]=-(a)[2];} #define VectorAdd(a,b,c) {(c)[0]=(a)[0]+(b)[0];(c)[1]=(a)[1]+(b)[1];(c)[2]=(a)[2]+(b)[2];} #define VectorCopy(a,b) {(b)[0]=(a)[0];(b)[1]=(a)[1];(b)[2]=(a)[2];} #define VectorMult(a,b,c) {(c)[0]=(a)[0]*(b)[0];(c)[1]=(a)[1]*(b)[1];(c)[2]=(a)[2]*(b)[2];} #define VectorMultAdd(a,s,b,c) {(c)[0]=(a)[0]+(s)*(b)[0];(c)[1]=(a)[1]+(s)*(b)[1];(c)[2]=(a)[2]+(s)*(b)[2];} #define VectorMultSub(a,s,b,c) {(c)[0]=(a)[0]-(s)*(b)[0];(c)[1]=(a)[1]-(s)*(b)[1];(c)[2]=(a)[2]-(s)*(b)[2];} #define VectorLength(a) sqrt(DotProduct(a, a)) #define VectorScale(a,b,c) {(c)[0]=(a)[0]*(b);(c)[1]=(a)[1]*(b);(c)[2]=(a)[2]*(b);} #define VectorCompare(x, y) (((x)[0] == (y)[0]) && ((x)[1] == (y)[1]) && ((x)[2] == (y)[2])) #define VectorIsZero(a) ((a)[0] == 0 && (a)[1] == 0 && (a)[2] == 0) #define VectorZero(a) ((a)[2] = (a)[1] = (a)[0] = 0); #define VectorBlend(v1,v2,b,v) \ { \ (v)[0] = (v1)[0] * (1 - (b)) + (v2)[0] * (b); \ (v)[1] = (v1)[1] * (1 - (b)) + (v2)[1] * (b); \ (v)[2] = (v1)[2] * (1 - (b)) + (v2)[2] * (b); \ } /* * VectorDistance, the distance between two points. * Yes, this is the same as sqrt(VectorSubtract then DotProduct), * however that way would involve more vars, this is cheaper. */ #define VectorDistance_fast(a, b) ((((a)[0] - (b)[0]) * ((a)[0] - (b)[0])) + \ (((a)[1] - (b)[1]) * ((a)[1] - (b)[1])) + \ (((a)[2] - (b)[2]) * ((a)[2] - (b)[2]))) #define VectorDistance(a, b) sqrt(VectorDistance_fast(a, b)) #define qfrandom(MAX) ((float) MAX * (rand() * (1.0 / (RAND_MAX + 1.0)))) // up / down #define PITCH 0 // left / right #define YAW 1 // fall over #define ROLL 2 vec_t _DotProduct (const vec3_t v1, const vec3_t v2); void _VectorAdd (const vec3_t veca, const vec3_t vecb, vec3_t out); void _VectorCopy (const vec3_t in, vec3_t out); int _VectorCompare (const vec3_t v1, const vec3_t v2); // uses EQUAL_EPSILON vec_t _VectorLength (const vec3_t v); void _VectorMA (const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc); void _VectorScale (const vec3_t in, vec_t scale, vec3_t out); void _VectorSubtract (const vec3_t veca, const vec3_t vecb, vec3_t out); void CrossProduct (const vec3_t v1, const vec3_t v2, vec3_t cross); vec_t _VectorNormalize (vec3_t v); // returns vector length void VectorInverse (vec3_t v); int Q_log2(int val); void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3]); void R_ConcatTransforms (float in1[3][4], float in2[3][4], float out[3][4]); void FloorDivMod (double numer, double denom, int *quotient, int *rem); fixed16_t Invert24To16(fixed16_t val); fixed16_t Mul16_30(fixed16_t multiplier, fixed16_t multiplicand); int GreatestCommonDivisor (int i1, int i2); void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up); void VectorVectors (const vec3_t forward, vec3_t right, vec3_t up); int BoxOnPlaneSide (const vec3_t emins, const vec3_t emaxs, struct mplane_s *plane); float anglemod (float a); void RotatePointAroundVector (vec3_t dst, const vec3_t axis, const vec3_t point, float degrees); #define BOX_ON_PLANE_SIDE(emins, emaxs, p) \ (((p)->type < 3)? \ ( \ ((p)->dist <= (emins)[(p)->type])? \ 1 \ : \ ( \ ((p)->dist >= (emaxs)[(p)->type])? \ 2 \ : \ 3 \ ) \ ) \ : \ BoxOnPlaneSide( (emins), (emaxs), (p))) #define PlaneDist(point,plane) ((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) #define PlaneDiff(point,plane) (((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) - (plane)->dist) extern mplane_t * const frustum; extern inline qboolean R_CullBox (const vec3_t mins, const vec3_t maxs); extern inline qboolean R_CullSphere (const vec3_t origin, const float radius); extern inline float VectorNormalize (vec3_t v); // returns vector length #ifndef IMPLEMENT_R_Cull extern inline #endif qboolean R_CullBox (const vec3_t mins, const vec3_t maxs) { int i; for (i=0 ; i < 4 ; i++) if (BoxOnPlaneSide (mins, maxs, &frustum[i]) == 2) return true; return false; } #ifndef IMPLEMENT_R_Cull extern inline #endif qboolean R_CullSphere (const vec3_t origin, const float radius) { int i; float r; for (i = 0; i < 4; i++) { r = DotProduct (origin, frustum[i].normal) - frustum[i].dist; if (r <= -radius) return true; } return false; } #ifndef IMPLEMENT_VectorNormalize extern inline #endif float VectorNormalize (vec3_t v) { float length; length = DotProduct (v, v); if (length) { float ilength; length = sqrt (length); ilength = 1.0 / length; v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; } return length; } #endif // __mathlib_h