/* flow.c Flow graph analysis Copyright (C) 2012 Bill Currie Author: Bill Currie Date: 2012/10/30 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifdef HAVE_STRING_H # include #endif #ifdef HAVE_STRINGS_H # include #endif #include #include "QF/dstring.h" #include "dags.h" #include "def.h" #include "flow.h" #include "function.h" #include "qfcc.h" #include "set.h" #include "statements.h" #include "symtab.h" #include "type.h" static flowloop_t *free_loops; static flownode_t *free_nodes; static flowgraph_t *free_graphs; static flowloop_t * new_loop (void) { flowloop_t *loop; ALLOC (256, flowloop_t, loops, loop); loop->nodes = set_new (); return loop; } static void delete_loop (flowloop_t *loop) { set_delete (loop->nodes); loop->next = free_loops; free_loops = loop; } static flownode_t * new_node (void) { flownode_t *node; ALLOC (256, flownode_t, nodes, node); return node; } static void delete_node (flownode_t *node) { if (node->predecessors) set_delete (node->predecessors); if (node->successors) set_delete (node->successors); if (node->edges) set_delete (node->edges); if (node->dom) set_delete (node->dom); node->next = free_nodes; free_nodes = node; } static flowgraph_t * new_graph (void) { flowgraph_t *graph; ALLOC (256, flowgraph_t, graphs, graph); return graph; } static void delete_graph (flowgraph_t *graph) { int i; if (graph->nodes) { for (i = 0; i < graph->num_nodes; i++) delete_node (graph->nodes[i]); free (graph->nodes); } if (graph->edges) free (graph->edges); if (graph->dfst) set_delete (graph->dfst); if (graph->dfo) free (graph->dfo); graph->next = free_graphs; free_graphs = graph; } static int is_variable (daglabel_t *var) { operand_t *o; if (!var) return 0; o = var->op; while (o->op_type == op_alias) o = o->o.alias; if (o->op_type == op_temp) return 1; if (o->op_type != op_symbol) return 0; if (o->o.symbol->sy_type == sy_var) return 1; //FIXME functions? (some are variable) return 0; } static int count_operand (operand_t *op) { daglabel_t *var; if (!op) return 0; if (op->op_type == op_label) return 0; var = operand_label (op); // daglabels are initialized with number == 0, and any global daglabel // used by a function will always have a number >= 0 after flow analysis, // and local daglabels will always be 0 before flow analysis, so use -1 // to indicate the variable has been counted. if (is_variable (var) && var->number != -1) { var->number = -1; return 1; } return 0; } static void add_operand (function_t *func, operand_t *op) { daglabel_t *var; if (!op) return; if (op->op_type == op_label) return; var = operand_label (op); // If the daglabel number is still -1, then the daglabel has not yet been // added to the list of variables referenced by the function. if (is_variable (var) && var->number == -1) { var->number = func->num_vars++; func->vars[var->number] = var; } } void flow_build_vars (function_t *func) { sblock_t *sblock; statement_t *s; int num_vars; int num_statements = 0; for (num_vars = 0, sblock = func->sblock; sblock; sblock = sblock->next) { for (s = sblock->statements; s; s = s->next) { num_vars += count_operand (s->opa); num_vars += count_operand (s->opb); num_vars += count_operand (s->opc); s->number = num_statements++; } } if (num_vars) { func->vars = malloc (num_vars * sizeof (daglabel_t *)); func->num_vars = 0; // incremented by add_operand for (sblock = func->sblock; sblock; sblock = sblock->next) { for (s = sblock->statements; s; s = s->next) { add_operand (func, s->opa); add_operand (func, s->opb); add_operand (func, s->opc); } } } if (num_statements) { func->statements = malloc (num_statements * sizeof (statement_t *)); func->num_statements = num_statements; for (sblock = func->sblock; sblock; sblock = sblock->next) { for (s = sblock->statements; s; s = s->next) func->statements[s->number] = s; } } } int flow_is_cond (statement_t *s) { if (!s) return 0; return !strncmp (s->opcode, "opcode, ""); } int flow_is_jumpb (statement_t *s) { if (!s) return 0; return !strcmp (s->opcode, ""); } int flow_is_return (statement_t *s) { if (!s) return 0; return !strncmp (s->opcode, "opb->o.label->dest; if (flow_is_goto (s)) return s->opa->o.label->dest; return 0; } sblock_t ** flow_get_targetlist (statement_t *s) { sblock_t **target_list; int count, i; def_t *table = 0; expr_t *e; if (flow_is_cond (s)) { count = 1; } else if (flow_is_goto (s)) { count = 1; } else if (flow_is_jumpb (s)) { table = s->opa->o.alias->o.symbol->s.def; //FIXME check!!! count = table->type->t.array.size; } target_list = malloc ((count + 1) * sizeof (sblock_t *)); target_list[count] = 0; if (flow_is_cond (s)) { target_list[0] = flow_get_target (s); } else if (flow_is_goto (s)) { target_list[0] = flow_get_target (s); } else if (flow_is_jumpb (s)) { e = table->initializer->e.block.head; //FIXME check!!! for (i = 0; i < count; e = e->next, i++) target_list[i] = e->e.labelref.label->dest; } return target_list; } static void flow_find_predecessors (flowgraph_t *graph) { int i; flownode_t *node; set_iter_t *succ; for (i = 0; i < graph->num_nodes; i++) { node = graph->nodes[i]; for (succ = set_first (node->successors); succ; succ = set_next (succ)) { set_add (graph->nodes[succ->member]->predecessors, i); } } } static