/* expr.c expression construction and manipulations Copyright (C) 2001 Bill Currie Author: Bill Currie Date: 2001/06/15 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifdef HAVE_STRING_H # include #endif #ifdef HAVE_STRINGS_H # include #endif #include #include "QF/alloc.h" #include "QF/dstring.h" #include "QF/mathlib.h" #include "QF/sys.h" #include "QF/va.h" #include "tools/qfcc/include/qfcc.h" #include "tools/qfcc/include/class.h" #include "tools/qfcc/include/def.h" #include "tools/qfcc/include/defspace.h" #include "tools/qfcc/include/diagnostic.h" #include "tools/qfcc/include/emit.h" #include "tools/qfcc/include/expr.h" #include "tools/qfcc/include/function.h" #include "tools/qfcc/include/idstuff.h" #include "tools/qfcc/include/method.h" #include "tools/qfcc/include/options.h" #include "tools/qfcc/include/reloc.h" #include "tools/qfcc/include/shared.h" #include "tools/qfcc/include/strpool.h" #include "tools/qfcc/include/struct.h" #include "tools/qfcc/include/symtab.h" #include "tools/qfcc/include/type.h" #include "tools/qfcc/include/value.h" #include "tools/qfcc/source/qc-parse.h" static expr_t *exprs_freelist; void convert_name (expr_t *e) { symbol_t *sym; expr_t *new; if (e->type != ex_symbol) return; sym = e->e.symbol; if (!strcmp (sym->name, "__PRETTY_FUNCTION__") && current_func) { new = new_string_expr (current_func->name); goto convert; } if (!strcmp (sym->name, "__FUNCTION__") && current_func) { new = new_string_expr (current_func->def->name); goto convert; } if (!strcmp (sym->name, "__LINE__") && current_func) { new = new_integer_expr (e->line); goto convert; } if (!strcmp (sym->name, "__INFINITY__") && current_func) { new = new_float_expr (INFINITY); goto convert; } if (!strcmp (sym->name, "__FILE__") && current_func) { new = new_string_expr (GETSTR (e->file)); goto convert; } if (!sym->table) { error (e, "%s undefined", sym->name); sym->type = type_default; //FIXME need a def return; } if (sym->sy_type == sy_convert) { new = sym->s.convert.conv (sym, sym->s.convert.data); goto convert; } if (sym->sy_type == sy_expr) { new = copy_expr (sym->s.expr); goto convert; } if (sym->sy_type == sy_type) internal_error (e, "unexpected typedef"); // var, const and func shouldn't need extra handling return; convert: e->type = new->type; e->e = new->e; } expr_t * convert_vector (expr_t *e) { float val[4]; if (e->type != ex_vector) return e; if (is_vector(e->e.vector.type)) { // guaranteed to have three elements expr_t *x = e->e.vector.list; expr_t *y = x->next; expr_t *z = y->next; x = fold_constants (cast_expr (&type_float, x)); y = fold_constants (cast_expr (&type_float, y)); z = fold_constants (cast_expr (&type_float, z)); if (is_constant (x) && is_constant (y) && is_constant (z)) { val[0] = expr_float(x); val[1] = expr_float(y); val[2] = expr_float(z); return new_vector_expr (val); } // at least one of x, y, z is not constant, so rebuild the // list incase any of them are new expressions z->next = 0; y->next = z; x->next = y; e->e.vector.list = x; return e; } if (is_quaternion(e->e.vector.type)) { // guaranteed to have two or four elements if (e->e.vector.list->next->next) { // four vals: x, y, z, w expr_t *x = e->e.vector.list; expr_t *y = x->next; expr_t *z = y->next; expr_t *w = z->next; x = fold_constants (cast_expr (&type_float, x)); y = fold_constants (cast_expr (&type_float, y)); z = fold_constants (cast_expr (&type_float, z)); w = fold_constants (cast_expr (&type_float, w)); if (is_constant (x) && is_constant (y) && is_constant (z) && is_constant (w)) { val[0] = expr_float(x); val[1] = expr_float(y); val[2] = expr_float(z); val[3] = expr_float(w); return new_quaternion_expr (val); } // at least one of x, y, z, w is not constant, so rebuild the // list incase any of them are new expressions w->next = 0; z->next = w; y->next = z; x->next = y; e->e.vector.list = x; return e; } else { // v, s expr_t *v = e->e.vector.list; expr_t *s = v->next; v = convert_vector (v); s = fold_constants (cast_expr (&type_float, s)); if (is_constant (v) && is_constant (s)) { memcpy (val, expr_vector (v), 3 * sizeof (float)); val[3] = expr_float (s); return new_quaternion_expr (val); } // Either v or s is not constant, so can't convert to a quaternion // constant. // Rebuild the list in case v or s is a new expression // the list will always be v, s s->next = 0; v->next = s; e->e.vector.list = v; return e; } } internal_error (e, "bogus vector expression"); } type_t * get_type (expr_t *e) { const type_t *type = 0; convert_name (e); switch (e->type) { case ex_labelref: return &type_void; case ex_memset: return e->e.memset.type; case ex_label: case ex_error: case ex_compound: return 0; // something went very wrong case ex_bool: if (options.code.progsversion == PROG_ID_VERSION) return &type_float; return &type_integer; case ex_nil: if (e->e.nil) { return e->e.nil; } // fall through case ex_state: return &type_void; case ex_block: if (e->e.block.result) return get_type (e->e.block.result); return &type_void; case ex_expr: case ex_uexpr: type = e->e.expr.type; break; case ex_def: type = e->e.def->type; break; case ex_symbol: type = e->e.symbol->type; break; case ex_temp: type = e->e.temp.type; break; case ex_value: type = e->e.value->type; break; case ex_vector: return e->e.vector.type; case ex_selector: return &type_SEL; case ex_count: internal_error (e, "invalid expression"); } return (type_t *) unalias_type (type);//FIXME cast } etype_t extract_type (expr_t *e) { type_t *type = get_type (e); if (type) return type->type; return ev_type_count; } expr_t * type_mismatch (expr_t *e1, expr_t *e2, int op) { dstring_t *t1 = dstring_newstr (); dstring_t *t2 = dstring_newstr (); print_type_str (t1, get_type (e1)); print_type_str (t2, get_type (e2)); e1 = error (e1, "type mismatch: %s %s %s", t1->str, get_op_string (op), t2->str); dstring_delete (t1); dstring_delete (t2); return e1; } expr_t * param_mismatch (expr_t *e, int param, const char *fn, type_t *t1, type_t *t2) { dstring_t *s1 = dstring_newstr (); dstring_t *s2 = dstring_newstr (); print_type_str (s1, t1); print_type_str (s2, t2); e = error (e, "type mismatch for parameter %d of %s: expected %s, got %s", param, fn, s1->str, s2->str); dstring_delete (s1); dstring_delete (s2); return e; } expr_t * cast_error (expr_t *e, type_t *t1, type_t *t2) { dstring_t *s1 = dstring_newstr (); dstring_t *s2 = dstring_newstr (); print_type_str (s1, t1); print_type_str (s2, t2); e = error (e, "cannot cast from %s to %s", s1->str, s2->str); dstring_delete (s1); dstring_delete (s2); return e; } expr_t * test_error (expr_t *e, type_t *t) { dstring_t *s = dstring_newstr (); print_type_str (s, t); e = error (e, "%s cannot be tested", s->str); dstring_delete (s); return e; } expr_t * new_expr (void) { expr_t *e; ALLOC (16384, expr_t, exprs, e); e->line = pr.source_line; e->file = pr.source_file; return e; } expr_t * copy_expr (expr_t *e) { expr_t *n; expr_t *t; if (!e) return 0; switch (e->type) { case ex_error: case ex_def: case ex_symbol: case ex_nil: case ex_value: // nothing to do here n = new_expr (); *n = *e; n->line = pr.source_line; n->file = pr.source_file; return n; case ex_state: return new_state_expr (copy_expr (e->e.state.frame), copy_expr (e->e.state.think), copy_expr (e->e.state.step)); case ex_bool: n = new_expr (); *n = *e; n->line = pr.source_line; n->file = pr.source_file; if (e->e.bool.true_list) { int count = e->e.bool.true_list->size; size_t