/* function.c QC function support code Copyright (C) 2002 Bill Currie Author: Bill Currie Date: 2002/5/7 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifdef HAVE_STRING_H # include #endif #ifdef HAVE_STRINGS_H # include #endif #include #include "QF/dstring.h" #include "QF/hash.h" #include "QF/va.h" #include "qfcc.h" #include "codespace.h" #include "debug.h" #include "def.h" #include "defspace.h" #include "diagnostic.h" #include "emit.h" #include "expr.h" #include "flow.h" #include "function.h" #include "opcodes.h" #include "options.h" #include "reloc.h" #include "shared.h" #include "statements.h" #include "strpool.h" #include "symtab.h" #include "type.h" #include "value.h" static param_t *free_params; static function_t *free_functions; static hashtab_t *overloaded_functions; static hashtab_t *function_map; static const char * ol_func_get_key (const void *_f, void *unused) { overloaded_function_t *f = (overloaded_function_t *) _f; return f->full_name; } static const char * func_map_get_key (const void *_f, void *unused) { overloaded_function_t *f = (overloaded_function_t *) _f; return f->name; } param_t * new_param (const char *selector, type_t *type, const char *name) { param_t *param; ALLOC (4096, param_t, params, param); param->next = 0; param->selector = selector; param->type = type; param->name = name; return param; } param_t * param_append_identifiers (param_t *params, symbol_t *idents, type_t *type) { param_t **p = ¶ms; while (*p) p = &(*p)->next; if (!idents) { *p = new_param (0, 0, 0); p = &(*p)->next; } while (idents) { idents->type = type; *p = new_param (0, type, idents->name); (*p)->symbol = idents; p = &(*p)->next; idents = idents->next; } return params; } param_t * _reverse_params (param_t *params, param_t *next) { param_t *p = params; if (params->next) p = _reverse_params (params->next, params); params->next = next; return p; } param_t * reverse_params (param_t *params) { if (!params) return 0; return _reverse_params (params, 0); } param_t * copy_params (param_t *params) { param_t *n_parms = 0, **p = &n_parms; while (params) { *p = new_param (params->selector, params->type, params->name); params = params->next; p = &(*p)->next; } return n_parms; } type_t * parse_params (type_t *type, param_t *parms) { param_t *p; type_t *new; new = new_type (); new->type = ev_func; new->t.func.type = type; new->t.func.num_params = 0; for (p = parms; p; p = p->next) { if (new->t.func.num_params > MAX_PARMS) { error (0, "too many params"); return type; } if (!p->selector && !p->type && !p->name) { if (p->next) internal_error (0, 0); new->t.func.num_params = -(new->t.func.num_params + 1); } else if (p->type) { new->t.func.param_types[new->t.func.num_params] = p->type; new->t.func.num_params++; } } return new; } param_t * check_params (param_t *params) { int num = 1; param_t *p = params; if (!params) return 0; while (p) { if (p->type == &type_void) { if (p->name) { error (0, "parameter %d ('%s') has incomplete type", num, p->name); p->type = type_default; } else if (num > 1 || p->next) { error (0, "'void' must be the only parameter"); p->name = "void"; } else { // this is a void function return 0; } } p = p->next; } return params; } static overloaded_function_t * get_function (const char *name, type_t *type, int overload, int create) { const char *full_name; overloaded_function_t *func; if (!overloaded_functions) { overloaded_functions = Hash_NewTable (1021, ol_func_get_key, 0, 0); function_map = Hash_NewTable (1021, func_map_get_key, 0, 0); } name = save_string (name); full_name = save_string (va ("%s|%s", name, encode_params (type))); func = Hash_Find (overloaded_functions, full_name); if (func) { if (func->type != type) { error (0, "can't overload on return types"); return func; } return func; } if (!create) return 0; func = Hash_Find (function_map, name); if (func) { if (!overload && !func->overloaded) { expr_t *e = new_expr (); e->line = func->line; e->file = func->file; warning (0, "creating overloaded function %s without @overload", full_name); warning (e, "(previous function is %s)", func->full_name); } overload = 1; } func = calloc (1, sizeof (overloaded_function_t)); func->name = name; func->full_name = full_name; func->type = type; func->overloaded = overload; func->file = pr.source_file; func->line = pr.source_line; Hash_Add (overloaded_functions, func); Hash_Add (function_map, func); return func; } symbol_t * function_symbol (symbol_t *sym, int overload, int create) { const char *name = sym->name; overloaded_function_t *func; symbol_t *s; func = get_function (name, sym->type, overload, create); if (func && func->overloaded) name = func->full_name; s = symtab_lookup (current_symtab, name); if ((!s || s->table != current_symtab) && create) { s = new_symbol (name); s->sy_type = sy_func; s->type = sym->type; s->params = sym->params; s->s.func = 0; // function not yet defined symtab_addsymbol (current_symtab, s); } return s; } // NOTE sorts the list in /reverse/ order static int func_compare (const void *a, const void *b) { overloaded_function_t *fa = *(overloaded_function_t **) a; overloaded_function_t *fb = *(overloaded_function_t **) b; type_t *ta = fa->type; type_t *tb = fb->type; int na = ta->t.func.num_params; int nb = tb->t.func.num_params; int ret, i; if (na < 0) na = ~na; if (nb < 0) nb = ~nb; if (na != nb) return nb - na; if ((ret = (fb->type->t.func.num_params - fa->type->t.func.num_params))) return ret; for (i = 0; i < na && i < nb; i++) if (ta->t.func.param_types[i] != tb->t.func.param_types[i]) return (long)(tb->t.func.param_types[i] - ta->t.func.param_types[i]); return 0; } expr_t * find_function (expr_t *fexpr, expr_t *params) { expr_t *e; int i, j, func_count, parm_count, reported = 0; overloaded_function_t *f, dummy, *best = 0; type_t type; void **funcs, *dummy_p = &dummy; if (fexpr->type != ex_symbol) return fexpr; memset (&type, 0, sizeof (type)); for (e = params; e; e = e->next) { if (e->type == ex_error) return e; type.t.func.num_params++; } if (type.t.func.num_params > MAX_PARMS) return fexpr; for (i = 0, e = params; e; i++, e = e->next) { type.t.func.param_types[type.t.func.num_params - 1 - i] = get_type (e); if (e->type == ex_error) return e; } funcs = Hash_FindList (function_map, fexpr->e.symbol->name); if (!funcs) return fexpr; for (func_count = 0; funcs[func_count]; func_count++) ; if (func_count < 2) { free (funcs); return fexpr; } type.t.func.type = ((overloaded_function_t *) funcs[0])->type->t.func.type; dummy.type = find_type (&type); qsort (funcs, func_count, sizeof (void *), func_compare); dummy.full_name = save_string (va ("%s|%s", fexpr->e.symbol->name, encode_params (&type))); dummy_p = bsearch (&dummy_p, funcs, func_count, sizeof (void *), func_compare); if (dummy_p) { f = (overloaded_function_t *) *(void **) dummy_p; if (f->overloaded) fexpr->e.symbol->name = f->full_name; free (funcs); return fexpr; } for (i = 0; i < func_count; i++) { f = (overloaded_function_t *) funcs[i]; parm_count = f->type->t.func.num_params; if ((parm_count >= 0 && parm_count != type.t.func.num_params) || (parm_count < 0 && ~parm_count > type.t.func.num_params)) { funcs[i] = 0; continue; } if (parm_count < 0) parm_count = ~parm_count; for (j = 0; j < parm_count; j++) { if (!type_assignable (f->type->t.func.param_types[j], type.t.func.param_types[j])) { funcs[i] = 0; break; } } if (j < parm_count) continue; } for (i = 0; i < func_count; i++) { f = (overloaded_function_t *) funcs[i]; if (f) { if (!best) { best = f; } else { if (!reported) { reported = 1; error (fexpr, "unable to disambiguate %s", dummy.full_name); error (fexpr, "possible match: %s", best->full_name); } error (fexpr, "possible match: %s", f->full_name); } } } if (reported) return fexpr; if (best) { if (best->overloaded) { fexpr->e.symbol = symtab_lookup (current_symtab, best->full_name); if (!fexpr->e.symbol) internal_error (fexpr, "overloaded function %s not found", best->full_name); } free (funcs); return fexpr; } error (fexpr, "unable to find function matching %s", dummy.full_name); free (funcs); return fexpr; } static void check_function (symbol_t *fsym) { param_t *params = fsym->params; param_t *p; int i; if (!type_size (fsym->type->t.func.type)) { error (0, "return type is an incomplete type"); fsym->type->t.func.type = &type_void;//FIXME better type? } if (type_size (fsym->type->t.func.type) > type_size (&type_param)) { error (0, "return value too large to be passed by value"); fsym->type->t.func.type = &type_void;//FIXME better type? } for (p = params, i = 0; p; p = p->next, i++) { if (!p->selector && !p->type && !p->name) continue; // ellipsis marker if (!p->type) continue; // non-param selector if (!type_size (p->type)) error (0, "parameter %d (ā€˜%sā€™) has incomplete type", i + 1, p->name); if (type_size (p->type) > type_size (&type_param)) error (0, "param %d (ā€˜%sā€™) is too large to be passed by value", i + 1, p->name); } } static void build_scope (symbol_t *fsym, symtab_t *parent) { int i; param_t *p; symbol_t *args = 0; symbol_t *param; symtab_t *symtab; symtab_t *cs = current_symtab; check_function (fsym); symtab = new_symtab (parent, stab_local); fsym->s.func->symtab = symtab; symtab->space = defspace_new (); current_symtab = symtab; if (fsym->type->t.func.num_params < 0) { args = new_symbol_type (".args", &type_va_list); initialize_def (args, args->type, 0, symtab->space, sc_param); } for (p = fsym->params, i = 0; p; p = p->next) { if (!p->selector && !p->type && !p->name) continue; // ellipsis marker if (!p->type) continue; // non-param selector param = new_symbol_type (p->name, p->type); initialize_def (param, param->type, 0, symtab->space, sc_param); i++; } if (args) { while (i < MAX_PARMS) { param = new_symbol_type (va (".par%d", i), &type_param); initialize_def (param, &type_param, 0, symtab->space, sc_param); i++; } } current_symtab = cs; } function_t * new_function (const char *name, const char *nice_name) { function_t *f; ALLOC (1024, function_t, functions, f); f->s_name = ReuseString (name); f->s_file = pr.source_file; if (!