/* gl_dyn_part.c OpenGL particle system. Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ static const char rcsid[] = "$Id$"; #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifdef HAVE_STRING_H # include #endif #ifdef HAVE_STRINGS_H # include #endif #include #include "QF/cmd.h" #include "QF/console.h" #include "QF/cvar.h" #include "QF/qargs.h" #include "QF/render.h" #include "QF/sys.h" #include "QF/vfs.h" #include "QF/GL/defines.h" #include "QF/GL/funcs.h" #include "QF/GL/qf_explosions.h" #include "QF/GL/qf_textures.h" #include "compat.h" #include "r_cvar.h" #include "r_dynamic.h" #include "r_shared.h" #include "varrays.h" int ramp[8] = { 0x6f, 0x6d, 0x6b, 0x69, 0x67, 0x65, 0x63, 0x61 }; inline static void particle_new (ptype_t type, int texnum, vec3_t org, float scale, vec3_t vel, float die, byte color, byte alpha) { particle_t *part; /* if (numparticles >= r_maxparticles) { Sys_Error ("FAILED PARTICLE ALLOC!\n"); return NULL; } */ part = &particles[numparticles++]; part->type = type; VectorCopy (org, part->org); VectorCopy (vel, part->vel); part->die = die; part->color = color; part->alpha = alpha; part->tex = texnum; part->scale = scale; } inline static void particle_new_random (ptype_t type, int texnum, vec3_t org, int org_fuzz, float scale, int vel_fuzz, float die, byte color, byte alpha) { int j; vec3_t porg, pvel; for (j = 0; j < 3; j++) { if (org_fuzz) porg[j] = qfrandom (org_fuzz * 2) - org_fuzz + org[j]; if (vel_fuzz) pvel[j] = qfrandom (vel_fuzz * 2) - vel_fuzz; } particle_new (type, texnum, porg, scale, pvel, die, color, alpha); } void R_Particles_Init_Cvars (void) { } inline void R_ClearParticles (void) { numparticles = 0; } void R_ReadPointFile_f (void) { char name[MAX_OSPATH], *mapname, *t1; int c, r; vec3_t org; VFile *f; mapname = strdup (r_worldentity.model->name); if (!mapname) Sys_Error ("Can't duplicate mapname!"); t1 = strrchr (mapname, '.'); if (!t1) Sys_Error ("Can't find .!"); t1[0] = '\0'; snprintf (name, sizeof (name), "%s.pts", mapname); free (mapname); COM_FOpenFile (name, &f); if (!f) { Con_Printf ("couldn't open %s\n", name); return; } Con_Printf ("Reading %s...\n", name); c = 0; for (;;) { char buf[64]; Qgets (f, buf, sizeof (buf)); r = sscanf (buf, "%f %f %f\n", &org[0], &org[1], &org[2]); if (r != 3) break; c++; if (numparticles >= r_maxparticles) { Con_Printf ("Not enough free particles\n"); break; } else { particle_new (pt_static, part_tex_dot, org, 1.5, vec3_origin, 99999, (-c) & 15, 255); } } Qclose (f); Con_Printf ("%i points read\n", c); } void R_ParticleExplosion (vec3_t org) { if (numparticles >= r_maxparticles) return; /* R_NewExplosion (org); */ particle_new_random (pt_smokecloud, part_tex_smoke, org, 4, 30, 8, r_realtime + 5, (rand () & 7) + 8, 128 + (rand () & 63)); } void R_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength) { int i; int colorMod = 0, j = 512; if (numparticles >= r_maxparticles) return; else if (numparticles + j >= r_maxparticles) j = r_maxparticles - numparticles; for (i = 0; i < j; i++) { particle_new_random (pt_blob, part_tex_dot, org, 16, 2, 256, (r_realtime + 0.3), (colorStart + (colorMod % colorLength)), 255); colorMod++; } } void R_BlobExplosion (vec3_t org) { int i; int j = 1024; if (numparticles >= r_maxparticles) return; else if (numparticles + j >= r_maxparticles) j = r_maxparticles - numparticles; for (i = 0; i < j / 2; i++) { particle_new_random (pt_blob, part_tex_dot, org, 12, 2, 256, (r_realtime + 1 + (rand () & 7) * 0.05), (66 + rand () % 6), 255); } for (i = 0; i < j / 2; i++) { particle_new_random (pt_blob2, part_tex_dot, org, 12, 2, 256, (r_realtime + 1 + (rand () & 7) * 0.05), (150 + rand () % 6), 255); } } static void R_RunSparkEffect (vec3_t org, int count, int ofuzz) { int j = count + 1; if (numparticles >= r_maxparticles) return; else if (numparticles + j >= r_maxparticles) j = r_maxparticles - numparticles; count = j - 1; particle_new (pt_smokecloud, part_tex_smoke, org, ofuzz * 0.08, vec3_origin, r_realtime + 9, 12 + (rand () & 3), 64 + (rand () & 31)); while (count--) particle_new_random (pt_fallfadespark, part_tex_dot, org, ofuzz * 0.75, 0.7, 96, r_realtime + 5, ramp[rand () & 7], 255); } inline static void R_BloodPuff (vec3_t org, int count) { if (numparticles >= r_maxparticles) return; particle_new (pt_bloodcloud, part_tex_smoke, org, count / 5, vec3_origin, r_realtime + 99, 70 + (rand () & 3), 128); } void R_RunPuffEffect (vec3_t org, particle_effect_t type, byte count) { // FIXME: Is this test worthwhile? if (numparticles >= r_maxparticles) return; switch (type) { case PE_GUNSHOT: { int scale = 16; if (count > 120) scale = 24; R_RunSparkEffect (org, count / 2, scale); } break; case PE_BLOOD: R_BloodPuff (org, count); break; case PE_LIGHTNINGBLOOD: R_BloodPuff (org, 50); if (numparticles >= r_maxparticles) break; particle_new (pt_smokecloud, part_tex_smoke, org, 3, vec3_origin, r_realtime + 9, 12 + (rand () & 3), 64 + (rand () & 31)); count = 7; if (numparticles + count >= r_maxparticles) count = r_maxparticles - numparticles; while (count--) particle_new_random (pt_fallfadespark, part_tex_spark, org, 12, 2, 128, r_realtime + 5, 244 + (rand () % 3), 255); break; default: break; } } void R_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count) { int i, j; if (numparticles >= r_maxparticles) return; if (numparticles + count >= r_maxparticles) count = r_maxparticles - numparticles; for (i = 0; i < count; i++) { for (j = 0; j < 3; j++) { org[j] += ((rand () & 15) - 8); } particle_new (pt_slowgrav, part_tex_dot, org, 1.5, dir, (r_realtime + 0.1 * (rand () % 5)), (color & ~7) + (rand () & 7), 255); } } void R_RunSpikeEffect (vec3_t org, particle_effect_t type) { switch (type) { case PE_SPIKE: R_RunSparkEffect (org, 5, 8); break; case PE_SUPERSPIKE: R_RunSparkEffect (org, 10, 8); break; case PE_KNIGHTSPIKE: R_RunSparkEffect (org, 10, 8); break; case PE_WIZSPIKE: R_RunSparkEffect (org, 15, 16); break; default: break; } } void R_LavaSplash (vec3_t org) { float vel; int rnd, i, j; int k = 256; vec3_t dir, porg, pvel; if (numparticles + k >= r_maxparticles) { return; } // else if (numparticles + k >= r_maxparticles) { // k = r_maxparticles - numparticles; // } dir[2] = 256; for (i = -128; i < 128; i += 16) { for (j = -128; j < 128; j += 16) { rnd = rand (); dir[0] = j + (rnd & 7); dir[1] = i + ((rnd >> 6) & 7); porg[0] = org[0] + dir[0]; porg[1] = org[1] + dir[1]; porg[2] = org[2] + ((rnd >> 9) & 63); VectorNormalize (dir); rnd = rand (); vel = 50 + (rnd & 63); VectorScale (dir, vel, pvel); particle_new (pt_grav, part_tex_dot, porg, 3, pvel, (r_realtime + 2 + ((rnd >> 7) & 31) * 0.02), (224 + ((rnd >> 12) & 7)), 193); } } } void R_TeleportSplash (vec3_t org) { float vel; int rnd, i, j, k; int l = 896; vec3_t dir, porg, pvel; if (numparticles + l >= r_maxparticles) { return; } // else if (numparticles + l >= r_maxparticles) { // l = r_maxparticles - numparticles; // } for (i = -16; i < 16; i += 4) { dir[1] = i * 8; for (j = -16; j < 16; j += 4) { dir[0] = j * 8; for (k = -24; k < 32; k += 4) { dir[2] = k * 8; rnd = rand (); porg[0] = org[0] + i + (rnd & 3); porg[1] = org[1] + j + ((rnd >> 2) & 3); porg[2] = org[2] + k + ((rnd >> 4) & 3); VectorNormalize (dir); vel = 50 + ((rnd >> 6) & 63); VectorScale (dir, vel, pvel); particle_new (pt_grav, part_tex_spark, porg, 0.6, pvel, (r_realtime + 0.2 + (rand () & 15) * 0.01), (7 + ((rnd >> 12) & 7)), 255); } } } } void R_RocketTrail (entity_t *ent) { float dist, maxlen, origlen, percent, pscale, pscalenext; float len = 0; vec3_t subtract, vec; if (numparticles >= r_maxparticles) return; R_AddFire (ent->old_origin, ent->origin, ent); VectorSubtract (ent->origin, ent->old_origin, vec); maxlen = VectorNormalize (vec); origlen = r_frametime / maxlen; pscale = 1.5 + qfrandom (1.5); while (len < maxlen) { pscalenext = 1.5 + qfrandom (1.5); dist = (pscale + pscalenext) * 3.0; VectorScale (vec, min(dist, len), subtract); VectorAdd (ent->old_origin, subtract, ent->old_origin); percent = len * origlen; particle_new (pt_smoke, part_tex_smoke, ent->old_origin, pscale + percent * 4.0, vec3_origin, r_realtime + 2.0 - percent * 2.0, 12 + (rand () & 3), 128 + (rand () & 31) - percent * 100.0); if (numparticles >= r_maxparticles) break; len += dist; pscale = pscalenext; } } void R_GrenadeTrail (entity_t *ent) { float dist, maxlen, origlen, percent, pscale, pscalenext; float len = 0; vec3_t subtract, vec; if (numparticles >= r_maxparticles) return; VectorSubtract (ent->origin, ent->old_origin, vec); maxlen = VectorNormalize (vec); origlen = r_frametime / maxlen; pscale = 6.0 + qfrandom (7.0); while (len < maxlen) { pscalenext = 6.0 + qfrandom (7.0); dist = (pscale + pscalenext) * 2.0; VectorScale (vec, min(dist, len), subtract); VectorAdd (ent->old_origin, subtract, ent->old_origin); percent = len * origlen; particle_new (pt_smoke, part_tex_smoke, ent->old_origin, pscale + percent * 4.0, vec3_origin, r_realtime + 2.0 - percent * 2.0, (rand () & 3), 160 + (rand () & 31) - percent * 100.0); if (numparticles >= r_maxparticles) break; len += dist; pscale = pscalenext; } } void R_BloodTrail (entity_t *ent) { float dist, maxlen, origlen, percent, pscale, pscalenext; float len = 0; int j; vec3_t subtract, vec, porg, pvel; if (numparticles >= r_maxparticles) return; VectorSubtract (ent->origin, ent->old_origin, vec); maxlen = VectorNormalize (vec); origlen = r_frametime / maxlen; pscale = 5.0 + qfrandom (10.0); while (len < maxlen) { VectorCopy (vec3_origin, pvel); VectorCopy (ent->old_origin, porg); pscalenext = 5.0 + qfrandom (10.0); dist = (pscale + pscalenext) * 1.5; for (j = 0; j < 3; j++) { pvel[j] = qfrandom (24.0) - 12.0; porg[j] = ent->old_origin[j] + qfrandom (3.0) - 1.5; } VectorScale (vec, min(dist, len), subtract); VectorAdd (ent->old_origin, subtract, ent->old_origin); percent = len * origlen; pvel[2] -= percent * 40; particle_new (pt_grav, part_tex_smoke, porg, pscale, pvel, r_realtime + 2.0 - percent * 2.0, 68 + (rand () & 3), 255); if (numparticles >= r_maxparticles) break; len += dist; pscale = pscalenext; } } void R_SlightBloodTrail (entity_t *ent) { float dist, maxlen, origlen, percent, pscale, pscalenext; float len = 0; int j; vec3_t subtract, vec, porg, pvel; if (numparticles >= r_maxparticles) return; VectorSubtract (ent->origin, ent->old_origin, vec); maxlen = VectorNormalize (vec); origlen = r_frametime / maxlen; pscale = 1.5 + qfrandom (7.5); while (len < maxlen) { VectorCopy (vec3_origin, pvel); VectorCopy (ent->old_origin, porg); pscalenext = 1.5 + qfrandom (7.5); dist = (pscale + pscalenext) * 1.5; for (j = 0; j < 3; j++) { pvel[j] = (qfrandom (12.0) - 6.0); porg[j] = ent->old_origin[j] + qfrandom (3.0) - 1.5; } VectorScale (vec, min(dist, len), subtract); VectorAdd (ent->old_origin, subtract, ent->old_origin); percent = len * origlen; pvel[2] -= percent * 40; particle_new (pt_grav, part_tex_smoke, porg, pscale, pvel, r_realtime + 1.5 - percent * 1.5, 68 + (rand () & 3), 192); if (numparticles >= r_maxparticles) break; len += dist; pscale = pscalenext; } } void R_GreenTrail (entity_t *ent) { float dist, maxlen, origlen, percent; float len = 0; static int tracercount; vec3_t subtract, vec, pvel; if (numparticles >= r_maxparticles) return; VectorSubtract (ent->origin, ent->old_origin, vec); maxlen = VectorNormalize (vec); origlen = r_frametime / maxlen; dist = 3.0; while (len < maxlen) { VectorCopy (vec3_origin, pvel); tracercount++; if (tracercount & 1) { pvel[0] = 30 * vec[1]; pvel[1] = 30 * -vec[0]; } else { pvel[0] = 30 * -vec[1]; pvel[1] = 30 * vec[0]; } VectorScale (vec, min(dist, len), subtract); VectorAdd (ent->old_origin, subtract, ent->old_origin); percent = len * origlen; particle_new (pt_fire, part_tex_smoke, ent->old_origin, 2.0 + qfrandom (1.0) - percent * 2.0, pvel, r_realtime + 0.5 - percent * 0.5, 52 + (rand () & 4), 255 - percent * 32.0); if (numparticles >= r_maxparticles) break; len += dist; } } void R_FlameTrail (entity_t *ent) { float dist, maxlen, origlen, percent; float len = 0; static int tracercount; vec3_t subtract, vec, pvel; if (numparticles >= r_maxparticles) return; VectorSubtract (ent->origin, ent->old_origin, vec); maxlen = VectorNormalize (vec); origlen = r_frametime / maxlen; dist = 3.0; while (len < maxlen) { VectorCopy (vec3_origin, pvel); tracercount++; if (tracercount & 1) { pvel[0] = 30 * vec[1]; pvel[1] = 30 * -vec[0]; } else { pvel[0] = 30 * -vec[1]; pvel[1] = 30 * vec[0]; } VectorScale (vec, min(dist, len), subtract); VectorAdd (ent->old_origin, subtract, ent->old_origin); percent = len * origlen; particle_new (pt_fire, part_tex_smoke, ent->old_origin, 2.0 + qfrandom (1.0) - percent * 2.0, pvel, r_realtime + 0.5 - percent * 0.5, 234, 255 - percent * 32.0); if (numparticles >= r_maxparticles) break; len += dist; } } void R_VoorTrail (entity_t *ent) { float dist, maxlen, origlen, percent; float len = 0; int j; vec3_t subtract, vec, porg; if (numparticles >= r_maxparticles) return; VectorSubtract (ent->origin, ent->old_origin, vec); maxlen = VectorNormalize (vec); origlen = r_frametime / maxlen; dist = 3.0; while (len < maxlen) { for (j = 0; j < 3; j++) porg[j] = ent->old_origin[j] + qfrandom (16.0) - 8.0; VectorScale (vec, min(dist, len), subtract); VectorAdd (ent->old_origin, subtract, ent->old_origin); percent = len * origlen; particle_new (pt_static, part_tex_dot, porg, 1.0 + qfrandom (1.0), vec3_origin, r_realtime + 0.3 - percent * 0.3, 9 * 16 + 8 + (rand () & 3), 255); if (numparticles >= r_maxparticles) break; len += dist; } } void R_DrawParticles (void) { // byte i; unsigned char *at; float dvel, grav, fast_grav, minparticledist, scale, bloodcloud_alpha, bloodcloud_scale, fallfadespark_alpha, fire_alpha, fire_scale, smoke_alpha, smoke_scale, smokecloud_alpha, smokecloud_org, smokecloud_scale; int activeparticles, maxparticle, j, k; particle_t *part; vec3_t up_scale, right_scale, up_right_scale, down_right_scale; if (!r_particles->int_val) return; // LordHavoc: particles