/* vid_common_vulkan.c Common Vulkan video driver functions Copyright (C) 2021 Bill Currie This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifdef HAVE_STRING_H # include #endif #ifdef HAVE_STRINGS_H # include #endif #ifdef HAVE_MATH_H # include #endif #include "QF/cvar.h" #include "QF/sys.h" #include "QF/va.h" #include "QF/Vulkan/qf_matrices.h" #include "QF/Vulkan/barrier.h" #include "QF/Vulkan/buffer.h" #include "QF/Vulkan/debug.h" #include "QF/Vulkan/descriptor.h" #include "QF/Vulkan/device.h" #include "QF/Vulkan/instance.h" #include "QF/Vulkan/projection.h" #include "QF/Vulkan/renderpass.h" #include "QF/Vulkan/staging.h" #include "QF/ui/view.h" #include "r_internal.h" #include "vid_vulkan.h" #include "util.h" static void setup_view (vulkan_ctx_t *ctx) { mat4f_t view; // Quake's world is z-up, x-forward, y-left, but Vulkan's world is // z-forward, x-right, y-down. static mat4f_t z_up = { { 0, 0, 1, 0}, {-1, 0, 0, 0}, { 0,-1, 0, 0}, { 0, 0, 0, 1}, }; mmulf (view, z_up, r_refdef.camera_inverse); Vulkan_SetViewMatrix (ctx, view); } static void setup_sky (vulkan_ctx_t *ctx) { __auto_type mctx = ctx->matrix_context; vec4f_t q; mat4f_t m; float blend; mat4f_t mat; while (vr_data.realtime - mctx->sky_time > 1) { mctx->sky_rotation[0] = mctx->sky_rotation[1]; mctx->sky_rotation[1] = qmulf (mctx->sky_velocity, mctx->sky_rotation[0]); mctx->sky_time += 1; } blend = bound (0, (vr_data.realtime - mctx->sky_time), 1); q = Blend (mctx->sky_rotation[0], mctx->sky_rotation[1], blend); q = normalf (qmulf (mctx->sky_fix, q)); mat4fidentity (mat); VectorNegate (r_refdef.frame.position, mat[3]); mat4fquat (m, q); mmulf (mat, m, mat); Vulkan_SetSkyMatrix (ctx, mat); } void Vulkan_SetViewMatrix (vulkan_ctx_t *ctx, mat4f_t view) { __auto_type mctx = ctx->matrix_context; if (memcmp (mctx->matrices.View, view, sizeof (mat4f_t))) { memcpy (mctx->matrices.View, view, sizeof (mat4f_t)); mctx->dirty = mctx->frames.size; } } void Vulkan_SetSkyMatrix (vulkan_ctx_t *ctx, mat4f_t sky) { __auto_type mctx = ctx->matrix_context; if (memcmp (mctx->matrices.Sky, sky, sizeof (mat4f_t))) { memcpy (mctx->matrices.Sky, sky, sizeof (mat4f_t)); mctx->dirty = mctx->frames.size; } } void Vulkan_Matrix_Draw (qfv_renderframe_t *rFrame) { vulkan_ctx_t *ctx = rFrame->vulkan_ctx; qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; __auto_type mctx = ctx->matrix_context; __auto_type mframe = &mctx->frames.a[ctx->curFrame]; setup_view (ctx); setup_sky (ctx); if (mctx->dirty <= 0) { mctx->dirty = 0; return; } mctx->dirty--; qfv_packet_t *packet = QFV_PacketAcquire (mctx->stage); qfv_matrix_buffer_t *m = QFV_PacketExtend (packet, sizeof (*m)); *m = mctx->matrices; qfv_bufferbarrier_t bb = bufferBarriers[qfv_BB_Unknown_to_TransferWrite]; bb.barrier.buffer = mframe->buffer; bb.barrier.size = packet->length; dfunc->vkCmdPipelineBarrier (packet->cmd, bb.srcStages, bb.dstStages, 0, 0, 0, 1, &bb.barrier, 0, 0); VkBufferCopy copy_region = { packet->offset, 0, packet->length }; dfunc->vkCmdCopyBuffer (packet->cmd, mctx->stage->buffer, mframe->buffer, 1, ©_region); bb = bufferBarriers[qfv_LT_TransferDst_to_ShaderReadOnly]; bb.barrier.buffer = mframe->buffer; bb.barrier.size = packet->length; dfunc->vkCmdPipelineBarrier (packet->cmd, bb.srcStages, bb.dstStages, 0, 0, 0, 1, &bb.barrier, 0, 0); QFV_PacketSubmit (packet); } void