/* function.c QC function support code Copyright (C) 2002 Bill Currie Author: Bill Currie Date: 2002/5/7 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifdef HAVE_STRING_H # include #endif #ifdef HAVE_STRINGS_H # include #endif #include #include "QF/alloc.h" #include "QF/dstring.h" #include "QF/hash.h" #include "QF/va.h" #include "tools/qfcc/include/qfcc.h" #include "tools/qfcc/include/attribute.h" #include "tools/qfcc/include/class.h" #include "tools/qfcc/include/codespace.h" #include "tools/qfcc/include/debug.h" #include "tools/qfcc/include/def.h" #include "tools/qfcc/include/defspace.h" #include "tools/qfcc/include/diagnostic.h" #include "tools/qfcc/include/evaluate_type.h" #include "tools/qfcc/include/emit.h" #include "tools/qfcc/include/expr.h" #include "tools/qfcc/include/flow.h" #include "tools/qfcc/include/function.h" #include "tools/qfcc/include/method.h" #include "tools/qfcc/include/opcodes.h" #include "tools/qfcc/include/options.h" #include "tools/qfcc/include/reloc.h" #include "tools/qfcc/include/shared.h" #include "tools/qfcc/include/statements.h" #include "tools/qfcc/include/strpool.h" #include "tools/qfcc/include/symtab.h" #include "tools/qfcc/include/target.h" #include "tools/qfcc/include/type.h" #include "tools/qfcc/include/value.h" ALLOC_STATE (param_t, params); ALLOC_STATE (function_t, functions); ALLOC_STATE (metafunc_t, metafuncs); ALLOC_STATE (genfunc_t, genfuncs); static hashtab_t *generic_functions; static hashtab_t *metafuncs; static hashtab_t *function_map; static const char * gen_func_get_key (const void *_f, void *unused) { auto f = (genfunc_t *) _f; return f->name; } static const char * metafunc_get_full_name (const void *_f, void *unused) { metafunc_t *f = (metafunc_t *) _f; return f->full_name; } static const char * metafunc_get_name (const void *_f, void *unused) { metafunc_t *f = (metafunc_t *) _f; return f->name; } static void check_generic_param (genparam_t *param, genfunc_t *genfunc) { if (param->fixed_type) { if (param->gentype != -1) { internal_error (0, "invalid type index %d on %s for %s", param->gentype, param->name, genfunc->name); } if (param->compute) { internal_error (0, "fixed and computed types on %s for %s", param->name, genfunc->name); } } else if (param->compute) { if (param->gentype != -1) { internal_error (0, "invalid type index %d on %s for %s", param->gentype, param->name, genfunc->name); } } else if (param->gentype < 0 || param->gentype >= genfunc->num_types) { internal_error (0, "invalid type index %d on %s for %s", param->gentype, param->name, genfunc->name); } } static bool __attribute__((pure)) cmp_genparams (genfunc_t *g1, genparam_t *p1, genfunc_t *g2, genparam_t *p2) { if (p1->fixed_type || p2->fixed_type) { return p1->fixed_type == p2->fixed_type; } if (p1->compute && p2->compute) { auto c1 = p1->compute; auto c2 = p2->compute; if (c1 == c2) { // same program return true; } if (!c1 || !c2) { // only one parameter is computed so they can't be the same return false; } if (c1->code_size != c2->code_size || c1->data_size != c2->data_size || c1->string_size != c2->string_size) { // computation programs are different sizes, so not the same return false; } size_t csize = c1->code_size * sizeof (dstatement_t); size_t dsize = c1->data_size * sizeof (pr_type_t); size_t ssize = c1->string_size; if (memcmp (c1->code, c2->code, csize) != 0) { return false; } if (memcmp (c1->data, c2->data, dsize) != 0) { return false; } if (memcmp (c1->strings, c2->strings, ssize) != 0) { return false; } return true; } // fixed_type for both p1 and p2 is null auto t1 = g1->types[p1->gentype]; auto t2 = g2->types[p2->gentype]; auto vt1 = t1.valid_types; auto vt2 = t2.valid_types; for (; *vt1 && *vt2 && *vt1 == *vt2; vt1++, vt2++) continue; return *vt1 == *vt2; } genfunc_t * add_generic_function (genfunc_t *genfunc) { auto name = genfunc->name; for (int i = 0; i < genfunc->num_types; i++) { auto gentype = &genfunc->types[i]; if (!gentype->valid_types) { internal_error (0, "no valid_types set in generic type"); } for (auto type = gentype->valid_types; type && *type; type++) { if (is_void (*type)) { internal_error (0, "void in list of valid types"); } } } int gen_params = 0; for (int i = 0; i < genfunc->num_params; i++) { auto param = &genfunc->params[i]; if (!param->fixed_type) { gen_params++; check_generic_param (param, genfunc); } } if (!gen_params) { internal_error (0, "%s has no generic parameters", name); } if (!genfunc->ret_type) { internal_error (0, "%s has no return type", name); } check_generic_param (genfunc->ret_type, genfunc); bool is_new = true; genfunc_t *old = nullptr; auto old_list = (genfunc_t **) Hash_FindList (generic_functions, name); for (auto o = old_list; is_new && o && *o; o++) { old = *o; if (old->num_params == genfunc->num_params) { is_new = false; for (int i = 0; i < genfunc->num_params; i++) { if (!cmp_genparams (genfunc, &genfunc->params[i], old, &old->params[i])) { is_new = true; break; } } if (!is_new && !cmp_genparams (genfunc, genfunc->ret_type, old, old->ret_type)) { error (0, "can't overload on return types"); return nullptr; } } } if (is_new) { Hash_Add (generic_functions, genfunc); } else { for (int i = 0; i < genfunc->num_types; i++) { auto gentype = &genfunc->types[i]; free (gentype->valid_types); } free (genfunc->types); FREE (genfuncs, genfunc); genfunc = old; } return genfunc; } static const type_t ** valid_type_list (const expr_t *expr, rua_ctx_t *ctx) { if (expr->type != ex_list) { return expand_type (expr, ctx); } int count = list_count (&expr->list); const expr_t *type_refs[count]; list_scatter (&expr->list, type_refs); const type_t **types = malloc (sizeof (type_t *[count + 1])); types[count] = nullptr; bool err = false; for (int i = 0; i < count; i++) { if (!(types[i] = resolve_type (type_refs[i], ctx))) { error (type_refs[i], "not a constant type ref"); err = true; } } if (err) { free (types); return nullptr; } return types; } static gentype_t make_gentype (const expr_t *expr, rua_ctx_t *ctx) { if (expr->type != ex_symbol || expr->symbol->sy_type != sy_type_param) { internal_error (expr, "expected generic type name"); } auto sym = expr->symbol; gentype_t gentype = { .name = save_string (sym->name), .valid_types = valid_type_list (sym->expr, ctx), }; if (!gentype.valid_types) { internal_error (expr, "empty generic type"); } return gentype; } static int find_gentype (const expr_t *expr, genfunc_t *genfunc) { if (!expr || expr->type != ex_symbol) { return -1; } const char *name = expr->symbol->name; for (int i = 0; i < genfunc->num_types; i++) { auto t = &genfunc->types[i]; if (strcmp (name, t->name) == 0) { return i; } } return -1; } static genparam_t make_genparam (param_t *param, genfunc_t *genfunc) { int gentype = find_gentype (param->type_expr, genfunc); typeeval_t *compute = nullptr; if (gentype < 0 && param->type_expr) { compute = build_type_function (param->type_expr, genfunc->num_types, genfunc->types); } genparam_t genparam = { .name = save_string (param->name), .fixed_type = param->type, .compute = compute, .gentype = gentype, .qual = param->qual, }; return genparam; } static genfunc_t * parse_generic_function (const char *name, specifier_t spec, rua_ctx_t *ctx) { if (!spec.is_generic) { return nullptr; } spec = default_type (spec, spec.sym); // fake parameter for the return type param_t ret_param = { .next = spec.params, .type = spec.type, .type_expr = spec.type_expr, }; int num_params = 0; int num_gentype = 0; for (auto p = &ret_param; p; p = p->next) { num_params++; } auto generic_tab = spec.symtab; for (auto s = generic_tab->symbols; s; s = s->next) { bool found = false; for (auto q = &ret_param; q; q = q->next) { // skip complex expressions because they will be either fixed // or rely on earlier parameters if (!q->type_expr || q->type_expr->type != ex_symbol) { continue; } if (strcmp (q->type_expr->symbol->name, s->name) == 0) { num_gentype++; found = true; break; } } if (!spec.is_generic_block && !found) { warning (0, "generic parameter %s not used", s->name); } } if (!num_gentype) { if (!spec.is_generic_block) { warning (0, "no generic parameters for %s", name); } return nullptr; } genfunc_t *genfunc; ALLOC (4096, genfunc_t, genfuncs, genfunc); *genfunc = (genfunc_t) { .name = save_string (name), .types = malloc (sizeof (gentype_t[num_gentype]) + sizeof (genparam_t[num_params])), .num_types = num_gentype, .num_params = num_params - 1, // don't count return type }; genfunc->params = (genparam_t *) &genfunc->types[num_gentype]; genfunc->ret_type = &genfunc->params[num_params - 1]; num_gentype = 0; for (auto s = generic_tab->symbols; s; s = s->next) { for (auto q = &ret_param; q; q = q->next) { // see complex expressions comment above if (!q->type_expr || q->type_expr->type != ex_symbol) { continue; } if (strcmp (q->type_expr->symbol->name, s->name) == 0) { genfunc->types[num_gentype++] = make_gentype (q->type_expr, ctx); break; } } } auto type = new_type (); *type = type_func; spec.sym->type = type; num_params = 0; // skip return type so it can be done last to support complex expressions for (auto p = ret_param.next; p; p = p->next) { genfunc->params[num_params++] = make_genparam (p, genfunc); } *genfunc->ret_type = make_genparam (&ret_param, genfunc); return genfunc; } param_t * new_param (const char *selector, const type_t *type, const char *name) { param_t *param; ALLOC (4096, param_t, params, param); *param = (param_t) { .selector = selector, .type = find_type (type), .name = name, .qual = pq_in, }; return param; } param_t * new_generic_param (const expr_t *type_expr, const char *name) { param_t *param; ALLOC (4096, param_t, params, param); *param = (param_t) { .type_expr = type_expr, .name = name, .qual = pq_in, }; return param; } param_t * param_append_identifiers (param_t *params, symbol_t *idents, const type_t *type) { param_t **p = ¶ms; while (*p) p = &(*p)->next; if (!idents) { *p = new_param (0, 0, 0); p = &(*p)->next; } while (idents) { idents->type = type; *p = new_param (0, type, idents->name); p = &(*p)->next; idents = idents->next; } return params; } static param_t * _reverse_params (param_t *params, param_t *next) { param_t *p = params; if (params->next) p = _reverse_params (params->next, params); params->next = next; return p; } param_t * reverse_params (param_t *params) { if (!params) return 0; return _reverse_params (params, 0); } param_t * append_params (param_t *params, param_t *more_params) { if (params) { param_t *p; for (p = params; p->next; ) { p = p->next; } p->next = more_params; return params; } return more_params; } param_t * copy_params (param_t *params) { param_t *n_parms = 0, **p = &n_parms; while (params) { *p = new_param (params->selector, params->type, params->name); params = params->next; p = &(*p)->next; } return n_parms; } const type_t * parse_params (const type_t *return_type, param_t *parms) { param_t *p; type_t *new; int count = 0; if (return_type && is_class (return_type)) { error (0, "cannot return an object (forgot *?)"); return_type = &type_id; } new = new_type (); new->type = ev_func; new->alignment = 1; new->width = 1; new->columns = 1; new->func.ret_type = return_type; new->func.num_params = 0; for (p = parms; p; p = p->next) { if (p->type) { count++; } } if (count) { new->func.param_types = malloc (count * sizeof (type_t *)); new->func.param_quals = malloc (count * sizeof (param_qual_t)); } for (p = parms; p; p = p->next) { if (!p->selector && !p->type && !p->name) { if (p->next) internal_error (0, 0); new->func.num_params = -(new->func.num_params + 1); } else if (p->type) { if (is_class (p->type)) { error (0, "cannot use an object as a parameter (forgot *?)"); p->type = &type_id; } auto ptype = unalias_type (p->type); new->func.param_types[new->func.num_params] = ptype; new->func.param_quals[new->func.num_params] = p->qual; new->func.num_params++; } } return new; } param_t * check_params (param_t *params) { int num = 1; param_t *p = params; if (!params) return 0; while (p) { if (p->type && is_void(p->type)) { if (p->name) { error (0, "parameter %d ('%s') has incomplete type", num, p->name); p->type = type_default; } else if (num > 1 || p->next) { error (0, "'void' must be the only parameter"); p->name = "void"; } else { // this is a void function return 0; } } p = p->next; } return params; } static metafunc_t * new_metafunc (void) { metafunc_t *metafunc; ALLOC (1024, metafunc_t, metafuncs, metafunc); return metafunc; } static void set_func_attrs (const type_t *func_type, attribute_t *attr_list) { auto func = &((type_t *) func_type)->func;//FIXME for (auto attr = attr_list; attr; attr = attr->next) { if (!strcmp (attr->name, "no_va_list")) { func->no_va_list = true; } else if (!strcmp (attr->name, "void_return")) { func->void_return = true; } else { warning (0, "skipping unknown function attribute '%s'", attr->name); } } } typedef struct { const type_t *type; bool implicit; } callparm_t; typedef struct { int