(f->name = nice_name)) f->name = name; return f; } void make_function (symbol_t *sym, const char *nice_name, defspace_t *space, storage_class_t storage) { reloc_t *relocs = 0; if (sym->sy_type != sy_func) internal_error (0, "%s is not a function", sym->name); if (storage == sc_extern && sym->s.func) return; if (!sym->s.func) { sym->s.func = new_function (sym->name, nice_name); sym->s.func->sym = sym; } if (sym->s.func->def && sym->s.func->def->external && storage != sc_extern) { //FIXME this really is not the right way relocs = sym->s.func->def->relocs; free_def (sym->s.func->def); sym->s.func->def = 0; } if (!sym->s.func->def) { sym->s.func->def = new_def (sym->name, sym->type, space, storage); reloc_attach_relocs (relocs, &sym->s.func->def->relocs); } } void add_function (function_t *f) { *pr.func_tail = f; pr.func_tail = &f->next; f->function_num = pr.num_functions++; } function_t * begin_function (symbol_t *sym, const char *nicename, symtab_t *parent, int far) { defspace_t *space; if (sym->sy_type != sy_func) { error (0, "%s is not a function", sym->name); sym = new_symbol_type (sym->name, &type_function); sym = function_symbol (sym, 1, 1); } if (sym->s.func && sym->s.func->def && sym->s.func->def->initialized) { error (0, "%s redefined", sym->name); sym = new_symbol_type (sym->name, sym->type); sym = function_symbol (sym, 1, 1); } space = sym->table->space; if (far) space = pr.far_data; make_function (sym, nicename, space, current_storage); if (!sym->s.func->def->external) { sym->s.func->def->initialized = 1; sym->s.func->def->constant = 1; sym->s.func->def->nosave = 1; add_function (sym->s.func); reloc_def_func (sym->s.func, sym->s.func->def); } sym->s.func->code = pr.code->size; sym->s.func->s_file = pr.source_file; if (options.code.debug) { pr_lineno_t *lineno = new_lineno (); sym->s.func->line_info = lineno - pr.linenos; } build_scope (sym, parent); return sym->s.func; } function_t * build_code_function (symbol_t *fsym, expr_t *state_expr, expr_t *statements) { if (fsym->sy_type != sy_func) // probably in error recovery return 0; build_function (fsym->s.func); if (state_expr) { state_expr->next = statements; statements = state_expr; } emit_function (fsym->s.func, statements); finish_function (fsym->s.func); return fsym->s.func; } function_t * build_builtin_function (symbol_t *sym, expr_t *bi_val, int far) { int bi; defspace_t *space; if (sym->sy_type != sy_func) { error (bi_val, "%s is not a function", sym->name); return 0; } if (sym->s.func && sym->s.func->def && sym->s.func->def->initialized) { error (bi_val, "%s redefined", sym->name); return 0; } if (!is_integer_val (bi_val) && !is_float_val (bi_val)) { error (bi_val, "invalid constant for = #"); return 0; } space = sym->table->space; if (far) space = pr.far_data; make_function (sym, 0, space, current_storage); if (sym->s.func->def->external) return 0; add_function (sym->s.func); if (is_integer_val (bi_val)) bi = expr_integer (bi_val); else bi = expr_float (bi_val); sym->s.func->builtin = bi; reloc_def_func (sym->s.func, sym->s.func->def); build_function (sym->s.func); finish_function (sym->s.func); // for debug info build_scope (sym, current_symtab); return sym->s.func; } void build_function (function_t *f) { // FIXME // f->def->constant = 1; // f->def->nosave = 1; // f->def->initialized = 1; // G_FUNCTION (f->def->ofs) = f->function_num; } void finish_function (function_t *f) { } void emit_function (function_t *f, expr_t *e) { f->code = pr.code->size; lineno_base = f->def->line; f->sblock = make_statements (e); if (options.code.optimize) { flow_build_vars (f); f->graph = flow_build_graph (f->sblock, f); f->graph->func = f; flow_data_flow (f->graph); f->sblock = flow_generate (f->graph); } else { statements_count_temps (f->sblock); } emit_statements (f->sblock); } int function_parms (function_t *f, byte *parm_size) { int count, i; ty_func_t *func = &f->sym->type->t.func; if (func->num_params >= 0) count = func->num_params; else count = -func->num_params - 1; for (i = 0; i < count; i++) parm_size[i] = type_size (func->param_types[i]); return func->num_params; } void clear_functions (void) { if (overloaded_functions) Hash_FlushTable (overloaded_functions); if (function_map) Hash_FlushTable (function_map); }