Vulkan_Matrix_Init (vulkan_ctx_t *ctx) { qfvPushDebug (ctx, "matrix init"); qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; matrixctx_t *mctx = calloc (1, sizeof (matrixctx_t)); ctx->matrix_context = mctx; size_t frames = ctx->frames.size; DARRAY_INIT (&mctx->frames, frames); DARRAY_RESIZE (&mctx->frames, frames); mctx->frames.grow = 0; //__auto_type cmdBuffers = QFV_AllocCommandBufferSet (frames, alloca); //QFV_AllocateCommandBuffers (device, ctx->cmdpool, 1, cmdBuffers); mctx->pool = Vulkan_CreateDescriptorPool (ctx, "matrix_pool"); mctx->setLayout = Vulkan_CreateDescriptorSetLayout (ctx, "matrix_set"); __auto_type layouts = QFV_AllocDescriptorSetLayoutSet (frames, alloca); for (size_t i = 0; i < layouts->size; i++) { layouts->a[i] = mctx->setLayout; } for (size_t i = 0; i < frames; i++) { __auto_type mframe = &mctx->frames.a[i]; //mframe->cmd = cmdBuffers->a[i]; mframe->buffer = QFV_CreateBuffer (device, sizeof (qfv_matrix_buffer_t), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT); QFV_duSetObjectName (device, VK_OBJECT_TYPE_BUFFER, mframe->buffer, va (ctx->va_ctx, "buffer:matrices:%zd", i)); } VkMemoryRequirements req; //offset = (offset + req.alignment - 1) & ~(req.alignment - 1); dfunc->vkGetBufferMemoryRequirements (device->dev, mctx->frames.a[0].buffer, &req); mctx->memory = QFV_AllocBufferMemory (device, mctx->frames.a[0].buffer, VK_MEMORY_PROPERTY_HOST_CACHED_BIT, frames * req.size, 0); QFV_duSetObjectName (device, VK_OBJECT_TYPE_DEVICE_MEMORY, mctx->memory, "memory:matrices"); __auto_type sets = QFV_AllocateDescriptorSet (device, mctx->pool, layouts); for (size_t i = 0; i < frames; i++) { __auto_type mframe = &mctx->frames.a[i]; QFV_BindBufferMemory (device, mframe->buffer, mctx->memory, i * req.size); mframe->descriptors = sets->a[i]; VkDescriptorBufferInfo bufferInfo = { mframe->buffer, 0, VK_WHOLE_SIZE }; VkWriteDescriptorSet write[] = { { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0, mframe->descriptors, 0, 0, 1, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &bufferInfo, 0 }, }; dfunc->vkUpdateDescriptorSets (device->dev, 1, write, 0, 0); } free (sets); mctx->sky_fix = (vec4f_t) { 0, 0, 1, 1 } * sqrtf (0.5); mctx->sky_rotation[0] = (vec4f_t) { 0, 0, 0, 1}; mctx->sky_rotation[1] = mctx->sky_rotation[0]; mctx->sky_velocity = (vec4f_t) { }; mctx->sky_velocity = qexpf (mctx->sky_velocity); mctx->sky_time = vr_data.realtime; mat4fidentity (mctx->matrices.Projection3d); mat4fidentity (mctx->matrices.View); mat4fidentity (mctx->matrices.Sky); mat4fidentity (mctx->matrices.Projection2d); mctx->dirty = mctx->frames.size; mctx->stage = QFV_CreateStagingBuffer (device, "matrix", frames * sizeof (qfv_matrix_buffer_t), ctx->cmdpool); qfvPopDebug (ctx); } void Vulkan_Matrix_Shutdown (vulkan_ctx_t *ctx) { qfvPushDebug (ctx, "matrix shutdown"); qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; __auto_type mctx = ctx->matrix_context; QFV_DestroyStagingBuffer (mctx->stage); for (size_t i = 0; i < mctx->frames.size; i++) { __auto_type mframe = &mctx->frames.a[i]; dfunc->vkDestroyBuffer (device->dev, mframe->buffer, 0); } dfunc->vkFreeMemory (device->dev, mctx->memory, 0); qfvPopDebug (ctx); } VkDescriptorSet Vulkan_Matrix_Descriptors (vulkan_ctx_t *ctx, int frame) { __auto_type mctx = ctx->matrix_context; return mctx->frames.a[frame].descriptors; }