/* mathlib.h Vector math library Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ #ifndef __QF_math_vector_h #define __QF_math_vector_h /** \defgroup mathlib_vector Vector functions \ingroup mathlib */ ///@{ #include "QF/qtypes.h" extern const vec_t *const vec3_origin; #define VectorCompUop(b, op, a) \ do { \ (b)[0] = op ((a)[0]); \ (b)[1] = op ((a)[1]); \ (b)[2] = op ((a)[2]); \ } while (0) #define VectorCompOp(c, a, op, b) \ do { \ (c)[0] = (a)[0] op (b)[0]; \ (c)[1] = (a)[1] op (b)[1]; \ (c)[2] = (a)[2] op (b)[2]; \ } while (0) #define VectorCompAdd(c,a,b) VectorCompOp (c, a, +, b) #define VectorCompSub(c,a,b) VectorCompOp (c, a, -, b) #define VectorCompMult(c,a,b) VectorCompOp (c, a, *, b) #define VectorCompDiv(c,a,b) VectorCompOp (c, a, /, b) #define DotProduct(a,b) ((a)[0] * (b)[0] + (a)[1] * (b)[1] + (a)[2] * (b)[2]) #define VectorSubtract(a,b,c) VectorCompSub (c, a, b) #define VectorNegate(a,b) VectorCompUop (b, -, a) #define VectorAdd(a,b,c) VectorCompAdd (c, a, b) #define VectorCopy(a,b) \ do { \ (b)[0] = (a)[0]; \ (b)[1] = (a)[1]; \ (b)[2] = (a)[2]; \ } while (0) #define VectorMultAdd(a,s,b,c) \ do { \ (c)[0] = (a)[0] + (s) * (b)[0]; \ (c)[1] = (a)[1] + (s) * (b)[1]; \ (c)[2] = (a)[2] + (s) * (b)[2]; \ } while (0) #define VectorMultSub(a,s,b,c) \ do { \ (c)[0] = (a)[0] - (s) * (b)[0]; \ (c)[1] = (a)[1] - (s) * (b)[1]; \ (c)[2] = (a)[2] - (s) * (b)[2]; \ } while (0) #define VectorCompMultAdd(a,b,c,d) \ do { \ (d)[0] = (a)[0] + (b)[0] * (c)[0]; \ (d)[1] = (a)[1] + (b)[1] * (c)[1]; \ (d)[2] = (a)[2] + (b)[2] * (c)[2]; \ } while (0) #define VectorCompMultSub(a,b,c,d) \ do { \ (d)[0] = (a)[0] - (b)[0] * (c)[0]; \ (d)[1] = (a)[1] - (b)[1] * (c)[1]; \ (d)[2] = (a)[2] - (b)[2] * (c)[2]; \ } while (0) #define VectorLength(a) sqrt(DotProduct(a, a)) #define VectorScale(a,b,c) \ do { \ (c)[0] = (a)[0] * (b); \ (c)[1] = (a)[1] * (b); \ (c)[2] = (a)[2] * (b); \ } while (0) /** Shear vector \a b by vector \a a. Vector a represents the shear factors XY, XZ, YZ, ie in matrix form: [ 1 0 0 ] [ b0 ] [ a0 1 0 ] [ b1 ] [ a1 a2 1 ] [ b2 ] The reason for this particular scheme is that is how Mat4Decompose calculates the shear from a matrix. \note The order of calculations is important for when b and c refer to the same vector. */ #define VectorShear(a,b,c) \ do { \ (c)[2] = (b)[0] * (a)[1] + (b)[1] * (a)[2] + (b)[2]; \ (c)[1] = (b)[0] * (a)[0] + (b)[1]; \ (c)[0] = (b)[0]; \ } while (0) #define VectorUnshear(a,b,c) \ do { \ (c)[2] = (b)[2] - (b)[1] * (a)[2] - (b)[0] * ((a)[1]-(a)[0]*(a)[2]); \ (c)[1] = (b)[1] - (b)[0] * (a)[0]; \ (c)[0] = (b)[0]; \ } while (0) #define VectorCompCompare(c, m, a, op, b) \ do { \ (c)[0] = m((a)[0] op (b)[0]); \ (c)[1] = m((a)[1] op (b)[1]); \ (c)[2] = m((a)[2] op (b)[2]); \ } while (0) #define VectorCompCompareAll(x, op, y) \ (((x)[0] op (y)[0]) && ((x)[1] op (y)[1]) && ((x)[2] op (y)[2])) #define VectorCompare(x, y) VectorCompCompareAll (x, ==, y) #define VectorCompMin(a, b, c) \ do { \ (c)[0] = min ((a)[0], (b)[0]); \ (c)[1] = min ((a)[1], (b)[1]); \ (c)[2] = min ((a)[2], (b)[2]); \ } while (0) #define VectorCompMax(a, b, c) \ do { \ (c)[0] = max ((a)[0], (b)[0]); \ (c)[1] = max ((a)[1], (b)[1]); \ (c)[2] = max ((a)[2], (b)[2]); \ } while (0) #define VectorCompBound(a, b, c, d) \ do { \ (d)[0] = bound ((a)[0], (b)[0], (c)[0]); \ (d)[1] = bound ((a)[1], (b)[1], (c)[1]); \ (d)[2] = bound ((a)[2], (b)[2], (c)[2]); \ } while (0) #define VectorIsZero(a) (!(a)[0] && !(a)[1] && !(a)[2]) #define VectorZero(a) \ do { \ (a)[0] = 0; \ (a)[1] = 0; \ (a)[2] = 0; \ } while (0) #define VectorSet(a,b,c,d) \ do { \ (d)[0] = a; \ (d)[1] = b; \ (d)[2] = c; \ } while (0) #define VectorBlend(v1,v2,b,v) \ do { \ (v)[0] = (v1)[0] * (1 - (b)) + (v2)[0] * (b); \ (v)[1] = (v1)[1] * (1 - (b)) + (v2)[1] * (b); \ (v)[2] = (v1)[2] * (1 - (b)) + (v2)[2] * (b); \ } while (0) //For printf etc #define VectorExpand(v) (v)[0], (v)[1], (v)[2] //For scanf etc #define VectorExpandAddr(v) &(v)[0], &(v)[1], &(v)[2] /* * VectorDistance, the distance between two points. * Yes, this is the same as sqrt(VectorSubtract then DotProduct), * however that way would involve more vars, this is cheaper. */ #define VectorDistance_fast(a, b) \ ((((a)[0] - (b)[0]) * ((a)[0] - (b)[0])) + \ (((a)[1] - (b)[1]) * ((a)[1] - (b)[1])) + \ (((a)[2] - (b)[2]) * ((a)[2] - (b)[2]))) #define VectorDistance(a, b) sqrt(VectorDistance_fast(a, b)) vec_t _DotProduct (const vec3_t v1, const vec3_t v2) __attribute__((pure)); void _VectorAdd (const vec3_t veca, const vec3_t vecb, vec3_t out); void _VectorCopy (const vec3_t in, vec3_t out); int _VectorCompare (const vec3_t v1, const vec3_t v2) __attribute__((pure)); // uses EQUAL_EPSILON vec_t _VectorLength (const vec3_t v) __attribute__((pure)); void _VectorMA (const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc); void _VectorScale (const vec3_t in, vec_t scale, vec3_t out); void _VectorSubtract (const vec3_t veca, const vec3_t vecb, vec3_t out); void CrossProduct (const vec3_t v1, const vec3_t v2, vec3_t cross); vec_t _VectorNormalize (vec3_t v); // returns vector length GNU89INLINE inline float VectorNormalize (vec3_t v); // returns vector length #ifndef IMPLEMENT_VectorNormalize GNU89INLINE inline #else VISIBLE #endif float VectorNormalize (vec3_t v) { float length; length = DotProduct (v, v); if (length) { float ilength; length = sqrt (length); ilength = 1.0 / length; v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; } return length; } ///@} #endif // __QF_math_vector_h