/* matrix3.h 3x3 Matrix functions Copyright (C) 2012 Bill Currie Author: Bill Currie Date: 2012/8/18 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ #ifndef __QF_math_matrix3_h #define __QF_math_matrix3_h /** \defgroup mathlib_matrix3 3x3 matrix functions \ingroup utils */ //@{ #include "QF/qtypes.h" #define Mat3Copy(a, b) \ do { \ VectorCopy ((a) + 0, (b) + 0); \ VectorCopy ((a) + 3, (b) + 3); \ VectorCopy ((a) + 6, (b) + 6); \ } while (0) #define Mat3Add(a, b, c) \ do { \ VectorAdd ((a) + 0, (b) + 0, (c) + 0); \ VectorAdd ((a) + 3, (b) + 3, (c) + 3); \ VectorAdd ((a) + 6, (b) + 6, (c) + 6); \ } while (0) #define Mat3Subtract(a, b, c) \ do { \ VectorSubtract ((a) + 0, (b) + 0, (c) + 0); \ VectorSubtract ((a) + 3, (b) + 3, (c) + 3); \ VectorSubtract ((a) + 6, (b) + 6, (c) + 6); \ } while (0) #define Mat3Scale(a, b, c) \ do { \ VectorScale ((a) + 0, (b), (c) + 0); \ VectorScale ((a) + 3, (b), (c) + 3); \ VectorScale ((a) + 6, (b), (c) + 6); \ } while (0) #define Mat3CompMult(a, b, c) \ do { \ VectorCompMult ((a) + 0, (b) + 0, (c) + 0); \ VectorCompMult ((a) + 3, (b) + 3, (c) + 3); \ VectorCompMult ((a) + 6, (b) + 6, (c) + 6); \ } while (0) #define Mat3Zero(a) \ memset ((a), 0, 9 * sizeof (a)[0]) #define Mat3Identity(a) \ do { \ Mat3Zero (a); \ (a)[8] = (a)[4] = (a)[0] = 1; \ } while (0) #define Mat3Expand(a) \ VectorExpand ((a) + 0), \ VectorExpand ((a) + 3), \ VectorExpand ((a) + 6) #define Mat3Blend(m1,m2,b,m) \ do { \ VectorBlend ((m1) + 0, (m2) + 0, (b), (m) + 0); \ VectorBlend ((m1) + 3, (m2) + 3, (b), (m) + 3); \ VectorBlend ((m1) + 6, (m2) + 6, (b), (m) + 6); \ } while (0) #define Mat3MultAdd(a,s,b,c) \ do { \ VectorMultAdd ((a) + 0, s, (b) + 0, (c) + 0); \ VectorMultAdd ((a) + 3, s, (b) + 3, (c) + 3); \ VectorMultAdd ((a) + 6, s, (b) + 6, (c) + 6); \ } while (0) #define Mat3Trace(a) ((a)[0] + (a)[4] + (a)[8]) #define Mat4toMat3(a, b) \ do { \ VectorCopy ((a) + 0, (b) + 0); \ VectorCopy ((a) + 4, (b) + 3); \ VectorCopy ((a) + 8, (b) + 6); \ } while (0) void Mat3Init (const quat_t rot, const vec3_t scale, mat3_t mat); void Mat3Transpose (const mat3_t a, mat3_t b); vec_t Mat3Determinant (const mat3_t m); int Mat3Inverse (const mat3_t a, mat3_t b); void Mat3Mult (const mat3_t a, const mat3_t b, mat3_t c); void Mat3MultVec (const mat3_t a, const vec3_t b, vec3_t c); void Mat3SymEigen (const mat3_t m, vec3_t e); /** Decompose a 3x3 column major matrix into its component transformations. This gives the matrix's rotation as a quaternion, shear (XY, XZ, YZ), and scale. Using the following sequence will give the same result as multiplying \a v by \a mat. QuatMultVec (rot, v, v); VectorShear (shear, v, v); VectorCompMult (scale, v, v); */ int Mat3Decompose (const mat4_t mat, quat_t rot, vec3_t shear, vec3_t scale); //@} #endif // __QF_math_matrix3_h