size = (size_t)&((ex_list_t *) 0)->e[count]; n->e.bool.true_list = malloc (size); while (count--) n->e.bool.true_list->e[count] = copy_expr (e->e.bool.true_list->e[count]); } if (e->e.bool.false_list) { int count = e->e.bool.false_list->size; size_t size = (size_t)&((ex_list_t *) 0)->e[count]; n->e.bool.false_list = malloc (size); while (count--) n->e.bool.false_list->e[count] = copy_expr (e->e.bool.false_list->e[count]); } n->e.bool.e = copy_expr (e->e.bool.e); return n; case ex_label: /// Create a fresh label return new_label_expr (); case ex_labelref: return new_label_ref (e->e.labelref.label); case ex_block: n = new_expr (); *n = *e; n->line = pr.source_line; n->file = pr.source_file; n->e.block.head = 0; n->e.block.tail = &n->e.block.head; n->e.block.result = 0; for (t = e->e.block.head; t; t = t->next) { if (t == e->e.block.result) { n->e.block.result = copy_expr (t); append_expr (n, n->e.block.result); } else { append_expr (n, copy_expr (t)); } } if (e->e.block.result && !n->e.block.result) internal_error (e, "bogus block result?"); break; case ex_expr: n = new_expr (); *n = *e; n->line = pr.source_line; n->file = pr.source_file; n->e.expr.e1 = copy_expr (e->e.expr.e1); n->e.expr.e2 = copy_expr (e->e.expr.e2); return n; case ex_uexpr: n = new_expr (); *n = *e; n->line = pr.source_line; n->file = pr.source_file; n->e.expr.e1 = copy_expr (e->e.expr.e1); return n; case ex_temp: n = new_expr (); *n = *e; n->line = pr.source_line; n->file = pr.source_file; return n; case ex_vector: n = new_expr (); *n = *e; n->e.vector.type = e->e.vector.type; n->e.vector.list = copy_expr (e->e.vector.list); t = e->e.vector.list; e = n->e.vector.list; while (t->next) { e->next = copy_expr (t->next); e = e->next; t = t->next; } return n; case ex_selector: n = new_expr (); *n = *e; n->e.selector.sel_ref = copy_expr (e->e.selector.sel_ref); return n; case ex_compound: n = new_expr (); *n = *e; for (element_t *i = e->e.compound.head; i; i = i->next) { append_element (n, new_element (i->expr, i->symbol)); } return n; case ex_memset: n = new_expr (); *n = *e; n->e.memset.dst = copy_expr (e->e.memset.dst); n->e.memset.val = copy_expr (e->e.memset.val); n->e.memset.count = copy_expr (e->e.memset.count); return n; case ex_count: break; } internal_error (e, "invalid expression"); } expr_t * expr_file_line (expr_t *dst, const expr_t *src) { dst->file = src->file; dst->line = src->line; return dst; } const char * new_label_name (void) { static int label = 0; int lnum = ++label; const char *fname = current_func->sym->name; const char *lname; lname = save_string (va (0, "$%s_%d", fname, lnum)); return lname; } static expr_t * new_error_expr (void) { expr_t *e = new_expr (); e->type = ex_error; return e; } expr_t * new_state_expr (expr_t *frame, expr_t *think, expr_t *step) { expr_t *s = new_expr (); s->type = ex_state; s->e.state.frame = frame; s->e.state.think = think; s->e.state.step = step; return s; } expr_t * new_bool_expr (ex_list_t *true_list, ex_list_t *false_list, expr_t *e) { expr_t *b = new_expr (); b->type = ex_bool; b->e.bool.true_list = true_list; b->e.bool.false_list = false_list; b->e.bool.e = e; return b; } expr_t * new_label_expr (void) { expr_t *l = new_expr (); l->type = ex_label; l->e.label.name = new_label_name (); return l; } expr_t * named_label_expr (symbol_t *label) { symbol_t *sym; expr_t *l; if (!current_func) { // XXX this might be only an error internal_error (0, "label defined outside of function scope"); } sym = symtab_lookup (current_func->label_scope, label->name); if (sym) { return sym->s.expr; } l = new_label_expr (); l->e.label.name = save_string (va (0, "%s_%s", l->e.label.name, label->name)); l->e.label.symbol = label; label->sy_type = sy_expr; label->s.expr = l; symtab_addsymbol (current_func->label_scope, label); return label->s.expr; } expr_t * new_label_ref (ex_label_t *label) { expr_t *l = new_expr (); l->type = ex_labelref; l->e.labelref.label = label; label->used++; return l; } expr_t * new_block_expr (void) { expr_t *b = new_expr (); b->type = ex_block; b->e.block.head = 0; b->e.block.tail = &b->e.block.head; b->e.block.return_addr = __builtin_return_address (0); return b; } expr_t * new_binary_expr (int op, expr_t *e1, expr_t *e2) { expr_t *e = new_expr (); if (e1->type == ex_error) return e1; if (e2 && e2->type == ex_error) return e2; e->type = ex_expr; e->e.expr.op = op; e->e.expr.e1 = e1; e->e.expr.e2 = e2; return e; } expr_t * build_block_expr (expr_t *expr_list) { expr_t *b = new_block_expr (); while (expr_list) { expr_t *e = expr_list; expr_list = e->next; e->next = 0; append_expr (b, e); } return b; } expr_t * new_unary_expr (int op, expr_t *e1) { expr_t *e = new_expr (); if (e1 && e1->type == ex_error) return e1; e->type = ex_uexpr; e->e.expr.op = op; e->e.expr.e1 = e1; return e; } expr_t * new_def_expr (def_t *def) { expr_t *e = new_expr (); e->type = ex_def; e->e.def = def; return e; } expr_t * new_symbol_expr (symbol_t *symbol) { expr_t *e = new_expr (); e->type = ex_symbol; e->e.symbol = symbol; return e; } expr_t * new_temp_def_expr (const type_t *type) { expr_t *e = new_expr (); e->type = ex_temp; e->e.temp.type = (type_t *) unalias_type (type); // FIXME cast return e; } expr_t * new_nil_expr (void) { expr_t *e = new_expr (); e->type = ex_nil; return e; } expr_t * new_value_expr (ex_value_t *value) { expr_t *e = new_expr (); e->type = ex_value; e->e.value = value; return e; } expr_t * new_name_expr (const char *name) { expr_t *e = new_expr (); symbol_t *sym; sym = symtab_lookup (current_symtab, name); if (!sym) sym = new_symbol (name); e->type = ex_symbol; e->e.symbol = sym; return e; } expr_t * new_string_expr (const char *string_val) { expr_t *e = new_expr (); e->type = ex_value; e->e.value = new_string_val (string_val); return e; } expr_t * new_double_expr (double double_val) { expr_t *e = new_expr (); e->type = ex_value; e->e.value = new_double_val (double_val); return e; } expr_t * new_float_expr (float float_val) { expr_t *e = new_expr (); e->type = ex_value; e->e.value = new_float_val (float_val); return e; } expr_t * new_vector_expr (const float *vector_val) { expr_t *e = new_expr (); e->type = ex_value; e->e.value = new_vector_val (vector_val); return e; } expr_t * new_vector_list (expr_t *e) { expr_t *t; int count; type_t *type = &type_vector; expr_t *vec; e = reverse_expr_list (e); // put the elements in the right order for (t = e, count = 0; t; t = t->next) count++; switch (count) { case 4: type = &type_quaternion; case 3: // quaternion or vector. all expressions must be compatible with // a float (ie, a scalar) for (t = e; t; t = t->next) { if (t->type == ex_error) { return t; } if (!is_scalar (get_type (t))) { return error (t, "invalid type for vector element"); } } vec = new_expr (); vec->type = ex_vector; vec->e.vector.type = type; vec->e.vector.list = e; break; case 2: if (e->type == ex_error || e->next->type == ex_error) { return e; } if (is_scalar (get_type (e)) && is_scalar (get_type (e->next))) { // scalar, scalar // expand [x, y] to [x, y, 0] e->next->next = new_float_expr (0); vec = new_expr (); vec->type = ex_vector; vec->e.vector.type = type; vec->e.vector.list = e; break; } // quaternion. either scalar, vector or vector, scalar if (is_scalar (get_type (e)) && is_vector (get_type (e->next))) { // scalar, vector // swap expressions t = e; e = e->next; e->next = t; t->next = 0; } else if (is_vector (get_type (e)) && is_scalar (get_type (e->next))) { // vector, scalar // do nothing } else { return error (t, "invalid types for vector elements"); } // v, s vec = new_expr (); vec->type = ex_vector; vec->e.vector.type = &type_quaternion; vec->e.vector.list = e; break; default: return error (e, "invalid number of elements in vector exprssion"); } return vec; } expr_t * new_entity_expr (int entity_val) { expr_t *e = new_expr (); e->type = ex_value; e->e.value = new_entity_val (entity_val); return e; } expr_t * new_field_expr (int field_val, type_t *type, def_t *def) { expr_t *e = new_expr (); e->type = ex_value; e->e.value = new_field_val (field_val, type, def); return e; } expr_t * new_func_expr (int func_val, type_t *type) { expr_t *e = new_expr (); e->type = ex_value; e->e.value = new_func_val (func_val, type); return e; } expr_t * new_pointer_expr (int val, type_t *type, def_t *def) { expr_t *e = new_expr (); e->type = ex_value; e->e.value = new_pointer_val (val, type, def, 0); return e; } expr_t * new_quaternion_expr (const float *quaternion_val) { expr_t *e = new_expr (); e->type = ex_value; e->e.value = new_quaternion_val (quaternion_val); return e; } expr_t * new_integer_expr (int integer_val) { expr_t *e = new_expr (); e->type = ex_value; e->e.value = new_integer_val (integer_val); return e; } expr_t * new_uinteger_expr (unsigned uinteger_val) { expr_t *e = new_expr (); e->type = ex_value; e->e.value = new_uinteger_val (uinteger_val); return e; } expr_t * new_short_expr (short short_val) { expr_t *e = new_expr (); e->type = ex_value; e->e.value = new_short_val (short_val); return e; } int is_constant (expr_t *e) { while ((e->type == ex_uexpr || e->type == ex_expr) && e->e.expr.op == 'A') { e = e->e.expr.e1; } if (e->type == ex_nil || e->type == ex_value || e->type == ex_labelref || (e->type == ex_symbol && e->e.symbol->sy_type == sy_const) || (e->type == ex_symbol && e->e.symbol->sy_type == sy_var && e->e.symbol->s.def->constant)) return 1; return 0; } int is_selector (expr_t *e) { return e->type == ex_selector; } expr_t * constant_expr (expr_t *e) { expr_t *new; symbol_t *sym; ex_value_t *value; if (!is_constant (e)) return e; if (e->type == ex_nil || e->type == ex_value || e->type == ex_labelref) return e; if (e->type != ex_symbol) return e; sym = e->e.symbol; if (sym->sy_type == sy_const) { value = sym->s.value; } else if (sym->sy_type == sy_var && sym->s.def->constant) { //FIXME pointers and fields internal_error (e, "what to do here?"); //memset (&value, 0, sizeof (value)); //memcpy (&value.v, &D_INT (sym->s.def), //type_size (sym->s.def->type) * sizeof (pr_type_t)); } else { return e; } new = new_expr (); new->type = ex_value; new->line = e->line; new->file = e->file; new->e.value = value; return new; } int is_nil (expr_t *e) { return e->type == ex_nil; } int is_string_val (expr_t *e) { if (e->type == ex_nil) return 1; if (e->type == ex_value && e->e.value->lltype == ev_string) return 1; if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const && e->e.symbol->type->type == ev_string) return 1; return 0; } const char * expr_string (expr_t *e) { if (e->type == ex_nil) return 0; if (e->type == ex_value && e->e.value->lltype == ev_string) return e->e.value->v.string_val; internal_error (e, "not a string constant"); } int is_float_val (expr_t *e) { if (e->type == ex_nil) return 1; if (e->type == ex_value && e->e.value->lltype == ev_float) return 1; if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const && e->e.symbol->type->type == ev_float) return 1; return 0; } double expr_double (expr_t *e) { if (e->type == ex_nil) return 0; if (e->type == ex_value && e->e.value->lltype == ev_double) return e->e.value->v.double_val; if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const && e->e.symbol->type->type == ev_double) return e->e.symbol->s.value->v.double_val; if (e->type == ex_symbol && e->e.symbol->sy_type == sy_var && e->e.symbol->s.def->constant && is_double (e->e.symbol->s.def->type)) return D_DOUBLE (e->e.symbol->s.def); internal_error (e, "not a double constant"); } float expr_float (expr_t *e) { if (e->type == ex_nil) return 0; if (e->type == ex_value && e->e.value->lltype == ev_float) return e->e.value->v.float_val; if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const && e->e.symbol->type->type == ev_float) return e->e.symbol->s.value->v.float_val; if (e->type == ex_symbol && e->e.symbol->sy_type == sy_var && e->e.symbol->s.def->constant && is_float (e->e.symbol->s.def->type)) return D_FLOAT (e->e.symbol->s.def); internal_error (e, "not a float constant"); } int is_vector_val (expr_t *e) { if (e->type == ex_nil) return 1; if (e->type == ex_value && e->e.value->lltype == ev_vector) return 1; if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const && e->e.symbol->type->type == ev_vector) return 1; return 0; } const float * expr_vector (expr_t *e) { if (e->type == ex_nil) return vec3_origin; if (e->type == ex_value && e->e.value->lltype == ev_vector) return e->e.value->v.vector_val; if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const && e->e.symbol->type->type == ev_vector) return e->e.symbol->s.value->v.vector_val; if (e->type == ex_symbol && e->e.symbol->sy_type == sy_var && e->e.symbol->s.def->constant && e->e.symbol->s.def->type->type == ev_vector) return D_VECTOR (e->e.symbol->s.def); internal_error (e, "not a vector constant"); } int is_quaternion_val (expr_t *e) { if (e->type == ex_nil) return 1; if (e->type == ex_value && e->e.value->lltype == ev_quat) return 1; if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const && e->e.symbol->type->type == ev_quat) return 1; return 0; } const float * expr_quaternion (expr_t *e) { if (e->type == ex_nil) return quat_origin; if (e->type == ex_value && e->e.value->lltype == ev_quat) return e->e.value->v.quaternion_val; if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const && e->e.symbol->type->type == ev_quat) return e->e.symbol->s.value->v.quaternion_val; if (e->type == ex_symbol && e->e.symbol->sy_type == sy_var && e->e.symbol->s.def->constant && e->e.symbol->s.def->type->type == ev_quat) return D_QUAT (e->e.symbol->s.def); internal_error (e, "not a quaternion constant"); } int is_integer_val (expr_t *e) { if (e->type == ex_nil) { return 1; } if (e->type == ex_value && e->e.value->lltype == ev_integer) { return 1; } if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const && is_integral (e->e.symbol->type)) { return 1; } if (e->type == ex_def && e->e.def->constant && is_integral (e->e.def->type)) { return 1; } return 0; } int expr_integer (expr_t *e) { if (e->type == ex_nil) { return 0; } if (e->type == ex_value && e->e.value->lltype == ev_integer) { return e->e.value->v.integer_val; } if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const && (e->e.symbol->type->type == ev_integer || is_enum (e->e.symbol->type))) { return e->e.symbol->s.value->v.integer_val; } if (e->type == ex_symbol && e->e.symbol->sy_type == sy_var && e->e.symbol->s.def->constant && is_integral (e->e.symbol->s.def->type)) { return D_INT (e->e.symbol->s.def); } if (e->type == ex_def && e->e.def->constant && is_integral (e->e.def->type)) { return D_INT (e->e.def); } internal_error (e, "not an integer constant"); } int is_uinteger_val (expr_t *e) { if (e->type == ex_nil) { return 1; } if (e->type == ex_value && e->e.value->lltype == ev_uinteger) { return 1; } if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const && is_integral (e->e.symbol->type)) { return 1; } if (e->type == ex_def && e->e.def->constant && is_integral (e->e.def->type)) { return 1; } return 0; } unsigned expr_uinteger (expr_t *e) { if (e->type == ex_nil) { return 0; } if (e->type == ex_value && e->e.value->lltype == ev_uinteger) { return e->e.value->v.uinteger_val; } if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const && e->e.symbol->type->type == ev_uinteger) { return e->e.symbol->s.value->v.uinteger_val; } if (e->type == ex_symbol && e->e.symbol->sy_type == sy_var && e->e.symbol->s.def->constant && is_integral (e->e.symbol->s.def->type)) { return D_INT (e->e.symbol->s.def); } if (e->type == ex_def && e->e.def->constant && is_integral (e->e.def->type)) { return D_INT (e->e.def); } internal_error (e, "not an unsigned constant"); } int is_short_val (expr_t *e) { if (e->type == ex_nil) { return 1; } if (e->type == ex_value && e->e.value->lltype == ev_short) { return 1; } if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const && e->e.symbol->type->type == ev_short) { return 1; } return 0; } short expr_short (expr_t *e) { if (e->type == ex_nil) { return 0; } if (e->type == ex_value && e->e.value->lltype == ev_short) { return e->e.value->v.short_val; } if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const && e->e.symbol->type->type == ev_short) { return e->e.symbol->s.value->v.short_val; } internal_error (e, "not a short constant"); } int is_integral_val (expr_t *e) { if (is_constant (e)) { if (is_integer_val (e)) { return 1; } if (is_uinteger_val (e)) { return 1; } if (is_short_val (e)) { return 1; } } return 0; } int expr_integral (expr_t *e) { if (is_constant (e)) { if (is_integer_val (e)) { return expr_integer (e); } if (is_uinteger_val (e)) { return expr_uinteger (e); } if (is_short_val (e)) { return expr_short (e); } } internal_error (e, "not an integral constant"); } int is_pointer_val (expr_t *e) { if (e->type == ex_value && e->e.value->lltype == ev_pointer) { return 1; } return 0; } expr_t * new_alias_expr (type_t *type, expr_t *expr) { expr_t *alias; alias = new_unary_expr ('A', expr); alias->e.expr.type = type; //if (expr->type == ex_uexpr && expr->e.expr.op == 'A') // bug (alias, "aliasing an alias expression"); if (expr->type == ex_expr && expr->e.expr.op == 'A') { return new_offset_alias_expr (type, expr, 0); } alias->file = expr->file; alias->line = expr->line; return alias; } expr_t * new_offset_alias_expr (type_t *type, expr_t *expr, int offset) { expr_t *alias; if (expr->type == ex_expr && expr->e.expr.op == 'A') { expr_t *ofs_expr = expr->e.expr.e2; expr = expr->e.expr.e1; if (!is_constant (ofs_expr)) { internal_error (ofs_expr, "non-constant offset for alias expr"); } offset += expr_integer (ofs_expr); } alias = new_binary_expr ('A', expr, new_integer_expr (offset)); alias->e.expr.type = type; alias->file = expr->file; alias->line = expr->line; return alias; } static expr_t * param_expr (const char *name, type_t *type) { symbol_t *sym; expr_t *sym_expr; sym = make_symbol (name, &type_param, pr.symtab->space, sc_extern); if (!sym->table) symtab_addsymbol (pr.symtab, sym); sym_expr = new_symbol_expr (sym); return new_alias_expr (type, sym_expr); } expr_t * new_ret_expr (type_t *type) { return param_expr (".return", type); } expr_t * new_param_expr (type_t *type, int num) { return param_expr (va (0, ".param_%d", num), type); } expr_t * new_move_expr (expr_t *e1, expr_t *e2, type_t *type, int indirect) { expr_t *e = new_binary_expr (indirect ? 'M' : 'm', e1, e2); e->e.expr.type = type; return e; } expr_t * new_memset_expr (expr_t *dst, expr_t *val, type_t *type) { expr_t *e; if (!is_pointer (get_type (dst))) { return error (dst, "incorrect destination type for memset"); } if (!is_scalar (get_type (val))) { return error (val, "memset value must be a scalar"); } e = new_expr (); e->type = ex_memset; e->e.memset.dst = dst; e->e.memset.val = val; e->e.memset.count = new_integer_expr (type_size (type)); e->e.memset.type = type; return e; } expr_t * append_expr (expr_t *block, expr_t *e) { if (block->type != ex_block) internal_error (block, "not a block expression"); if (!e || e->type == ex_error) return block; if (e->next) internal_error (e, "append_expr: expr loop detected"); *block->e.block.tail = e; block->e.block.tail = &e->next; return block; } static symbol_t * get_struct_field (const type_t *t1, expr_t *e1, expr_t *e2) { symtab_t *strct = t1->t.symtab; symbol_t *sym = e2->e.symbol;//FIXME need to check symbol_t *field; if (!strct) { error (e1, "dereferencing pointer to incomplete type"); return 0; } field = symtab_lookup (strct, sym->name); if (!field && !is_entity(t1)) { error (e2, "'%s' has no member named '%s'", t1->name + 4, sym->name); e1->type = ex_error; } return field; } expr_t * field_expr (expr_t *e1, expr_t *e2) { const type_t *t1, *t2; expr_t *e; t1 = get_type (e1); if (e1->type == ex_error) return e1; if (t1->type == ev_entity) { symbol_t *field = 0; if (e2->type == ex_symbol) field = get_struct_field (&type_entity, e1, e2); if (field) { e2 = new_field_expr (0, field->type, field->s.def); e = new_binary_expr ('.', e1, e2); e->e.expr.type = field->type; return e; } else { t2 = get_type (e2); if (e2->type == ex_error) return e2; if (t2->type == ev_field) { e = new_binary_expr ('.', e1, e2); e->e.expr.type = t2->t.fldptr.type; return e; } } } else if (t1->type == ev_pointer) { if (is_struct (t1->t.fldptr.type)) { symbol_t *field; field = get_struct_field (t1->t.fldptr.type, e1, e2); if (!field) return e1; e2->type = ex_value; e2->e.value = new_short_val (field->s.offset); e = new_binary_expr ('&', e1, e2); e->e.expr.type = pointer_type (field->type); return unary_expr ('.', e); } else if (is_class (t1->t.fldptr.type)) { class_t *class = t1->t.fldptr.type->t.class; symbol_t *sym = e2->e.symbol;//FIXME need to check symbol_t *ivar; int protected = class_access (current_class, class); ivar = class_find_ivar (class, protected, sym->name); if (!ivar) return new_error_expr (); e2->type = ex_value; e2->e.value = new_short_val (ivar->s.offset); e = new_binary_expr ('&', e1, e2); e->e.expr.type = pointer_type (ivar->type); return unary_expr ('.', e); } } else if (t1->type == ev_vector || t1->type == ev_quat || is_struct (t1)) { symbol_t *field; field = get_struct_field (t1, e1, e2); if (!field) return e1; if (e1->type == ex_expr && e1->e.expr.op == '.' && is_entity(get_type (e1->e.expr.e1))) { // undo the . expression e2 = e1->e.expr.e2; e1 = e1->e.expr.e1; // offset the field expresion if (e2->type == ex_symbol) { symbol_t *sym; def_t *def; sym = symtab_lookup (pr.entity_fields, e2->e.symbol->name); if (!sym) { internal_error (e2, "failed to find entity field %s", e2->e.symbol->name); } def = sym->s.def; e2 = new_field_expr (0, field->type, def); } else if (e2->type != ex_value || e2->e.value->lltype != ev_field) { internal_error (e2, "unexpected field exression"); } e2->e.value = new_field_val (e2->e.value->v.pointer.val + field->s.offset, field->type, e2->e.value->v.pointer.def); // create a new . expression return field_expr (e1, e2); } else { if (e1->type == ex_uexpr && e1->e.expr.op == '.') { e2->type = ex_value; e2->e.value = new_short_val (field->s.offset); e = address_expr (e1, e2, field->type); return unary_expr ('.', e); } else { return new_offset_alias_expr (field->type, e1, field->s.offset); } } } else if (is_class (t1)) { //Class instance