void flow_find_dominators (flowgraph_t *graph) { set_t *work; flownode_t *node; int i; set_iter_t *pred; int changed; if (!graph->num_nodes) return; // First, create a base set for the initial state of the non-initial nodes work = set_new (); for (i = 0; i < graph->num_nodes; i++) set_add (work, i); set_add (graph->nodes[0]->dom, 0); // initialize dom for the non-initial nodes for (i = 1; i < graph->num_nodes; i++) { set_assign (graph->nodes[i]->dom, work); } do { changed = 0; for (i = 1; i < graph->num_nodes; i++) { node = graph->nodes[i]; pred = set_first (node->predecessors); set_empty (work); for (pred = set_first (node->predecessors); pred; pred = set_next (pred)) set_intersection (work, graph->nodes[pred->member]->dom); set_add (work, i); if (!set_is_equivalent (work, node->dom)) changed = 1; set_assign (node->dom, work); } } while (changed); set_delete (work); } static void insert_loop_node (flowloop_t *loop, unsigned n, set_t *stack) { if (!set_is_member (loop->nodes, n)) { set_add (loop->nodes, n); set_add (stack, n); } } static flowloop_t * make_loop (flowgraph_t *graph, unsigned n, unsigned d) { flowloop_t *loop = new_loop (); flownode_t *node; set_t *stack = set_new (); set_iter_t *pred; loop->head = d; set_add (loop->nodes, d); insert_loop_node (loop, n, stack); while (!set_is_empty (stack)) { set_iter_t *ss = set_first (stack); unsigned m = ss->member; set_del_iter (ss); set_remove (stack, m); node = graph->nodes[m]; for (pred = set_first (node->predecessors); pred; pred = set_next (pred)) insert_loop_node (loop, pred->member, stack); } set_delete (stack); return loop; } static void flow_find_loops (flowgraph_t *graph) { flownode_t *node; set_iter_t *succ; flowloop_t *loop, *l; flowloop_t *loop_list = 0; int i; for (i = 0; i < graph->num_nodes; i++) { node = graph->nodes[i]; for (succ = set_first (node->successors); succ; succ = set_next (succ)) { if (set_is_member (node->dom, succ->member)) { loop = make_loop (graph, node->id, succ->member); for (l = loop_list; l; l = l->next) { if (l->head == loop->head && !set_is_subset (l->nodes, loop->nodes) && !set_is_subset (loop->nodes, l->nodes)) { set_union (l->nodes, loop->nodes); delete_loop (loop); loop = 0; break; } } if (loop) { loop->next = loop_list; loop_list = loop; } } } } graph->loops = loop_list; } static void df_search (flowgraph_t *graph, set_t *visited, int *i, int n) { flownode_t *node; set_iter_t *edge; int succ; set_add (visited, n); node = graph->nodes[n]; for (edge = set_first (node->edges); edge; edge = set_next (edge)) { succ = graph->edges[edge->member].head; if (!set_is_member (visited, succ)) { set_add (graph->dfst, edge->member); df_search (graph, visited, i, succ); } } node->dfn = --*i; graph->dfo[node->dfn] = n; } static void flow_build_dfst (flowgraph_t *graph) { set_t *visited = set_new (); int i; graph->dfo = malloc (graph->num_nodes * sizeof (unsigned)); graph->dfst = set_new (); i = graph->num_nodes; df_search (graph, visited, &i, 0); set_delete (visited); } flowgraph_t * flow_build_graph (sblock_t *sblock) { flowgraph_t *graph; flownode_t *node; sblock_t *sb; sblock_t **target_list, **target; statement_t *st; set_iter_t *succ; int i, j; graph = new_graph (); for (sb = sblock; sb; sb = sb->next) sb->number = graph->num_nodes++; graph->nodes = malloc (graph->num_nodes * sizeof (flownode_t *)); for (sb = sblock; sb; sb = sb->next) { node = new_node (); node->predecessors = set_new (); node->successors = set_new (); node->edges = set_new (); node->dom = set_new (); node->id = sb->number; node->sblock = sb; graph->nodes[node->id] = node; } // "convert" the basic blocks connections to flow-graph connections for (i = 0; i < graph->num_nodes; i++) { node = graph->nodes[i]; sb = node->sblock; st = 0; if (sb->statements) st = (statement_t *) sb->tail; //NOTE: if st is null (the sblock has no statements), flow_is_* will //return false //FIXME jump/jumpb if (flow_is_goto (st)) { // sb's next is never followed. set_add (node->successors, flow_get_target (st)->number); } else if (flow_is_jumpb (st)) { target_list = flow_get_targetlist (st); for (target = target_list; *target; target++) set_add (node->successors, (*target)->number); free (target_list); } else if (flow_is_cond (st)) { // branch: either sb's next or the conditional statment's // target will be followed. set_add (node->successors, sb->next->number); set_add (node->successors, flow_get_target (st)->number); } else if (flow_is_return (st)) { // exit from function (dead end) } else { // there is no flow-control statement in sb, so sb's next // must be followed set_add (node->successors, sb->next->number); } graph->num_edges += set_size (node->successors); } graph->edges = malloc (graph->num_edges * sizeof (flowedge_t *)); for (j = 0, i = 0; i < graph->num_nodes; i++) { node = graph->nodes[i]; for (succ = set_first (node->successors); succ; succ = set_next (succ), j++) { set_add (node->edges, j); graph->edges[j].tail = i; graph->edges[j].head = succ->member; } } flow_build_dfst (graph); flow_find_predecessors (graph); flow_find_dominators (graph); flow_find_loops (graph); return graph; } void flow_del_graph (flowgraph_t *graph) { delete_graph (graph); }