num_params; callparm_t *params; const type_t **types; } calltype_t; static bool check_type (const type_t *type, callparm_t param, unsigned *cost, bool promote) { if (!type) { return false; } if (type == param.type) { return true; } if (is_reference (type)) { // pass by references is a free conversion, but no promotion return dereference_type (type) == param.type; } if (is_reference (param.type)) { // dereferencing a reference is free so long as there's no // promotion, otherwise there's the promotion cost param.type = dereference_type (param.type); } if (type == param.type) { return true; } int ret = obj_types_assignable (type, param.type); if (ret >= 0) { return ret; } if (!promote) { // want exact match return false; } if (!type_promotes (type, param.type)) { bool demotes = param.implicit && type_demotes (type, param.type); if (demotes) { *cost += 1; } return demotes; } *cost += 2; return true; } static const type_t * __attribute__((pure)) select_type (gentype_t *gentype, callparm_t param) { for (auto t = gentype->valid_types; t && *t; t++) { if (*t == param.type) { return *t; } if (is_reference (*t) && dereference_type (*t) == param.type) { // pass value by reference: no promotion return *t; } auto pt = param.type; if (is_reference (pt)) { // pass reference by value: promotion ok pt = dereference_type (pt); } if (*t == pt) { return *t; } if (type_promotes (*t, pt)) { return *t; } } return nullptr; } static genfunc_t * find_generic_function (genfunc_t **genfuncs, const expr_t *fexpr, calltype_t *calltype, bool promote) { int num_funcs = 0; for (auto gf = genfuncs; *gf; gf++, num_funcs++) continue; unsigned costs[num_funcs] = {}; int num_params = calltype->num_params; auto call_params = calltype->params; for (int j = 0; j < num_funcs; j++) { auto g = genfuncs[j]; if (g->num_params != num_params) { continue; } const type_t *types[g->num_types] = {}; bool ok = true; for (int i = 0; ok && i < num_params; i++) { auto p = &g->params[i]; if (!p->fixed_type) { costs[j] += 1; int ind = p->gentype; if (!types[ind]) { types[ind] = select_type (&g->types[ind], call_params[i]); } ok &= check_type (types[ind], call_params[i], costs + j, promote); } else { ok &= check_type (p->fixed_type, call_params[i], costs + j, promote); } } if (!ok) { costs[j] = ~0u; } } auto fsym = fexpr->symbol; unsigned best_cost = ~0u; int best_ind = -1; for (int i = 0; i < num_funcs; i++) { if (costs[i] < best_cost) { best_ind = i; best_cost = costs[i]; } } if (best_ind < 0) { error (fexpr, "unable to find generic function matching %s", fsym->name); return nullptr; } for (int i = 0; i < num_funcs; i++) { if (i != best_ind && costs[i] == best_cost) { error (fexpr, "unable to disambiguate %s", fsym->name); return nullptr; } } return genfuncs[best_ind]; } static const type_t * compute_param_type (const genparam_t *param, int param_ind, const genfunc_t *genfunc, calltype_t *calltype, const expr_t *fexpr) { auto call_types = calltype->types; auto call_params = calltype->params; if (param->fixed_type) { return param->fixed_type; } if (param->compute) { return evaluate_type (param->compute, genfunc->num_types, calltype->types, fexpr); } int ind = param->gentype; if (!call_types[ind] && param_ind >= 0) { call_types[ind] = select_type (&genfunc->types[ind], call_params[param_ind]); } return call_types[ind]; } static symbol_t * create_generic_sym (genfunc_t *g, const expr_t *fexpr, calltype_t *calltype) { int num_params = calltype->num_params; const type_t *param_types[num_params]; param_qual_t param_quals[num_params]; const type_t *return_type; for (int i = 0; i < num_params; i++) { auto p = &g->params[i]; param_types[i] = compute_param_type (p, i, g, calltype, fexpr); param_quals[i] = p->qual; } return_type = compute_param_type (g->ret_type, -1, g, calltype, fexpr); if (!return_type) { internal_error (0, "return type not determined"); } param_t *params = nullptr; for (int i = 0; i < num_params; i++) { param_types[i] = unalias_type (param_types[i]); params = append_params (params, new_param (nullptr, param_types[i], g->params[i].name)); } return_type = unalias_type (return_type); type_t ftype = { .type = ev_func, .alignment = 1, .width = 1, .columns = 1, .func = { .ret_type = return_type, .num_params = num_params, .param_types = param_types, .param_quals = param_quals, }, }; auto