variables aren't allowed and thus declaring one //is treated as an error, so this is a follow-on error. return error (e1, "class instance access"); } return type_mismatch (e1, e2, '.'); } expr_t * convert_from_bool (expr_t *e, type_t *type) { expr_t *zero; expr_t *one; expr_t *cond; if (is_float (type)) { one = new_float_expr (1); zero = new_float_expr (0); } else if (is_integer (type)) { one = new_integer_expr (1); zero = new_integer_expr (0); } else if (is_enum (type) && enum_as_bool (type, &zero, &one)) { // don't need to do anything } else if (is_uinteger (type)) { one = new_uinteger_expr (1); zero = new_uinteger_expr (0); } else { return error (e, "can't convert from bool value"); } cond = new_expr (); *cond = *e; cond->next = 0; cond = conditional_expr (cond, one, zero); e->type = cond->type; e->e = cond->e; return e; } void convert_int (expr_t *e) { float float_val = expr_integer (e); e->type = ex_value; e->e.value = new_float_val (float_val); } void convert_short (expr_t *e) { float float_val = expr_short (e); e->type = ex_value; e->e.value = new_float_val (float_val); } void convert_short_int (expr_t *e) { float integer_val = expr_short (e); e->type = ex_value; e->e.value = new_integer_val (integer_val); } void convert_double (expr_t *e) { float float_val = expr_double (e); e->type = ex_value; e->e.value = new_float_val (float_val); } expr_t * convert_nil (expr_t *e, type_t *t) { e->e.nil = t; return e; } int is_compare (int op) { if (op == EQ || op == NE || op == LE || op == GE || op == LT || op == GT || op == '>' || op == '<') return 1; return 0; } int is_math_op (int op) { if (op == '*' || op == '/' || op == '+' || op == '-') return 1; return 0; } int is_logic (int op) { if (op == OR || op == AND) return 1; return 0; } int has_function_call (expr_t *e) { switch (e->type) { case ex_bool: return has_function_call (e->e.bool.e); case ex_block: if (e->e.block.is_call) return 1; for (e = e->e.block.head; e; e = e->next) if (has_function_call (e)) return 1; return 0; case ex_expr: if (e->e.expr.op == 'c') return 1; return (has_function_call (e->e.expr.e1) || has_function_call (e->e.expr.e2)); case ex_uexpr: if (e->e.expr.op != 'g') return has_function_call (e->e.expr.e1); default: return 0; } } expr_t * asx_expr (int op, expr_t *e1, expr_t *e2) { if (e1->type == ex_error) return e1; else if (e2->type == ex_error) return e2; else { expr_t *e = new_expr (); *e = *e1; e2->paren = 1; return assign_expr (e, binary_expr (op, e1, e2)); } } expr_t * unary_expr (int op, expr_t *e) { vec3_t v; quat_t q; const char *s; expr_t *new; type_t *t; convert_name (e); if (e->type == ex_error) return e; switch (op) { case '-': if (!is_math (get_type (e))) return error (e, "invalid type for unary -"); if (is_constant (e)) { switch (extract_type (e)) { case ev_string: case ev_entity: case ev_field: case ev_func: case ev_pointer: internal_error (e, "type check failed!"); case ev_double: new = new_double_expr (-expr_double (e)); new->implicit = e->implicit; return new; case ev_float: return new_float_expr (-expr_float (e)); case ev_vector: VectorNegate (expr_vector (e), v); return new_vector_expr (v); case ev_quat: QuatNegate (expr_vector (e), q); return new_vector_expr (q); case ev_integer: return new_integer_expr (-expr_integer (e)); case ev_uinteger: return new_uinteger_expr (-expr_uinteger (e)); case ev_short: return new_short_expr (-expr_short (e)); case ev_invalid: case ev_type_count: case ev_void: break; } internal_error (e, "weird expression type"); } switch (e->type) { case ex_value: // should be handled above case ex_error: case ex_label: case ex_labelref: case ex_state: case ex_compound: case ex_memset: case ex_selector: internal_error (e, 0); case ex_uexpr: if (e->e.expr.op == '-') { return e->e.expr.e1; } { expr_t *n = new_unary_expr (op, e); n->e.expr.type = get_type (e); return n; } case ex_block: if (!e->e.block.result) { return error (e, "invalid type for unary -"); } { expr_t *n = new_unary_expr (op, e); n->e.expr.type = get_type (e); return n; } case ex_expr: case ex_bool: case ex_temp: case ex_vector: { expr_t *n = new_unary_expr (op, e); n->e.expr.type = get_type (e); return n; } case ex_def: { expr_t *n = new_unary_expr (op, e); n->e.expr.type = e->e.def->type; return n; } case ex_symbol: { expr_t *n = new_unary_expr (op, e); n->e.expr.type = e->e.symbol->type; return n; } case ex_nil: return error (e, "invalid type for unary -"); case ex_count: internal_error (e, "invalid expression"); } break; case '!': if (is_constant (e)) { switch (extract_type (e)) { case ev_entity: case ev_field: case ev_func: case ev_pointer: internal_error (e, 0); case ev_string: s = expr_string (e); return new_integer_expr (!s || !s[0]); case ev_double: return new_integer_expr (!expr_double (e)); case ev_float: return new_integer_expr (!expr_float (e)); case ev_vector: return new_integer_expr (!VectorIsZero (expr_vector (e))); case ev_quat: return new_integer_expr (!QuatIsZero (expr_quaternion (e))); case ev_integer: return new_integer_expr (!expr_integer (e)); case ev_uinteger: return new_uinteger_expr (!expr_uinteger (e)); case ev_short: return new_short_expr (!expr_short (e)); case ev_invalid: case ev_type_count: case ev_void: break; } internal_error (e, "weird expression type"); } switch (e->type) { case ex_value: // should be handled above case ex_error: case ex_label: case ex_labelref: case ex_state: case ex_compound: case ex_memset: case ex_selector: internal_error (e, 0); case ex_bool: return new_bool_expr (e->e.bool.false_list, e->e.bool.true_list, e); case ex_block: if (!e->e.block.result) return error (e, "invalid type for unary !"); case ex_uexpr: case ex_expr: case ex_def: case ex_symbol: case ex_temp: case ex_vector: { expr_t *n = new_unary_expr (op, e); if (options.code.progsversion > PROG_ID_VERSION) n->e.expr.type = &type_integer; else n->e.expr.type = &type_float; return n; } case ex_nil: return error (e, "invalid type for unary !"); case ex_count: internal_error (e, "invalid expression"); } break; case '~': if (is_constant (e)) { switch (extract_type (e)) { case ev_string: case ev_entity: case ev_field: case ev_func: case ev_pointer: case ev_vector: case ev_double: return error (e, "invalid type for unary ~"); case ev_float: return new_float_expr (~(int) expr_float (e)); case ev_quat: QuatConj (expr_vector (e), q); return new_vector_expr (q); case ev_integer: return new_integer_expr (~expr_integer (e)); case ev_uinteger: return new_uinteger_expr (~expr_uinteger (e)); case ev_short: return new_short_expr (~expr_short (e)); case ev_invalid: t = get_type (e); if (t->meta == ty_enum) { return new_integer_expr (~expr_integer (e)); } break; case ev_type_count: case ev_void: break; } internal_error (e, "weird expression type"); } switch (e->type) { case ex_value: // should be handled above case ex_error: case ex_label: case ex_labelref: case ex_state: case ex_compound: case ex_memset: case ex_selector: internal_error (e, 0); case ex_uexpr: if (e->e.expr.op == '~') return e->e.expr.e1; goto bitnot_expr; case ex_block: if (!e->e.block.result) return error (e, "invalid type for unary ~"); goto bitnot_expr; case ex_expr: case ex_bool: case ex_def: case ex_symbol: case ex_temp: case ex_vector: bitnot_expr: if (options.code.progsversion == PROG_ID_VERSION) { expr_t *n1 = new_integer_expr (-1); return binary_expr ('-', n1, e); } else { expr_t *n = new_unary_expr (op, e); type_t *t = get_type (e); if (!is_integer(t) && !is_float(t) && !is_quaternion(t)) return error (e, "invalid type for unary ~"); n->e.expr.type = t; return n; } case ex_nil: return error (e, "invalid type for unary ~"); case ex_count: internal_error (e, "invalid expression"); } break; case '.': if (extract_type (e) != ev_pointer) return error (e, "invalid type for unary ."); e = new_unary_expr ('.', e); e->e.expr.type = get_type (e->e.expr.e1)->t.fldptr.type; return e; case '+': if (!is_math (get_type (e))) return error (e, "invalid type for unary +"); return e; } internal_error (e, 0); } expr_t * build_function_call (expr_t *fexpr, const type_t *ftype, expr_t *params) { expr_t *e; expr_t *p; int arg_count = 0, parm_count = 0; int i; expr_t *args = 0, **a = &args; type_t *arg_types[MAX_PARMS]; expr_t *arg_exprs[MAX_PARMS][2]; int arg_expr_count = 0; expr_t *assign; expr_t *call; expr_t *err = 0; for (e = params; e; e = e->next) { if (e->type == ex_error) return e; arg_count++; } if (arg_count > MAX_PARMS) { return error (fexpr, "more than %d parameters", MAX_PARMS); } if (ftype->t.func.num_params < -1) { if (-arg_count > ftype->t.func.num_params + 1) { if (!options.traditional) return error (fexpr, "too few arguments"); if (options.warnings.traditional) warning (fexpr, "too few arguments"); } parm_count = -ftype->t.func.num_params - 1; } else if (ftype->t.func.num_params >= 0) { if (arg_count > ftype->t.func.num_params) { return error (fexpr, "too many arguments"); } else if (arg_count < ftype->t.func.num_params) { if (!options.traditional) return error (fexpr, "too few arguments"); if (options.warnings.traditional) warning (fexpr, "too few arguments"); } parm_count = ftype->t.func.num_params; } for (i = arg_count - 1, e = params; i >= 0; i--, e = e->next) { type_t *t; if (e->type == ex_compound) { if (i < parm_count) { t = ftype->t.func.param_types[i]; } else { return error (e, "cannot pass compound initializer " "through ..."); } } else { t = get_type (e); } if (!t) { return e; } if (!type_size (t)) err = error (e, "type of formal parameter %d is incomplete", i + 1); if (type_size (t) > type_size (&type_param)) err = error (e, "formal parameter %d is too large to be passed by" " value", i + 1); if (i < parm_count) { if (e->type == ex_nil) convert_nil (e, t = ftype->t.func.param_types[i]); if (e->type == ex_bool) convert_from_bool (e, ftype->t.func.param_types[i]); if (e->type == ex_error) return e; if (!type_assignable (ftype->t.func.param_types[i], t)) { err = param_mismatch (e, i + 1, fexpr->e.symbol->name, ftype->t.func.param_types[i], t); } t = ftype->t.func.param_types[i]; } else { if (e->type == ex_nil) convert_nil (e, t = type_nil); if (e->type == ex_bool) convert_from_bool (e, get_type (e)); if (is_integer_val (e) && options.code.progsversion == PROG_ID_VERSION) convert_int (e); if (options.code.promote_float) { if (is_float (get_type (e))) { t = &type_double; } } else { if (is_double (get_type (e))) { if (!e->implicit) { warning (e, "passing double into ... function"); } if (is_constant (e)) { // don't auto-demote non-constant doubles t = &type_float; } } } if (is_integer_val (e) && options.warnings.vararg_integer) warning (e, "passing integer constant into ... function"); } arg_types[arg_count - 1 - i] = t; } if (err) return err; call = expr_file_line (new_block_expr (), fexpr); call->e.block.is_call = 1; for (p = params, i = 0; p; p = p->next, i++) { expr_t *e = p; if (e->type == ex_compound) { e = expr_file_line (initialized_temp_expr (arg_types[i], e), e); } // FIXME this is target-specific info and should not be in the // expression tree // That, or always use a temp, since it should get optimized out if (has_function_call (e)) { expr_t *cast = cast_expr (arg_types[i], convert_vector (e)); expr_t *tmp = new_temp_def_expr (arg_types[i]); *a = expr_file_line (tmp, e); arg_exprs[arg_expr_count][0] = expr_file_line (cast, e); arg_exprs[arg_expr_count][1] = *a; arg_expr_count++; } else { *a = expr_file_line (cast_expr (arg_types[i], convert_vector (e)), e); } a = &(*a)->next; } for (i = 0; i < arg_expr_count - 1; i++) { assign = assign_expr (arg_exprs[i][1], arg_exprs[i][0]); append_expr (call, expr_file_line (assign, arg_exprs[i][0])); } if (arg_expr_count) { e = assign_expr (arg_exprs[arg_expr_count - 1][1], arg_exprs[arg_expr_count - 1][0]); e = expr_file_line (e, arg_exprs[arg_expr_count - 1][0]); append_expr (call, e); } e = expr_file_line (new_binary_expr ('c', fexpr, args), fexpr); e->e.expr.type = ftype->t.func.type; append_expr (call, e); if (!is_void(ftype->t.func.type)) { call->e.block.result = new_ret_expr (ftype->t.func.type); } else if (options.traditional) { call->e.block.result = new_ret_expr (&type_float); } return call; } expr_t * function_expr (expr_t *fexpr, expr_t *params) { type_t *ftype; find_function (fexpr, params); ftype = get_type (fexpr); if (fexpr->type == ex_error) return fexpr; if (ftype->type != ev_func) { if (fexpr->type == ex_symbol) return error (fexpr, "Called object \"%s\" is not a function", fexpr->e.symbol->name); else return error (fexpr, "Called object is not a function"); } if (fexpr->type == ex_symbol && params && is_string_val (params)) { // FIXME eww, I hate this, but it's needed :( // FIXME make a qc hook? :) if (strncmp (fexpr->e.symbol->name, "precache_sound", 14) == 0) PrecacheSound (expr_string (params), fexpr->e.symbol->name[14]); else if (strncmp (fexpr->e.symbol->name, "precache_model", 14) == 0) PrecacheModel (expr_string (params), fexpr->e.symbol->name[14]); else if (strncmp (fexpr->e.symbol->name, "precache_file", 13) == 0) PrecacheFile (expr_string (params), fexpr->e.symbol->name[13]); } return build_function_call (fexpr, ftype, params); } expr_t * branch_expr (int op, expr_t *test, expr_t *label) { if (label && label->type != ex_label) internal_error (label, "not a label"); if (label) label->e.label.used++; return new_binary_expr (op, test, label); } expr_t * goto_expr (expr_t *label) { if (label && label->type != ex_label) internal_error (label, "not a label"); if (label) label->e.label.used++; return new_unary_expr ('g', label); } expr_t * return_expr (function_t *f, expr_t *e) { const type_t *t; const type_t *ret_type = unalias_type (f->type->t.func.type); if (!e) { if (!is_void(ret_type)) { if (options.traditional) { if (options.warnings.traditional) warning (e, "return from non-void function without a value"); // force a nil return value in case qf code is being generated e = new_nil_expr (); } else { e = error (e, "return from non-void function without a value"); return e; } } // the traditional check above may have set e if (!e) { return new_unary_expr ('r', 0); } } if (e->type == ex_compound) { e = expr_file_line (initialized_temp_expr (ret_type, e), e); } t = get_type (e); if (!t) { return e; } if (is_void(ret_type)) { if (!options.traditional) return error (e, "returning a value for a void function"); if (options.warnings.traditional) warning (e, "returning a value for a void function"); } if (e->type == ex_bool) { e = convert_from_bool (e, (type_t *) ret_type); //FIXME cast } if (is_float(ret_type) && is_integer_val (e)) { convert_int (e); t = &type_float; } if (is_void(t)) { if (e->type == ex_nil) { t = ret_type; convert_nil (e, (type_t *) t);//FIXME cast } else { if (!options.traditional) return error (e, "void value not ignored as it ought to be"); if (options.warnings.traditional) warning (e, "void