should not affect zbuffer qfglDepthMask (GL_FALSE); varray[0].texcoord[0] = 0; varray[0].texcoord[1] = 1; varray[1].texcoord[0] = 0; varray[1].texcoord[1] = 0; varray[2].texcoord[0] = 1; varray[2].texcoord[1] = 0; varray[3].texcoord[0] = 1; varray[3].texcoord[1] = 1; grav = (fast_grav = r_frametime * 800) * 0.05; dvel = bloodcloud_scale = smoke_scale = r_frametime * 4; smoke_alpha = r_frametime * 100; smokecloud_alpha = r_frametime * 140; smokecloud_scale = r_frametime * 50; smokecloud_org = r_frametime * 30; bloodcloud_alpha = r_frametime * 65; fallfadespark_alpha = r_frametime * 256; fire_alpha = r_frametime * 32; fire_scale = r_frametime * 2; minparticledist = DotProduct (r_refdef.vieworg, vpn) + 32.0f; activeparticles = 0; maxparticle = -1; j = 0; for (k = 0, part = particles; k < numparticles; k++, part++) { // Don't render particles too close to us. // Note, we must still do physics and such on them. if (!(DotProduct (part->org, vpn) < minparticledist)) { at = (byte *) & d_8to24table[(byte) part->color]; varray[0].color[0] = at[0]; varray[0].color[1] = at[1]; varray[0].color[2] = at[2]; varray[0].color[3] = part->alpha; memcpy(varray[1].color, varray[0].color, sizeof(varray[0].color)); memcpy(varray[2].color, varray[0].color, sizeof(varray[0].color)); memcpy(varray[3].color, varray[0].color, sizeof(varray[0].color)); scale = part->scale; VectorScale (vup, scale, up_scale); VectorScale (vright, scale, right_scale); VectorAdd (right_scale, up_scale, up_right_scale); VectorSubtract (right_scale, up_scale, down_right_scale); VectorAdd (part->org, up_right_scale, varray[0].vertex); VectorAdd (part->org, down_right_scale, varray[1].vertex); VectorSubtract (part->org, up_right_scale, varray[2].vertex); VectorSubtract (part->org, down_right_scale, varray[3].vertex); qfglBindTexture (GL_TEXTURE_2D, part->tex); qfglDrawArrays (GL_QUADS, 0, 4); } VectorMA (part->org, r_frametime, part->vel, part->org); switch (part->type) { case pt_static: break; case pt_blob: VectorMA (part->vel, dvel, part->vel, part->vel); part->vel[2] -= grav; break; case pt_blob2: VectorMA (part->vel, dvel, part->vel, part->vel); part->vel[2] -= grav; break; case pt_grav: part->vel[2] -= grav; break; case pt_smoke: if ((part->alpha -= smoke_alpha) < 1) part->die = -1; part->scale += smoke_scale; // part->org[2] += smokecloud_org - grav; break; case pt_smokecloud: if ((part->alpha -= smokecloud_alpha) < 1) { part->die = -1; break; } part->scale += smokecloud_scale; part->org[2] += smokecloud_org; break; case pt_bloodcloud: if ((part->alpha -= bloodcloud_alpha) < 1) { part->die = -1; break; } part->scale += bloodcloud_scale; part->vel[2] -= grav; break; case pt_fallfadespark: if ((part->alpha -= fallfadespark_alpha) < 1) part->die = -1; part->vel[2] -= fast_grav; break; case pt_fire: if ((part->alpha -= fire_alpha) < 1) part->die = -1; part->scale -= fire_scale; break; default: Con_DPrintf ("unhandled particle type %d\n", part->type); break; } // LordHavoc: immediate removal of unnecessary particles (must be done // to ensure compactor below operates properly in all cases) if (part->die < r_realtime) freeparticles[j++] = part; else { maxparticle = k; activeparticles++; } } k = 0; while (maxparticle >= activeparticles) { *freeparticles[k++] = particles[maxparticle--]; while (maxparticle >= activeparticles && particles[maxparticle].die <= r_realtime) maxparticle--; } numparticles = activeparticles; qfglColor3ubv (color_white); qfglDepthMask (GL_TRUE); }