value not ignored as it ought to be"); //FIXME does anything need to be done here? } } if (!type_assignable (ret_type, t)) { if (!options.traditional) return error (e, "type mismatch for return value of %s", f->sym->name); if (options.warnings.traditional) warning (e, "type mismatch for return value of %s", f->sym->name); } else { if (ret_type != t) { e = cast_expr ((type_t *) ret_type, e);//FIXME cast t = f->sym->type->t.func.type; } } if (e->type == ex_vector) { e = assign_expr (new_temp_def_expr (t), e); } if (e->type == ex_block) { e->e.block.result->rvalue = 1; } return new_unary_expr ('r', e); } expr_t * conditional_expr (expr_t *cond, expr_t *e1, expr_t *e2) { expr_t *block = new_block_expr (); type_t *type1 = get_type (e1); type_t *type2 = get_type (e2); expr_t *tlabel = new_label_expr (); expr_t *flabel = new_label_expr (); expr_t *elabel = new_label_expr (); if (cond->type == ex_error) return cond; if (e1->type == ex_error) return e1; if (e2->type == ex_error) return e2; cond = convert_bool (cond, 1); if (cond->type == ex_error) return cond; backpatch (cond->e.bool.true_list, tlabel); backpatch (cond->e.bool.false_list, flabel); block->e.block.result = (type1 == type2) ? new_temp_def_expr (type1) : 0; append_expr (block, cond); append_expr (cond->e.bool.e, flabel); if (block->e.block.result) append_expr (block, assign_expr (block->e.block.result, e2)); else append_expr (block, e2); append_expr (block, goto_expr (elabel)); append_expr (block, tlabel); if (block->e.block.result) append_expr (block, assign_expr (block->e.block.result, e1)); else append_expr (block, e1); append_expr (block, elabel); return block; } expr_t * incop_expr (int op, expr_t *e, int postop) { expr_t *one; if (e->type == ex_error) return e; one = new_integer_expr (1); // integer constants get auto-cast to float if (postop) { expr_t *t1, *t2; type_t *type = get_type (e); expr_t *block = new_block_expr (); expr_t *res = new_expr (); if (e->type == ex_error) // get_type failed return e; t1 = new_temp_def_expr (type); t2 = new_temp_def_expr (type); append_expr (block, assign_expr (t1, e)); append_expr (block, assign_expr (t2, binary_expr (op, t1, one))); res = copy_expr (e); if (res->type == ex_uexpr && res->e.expr.op == '.') res = pointer_expr (address_expr (res, 0, 0)); append_expr (block, assign_expr (res, t2)); block->e.block.result = t1; return block; } else { return asx_expr (op, e, one); } } expr_t * array_expr (expr_t *array, expr_t *index) { type_t *array_type = get_type (array); type_t *index_type = get_type (index); expr_t *scale; expr_t *offset; expr_t *base; expr_t *e; int ind = 0; if (array->type == ex_error) return array; if (index->type == ex_error) return index; if (array_type->type != ev_pointer && !is_array (array_type)) return error (array, "not an array"); if (!is_integral (index_type)) return error (index, "invalid array index type"); if (is_short_val (index)) ind = expr_short (index); if (is_integer_val (index)) ind = expr_integer (index); if (array_type->t.func.num_params && is_constant (index) && (ind < array_type->t.array.base || ind - array_type->t.array.base >= array_type->t.array.size)) return error (index, "array index out of bounds"); scale = new_integer_expr (type_size (array_type->t.array.type)); index = binary_expr ('*', index, scale); base = new_integer_expr (array_type->t.array.base); offset = binary_expr ('*', base, scale); index = binary_expr ('-', index, offset); if (is_short_val (index)) ind = expr_short (index); if (is_integer_val (index)) ind = expr_integer (index); if ((is_constant (index) && ind < 32768 && ind >= -32768)) index = new_short_expr (ind); if (is_array (array_type)) { e = address_expr (array, index, array_type->t.array.type); } else { if (!is_short_val (index) || expr_short (index)) { e = new_binary_expr ('&', array, index); //e->e.expr.type = array_type->aux_type; e->e.expr.type = array_type; } else { e = array; } } e = unary_expr ('.', e); return e; } expr_t * pointer_expr (expr_t *pointer) { type_t *pointer_type = get_type (pointer); if (pointer->type == ex_error) return pointer; if (pointer_type->type != ev_pointer) return error (pointer, "not a pointer"); return array_expr (pointer, new_integer_expr (0)); } expr_t * address_expr (expr_t *e1, expr_t *e2, type_t *t) { expr_t *e; if (e1->type == ex_error) return e1; if (!t) t = get_type (e1); switch (e1->type) { case ex_def: { def_t *def = e1->e.def; type_t *type = def->type; if (is_array (type)) { e = e1; e->type = ex_value; e->e.value = new_pointer_val (0, t, def, 0); } else { e = new_pointer_expr (0, t, def); e->line = e1->line; e->file = e1->file; } } break; case ex_symbol: if (e1->e.symbol->sy_type == sy_var) { def_t *def = e1->e.symbol->s.def; type_t *type = def->type; if (is_array (type)) { e = e1; e->type = ex_value; e->e.value = new_pointer_val (0, t, def, 0); } else { e = new_pointer_expr (0, t, def); e->line = e1->line; e->file = e1->file; } break; } return error (e1, "invalid type for unary &"); case ex_expr: if (e1->e.expr.op == '.') { e = e1; e->e.expr.op = '&'; e->e.expr.type = pointer_type (e->e.expr.type); break; } if (e1->e.expr.op == 'm') { // direct move, so obtain the address of the source e = address_expr (e1->e.expr.e2, 0, t); break; } if (e1->e.expr.op == 'M') { // indirect move, so we already have the address of the source e = e1->e.expr.e2; break; } if (e1->e.expr.op == 'A') { if (!t) t = e1->e.expr.type; if (e2) { e2 = binary_expr ('+', e1->e.expr.e2, e2); } else { e2 = e1->e.expr.e2; } return address_expr (e1->e.expr.e1, e2, t); } return error (e1, "invalid type for unary &"); case ex_uexpr: if (e1->e.expr.op == '.') { e = e1->e.expr.e1; if (e->type == ex_expr && e->e.expr.op == '.') { e->e.expr.type = pointer_type (e->e.expr.type); e->e.expr.op = '&'; } break; } if (e1->e.expr.op == 'A') { if (!t) t = e1->e.expr.type; return address_expr (e1->e.expr.e1, e2, t); } return error (e1, "invalid type for unary &"); case ex_label: return new_label_ref (&e1->e.label); case ex_temp: e = new_unary_expr ('&', e1); e->e.expr.type = pointer_type (t); break; default: return error (e1, "invalid type for unary &"); } if (e2) { if (e2->type == ex_error) return e2; if (is_pointer_val (e) && is_integral_val (e2)) { int base = e->e.value->v.pointer.val; int offset = expr_integral (e2); def_t *def = e->e.value->v.pointer.def; e->e.value = new_pointer_val (base + offset, t, def, 0); } else { if (!is_short_val (e2) || expr_short (e2)) { if (e->type == ex_expr && e->e.expr.op == '&') { e = new_binary_expr ('&', e->e.expr.e1, binary_expr ('+', e->e.expr.e2, e2)); } else { e = new_binary_expr ('&', e, e2); } } if (e->type == ex_expr || e->type == ex_uexpr) e->e.expr.type = pointer_type (t); } } return e; } expr_t * build_if_statement (int not, expr_t *test, expr_t *s1, expr_t *els, expr_t *s2) { int line = pr.source_line; string_t file = pr.source_file; expr_t *if_expr; expr_t *tl = new_label_expr (); expr_t *fl = new_label_expr (); if (els && !s2) { warning (els, "suggest braces around empty body in an ‘else’ statement"); } if (!els && !s1) { warning (test, "suggest braces around empty body in an ‘if’ statement"); } pr.source_line = test->line; pr.source_file = test->file; if_expr = new_block_expr (); test = convert_bool (test, 1); if (test->type != ex_error) { if (not) { backpatch (test->e.bool.true_list, fl); backpatch (test->e.bool.false_list, tl); } else { backpatch (test->e.bool.true_list, tl); backpatch (test->e.bool.false_list, fl); } append_expr (test->e.bool.e, tl); append_expr (if_expr, test); } append_expr (if_expr, s1); if (els) { pr.source_line = els->line; pr.source_file = els->file; } if (s2) { expr_t *nl = new_label_expr (); append_expr (if_expr, goto_expr (nl)); append_expr (if_expr, fl); append_expr (if_expr, s2); append_expr (if_expr, nl); } else { append_expr (if_expr, fl); } pr.source_line = line; pr.source_file = file; return if_expr; } expr_t * build_while_statement (int not, expr_t *test, expr_t *statement, expr_t *break_label, expr_t *continue_label) { int line = pr.source_line; string_t file = pr.source_file; expr_t *l1 = new_label_expr (); expr_t *l2 = break_label; expr_t *while_expr; pr.source_line = test->line; pr.source_file = test->file; while_expr = new_block_expr (); append_expr (while_expr, goto_expr (continue_label)); append_expr (while_expr, l1); append_expr (while_expr, statement); append_expr (while_expr, continue_label); test = convert_bool (test, 1); if (test->type != ex_error) { if (not) { backpatch (test->e.bool.true_list, l2); backpatch (test->e.bool.false_list, l1); } else { backpatch (test->e.bool.true_list, l1); backpatch (test->e.bool.false_list, l2); } append_expr (test->e.bool.e, l2); append_expr (while_expr, test); } pr.source_line = line; pr.source_file = file; return while_expr; } expr_t * build_do_while_statement (expr_t *statement, int not, expr_t *test, expr_t *break_label, expr_t *continue_label) { expr_t *l1 = new_label_expr (); int line = pr.source_line; string_t file = pr.source_file; expr_t *do_while_expr; if (!statement) { warning (break_label, "suggest braces around empty body in a ‘do’ statement"); } pr.source_line = test->line; pr.source_file = test->file; do_while_expr = new_block_expr (); append_expr (do_while_expr, l1); append_expr (do_while_expr, statement); append_expr (do_while_expr, continue_label); test = convert_bool (test, 1); if (test->type != ex_error) { if (not) { backpatch (test->e.bool.true_list, break_label); backpatch (test->e.bool.false_list, l1); } else { backpatch (test->e.bool.true_list, l1); backpatch (test->e.bool.false_list, break_label); } append_expr (test->e.bool.e, break_label); append_expr (do_while_expr, test); } pr.source_line = line; pr.source_file = file; return do_while_expr; } expr_t * build_for_statement (expr_t *init, expr_t *test, expr_t *next, expr_t *statement, expr_t *break_label, expr_t *continue_label) { expr_t *tl = new_label_expr (); expr_t *fl = break_label; expr_t *l1 = 0; expr_t *t; int line = pr.source_line; string_t file = pr.source_file; expr_t *for_expr; if (next) t = next; else if (test) t = test; else if (init) t = init; else t = continue_label; pr.source_line = t->line; pr.source_file = t->file; for_expr = new_block_expr (); append_expr (for_expr, init); if (test) { l1 = new_label_expr (); append_expr (for_expr, goto_expr (l1)); } append_expr (for_expr, tl); append_expr (for_expr, statement); append_expr (for_expr, continue_label); append_expr (for_expr, next); if (test) { append_expr (for_expr, l1); test = convert_bool (test, 1); if (test->type != ex_error) { backpatch (test->e.bool.true_list, tl); backpatch (test->e.bool.false_list, fl); append_expr (test->e.bool.e, fl); append_expr (for_expr, test); } } else { append_expr (for_expr, goto_expr (tl)); append_expr (for_expr, fl); } pr.source_line = line; pr.source_file = file; return for_expr; } expr_t * build_state_expr (expr_t *e) { expr_t *frame = 0; expr_t *think = 0; expr_t *step = 0; e = reverse_expr_list (e); frame = e; think = frame->next; step = think->next; if (think->type == ex_symbol) think = think_expr (think->e.symbol); if (is_integer_val (frame)) convert_int (frame); if (!type_assignable (&type_float, get_type (frame))) return error (frame, "invalid type for frame number"); if (extract_type (think) != ev_func) return error (think, "invalid type for think"); if (step) { if (step->next) return error (step->next, "too many state arguments"); if (is_integer_val (step)) convert_int (step); if (!type_assignable (&type_float, get_type (step))) return error (step, "invalid type for step"); } return new_state_expr (frame, think, step); } expr_t * think_expr (symbol_t *think_sym) { symbol_t *sym; if (think_sym->table) return new_symbol_expr (think_sym); sym = symtab_lookup (current_symtab, "think"); if (sym && sym->sy_type == sy_var && sym->type && sym->type->type == ev_field && sym->type->t.fldptr.type->type == ev_func) { think_sym->type = sym->type->t.fldptr.type; } else { think_sym->type = &type_function; } think_sym = function_symbol (think_sym, 0, 1); make_function (think_sym, 0, current_symtab->space, current_storage); return new_symbol_expr (think_sym); } expr_t * cast_expr (type_t *dstType, expr_t *e) { expr_t *c; type_t *srcType; convert_name (e); if (e->type == ex_error) return e; dstType = (type_t *) unalias_type (dstType); //FIXME cast srcType = get_type (e); if (dstType == srcType) return e; if ((dstType == type_default && is_enum (srcType)) || (is_enum (dstType) && srcType == type_default)) return e; if ((is_pointer (dstType) && is_string (srcType)) || (is_string (dstType) && is_pointer (srcType))) { c = new_alias_expr (dstType, e); return c; } if (!(is_pointer (dstType) && (is_pointer (srcType) || is_integral (srcType) || is_array (srcType))) && !(is_integral (dstType) && is_pointer (srcType)) && !(is_func (dstType) && is_func (srcType)) && !(is_scalar (dstType) && is_scalar (srcType))) { return cast_error (e, srcType, dstType); } if (is_array (srcType)) { return address_expr (e, 0, dstType->t.fldptr.type); } if (is_constant (e) && is_scalar (dstType) && is_scalar (srcType)) { ex_value_t *val = 0; if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const) { val = e->e.symbol->s.value; } else if (e->type == ex_symbol && e->e.symbol->sy_type == sy_var) { // initialized global def treated as a constant // from the tests above, the def is known to be constant // and of one of the three storable scalar types def_t *def = e->e.symbol->s.def; if (is_float (def->type)) { val = new_float_val (D_FLOAT (def)); } else if (is_double (def->type)) { val = new_double_val (D_DOUBLE (def)); } else if (is_integral (def->type)) { val = new_integer_val (D_INT (def)); } } else if (e->type == ex_value) { val = e->e.value; } else if (e->type == ex_nil) { convert_nil (e, dstType); return e; } if (!val) internal_error (e, "unexpected constant expression type"); e->e.value = convert_value (val, dstType); e->type = ex_value; c = e; } else if (is_integral (dstType) && is_integral (srcType)) { c = new_alias_expr (dstType, e); } else if (is_scalar (dstType) && is_scalar (srcType)) { c = new_unary_expr ('C', e); c->e.expr.type = dstType; } else if (e->type == ex_uexpr && e->e.expr.op == '.') { e->e.expr.type = dstType; c = e; } else { c = new_alias_expr (dstType, e); } return c; } expr_t * encode_expr (type_t *type) { dstring_t *encoding = dstring_newstr (); expr_t *e; encode_type (encoding, type); e = new_string_expr (encoding->str); free (encoding); return e; } expr_t * sizeof_expr (expr_t *expr, struct type_s *type) { if (!((!expr) ^ (!type))) internal_error (0, 0); if (!type) type = get_type (expr); expr = new_integer_expr (type_size (type)); return expr; } expr_t * reverse_expr_list (expr_t *e) { expr_t *r = 0; while (e) { expr_t *t = e->next; e->next = r; r = e; e = t; } return r; }