type = find_type (&ftype); auto name = g->name; auto full_name = save_string (va (0, "%s|%s", name, encode_params (type))); auto fsym = fexpr->symbol; auto sym = symtab_lookup (fsym->table, full_name); if (!sym || sym->table != fsym->table) { sym = new_symbol (full_name); sym->sy_type = sy_func; sym->type = type; sym->params = params; sym->metafunc = new_metafunc (); *sym->metafunc = *fsym->metafunc; sym->metafunc->expr = g->expr; sym->metafunc->can_inline = g->can_inline; symtab_addsymbol (fsym->table, sym); } return sym; } static metafunc_t * get_function (const char *name, specifier_t spec, rua_ctx_t *ctx) { spec = spec_process (spec, ctx); spec.sym->type = spec.type; set_func_attrs (spec.sym->type, spec.attributes); spec.sym->type = find_type (spec.sym->type); auto type = unalias_type (spec.sym->type); int num_params = type->func.num_params; if (num_params < 0) { num_params = ~num_params; } callparm_t call_params[num_params + 1] = {}; calltype_t calltype = { .num_params = type->func.num_params, .params = call_params, }; for (int i = 0; i < num_params; i++) { call_params[i].type = type->func.param_types[i]; } bool overload = spec.is_overload; metafunc_t *func = Hash_Find (function_map, name); if (func && func->meta_type == mf_generic) { auto genfuncs = (genfunc_t **) Hash_FindList (generic_functions, name); expr_t fexpr = { .loc = pr.loc, .type = ex_symbol, .symbol = symtab_lookup (current_symtab, name), }; if (!fexpr.symbol || fexpr.symbol->sy_type != sy_func || !fexpr.symbol->metafunc) { internal_error (0, "genfunc oops"); } auto gen = find_generic_function (genfuncs, &fexpr, &calltype, false); if (gen) { const type_t *ref_types[gen->num_types] = {}; calltype.types = ref_types; auto sym = create_generic_sym (gen, &fexpr, &calltype); if (sym == fexpr.symbol || sym->metafunc == fexpr.symbol->metafunc) { internal_error (0, "genfunc oops"); } func = sym->metafunc; overload = true; calltype.types = nullptr; } else { func = nullptr; } } const char *full_name; full_name = save_string (va (0, "%s|%s", name, encode_params (type))); if (!func || func->meta_type != mf_generic) { // check if the exact function signature already exists, in which case // simply return it. func = Hash_Find (metafuncs, full_name); if (func) { if (func->type != type) { error (0, "can't overload on return types"); return func; } return func; } func = Hash_Find (function_map, name); if (func) { if (!overload && func->meta_type != mf_overload) { warning (0, "creating overloaded function %s without @overload", full_name); warning (&(expr_t) { .loc = func->loc }, "(previous function is %s)", func->full_name); } overload = true; } func = new_metafunc (); } *func = (metafunc_t) { .name = save_string (name), .full_name = full_name, .type = type, .loc = pr.loc, .meta_type = overload ? mf_overload : mf_simple, }; Hash_Add (metafuncs, func); Hash_Add (function_map, func); return func; } symbol_t * function_symbol (specifier_t spec, rua_ctx_t *ctx) { symbol_t *sym = spec.sym; sym->params = spec.params; const char *name = sym->name; metafunc_t *func = Hash_Find (function_map, name); auto check = symtab_lookup (current_symtab, name); if ((sym->table == current_symtab && sym->sy_type != sy_func) || (check && check->table == current_symtab && check->sy_type != sy_func)) { auto err = new_symbol (nullptr); err->sy_type = sy_expr; err->expr = error (0, "`%s` redeclared as different kind of symbol", name); return err; } auto genfunc = parse_generic_function (name, spec, ctx); if (genfunc) { add_generic_function (genfunc); func = new_metafunc (); *func = (metafunc_t) { .name = save_string (name), .full_name = name, .loc = pr.loc, .meta_type = mf_generic, .genfunc = genfunc, }; Hash_Add (metafuncs, func); Hash_Add (function_map, func); } else { func = get_function (name, spec, ctx); } if (func && func->meta_type == mf_overload) name = func->full_name; symbol_t *s = symtab_lookup (current_symtab, name); if (!s || s->table != current_symtab) { s = new_symbol (name); s->sy_type = sy_func; s->type = unalias_type (sym->type); symtab_addsymbol (current_symtab, s); } if (!sym->table && strcmp (s->name, sym->name) != 0) { // record unmangled function symbol to avoid false undefined symbol // errors sym->sy_type = sy_func; sym->metafunc = new_metafunc (); *sym->metafunc = (metafunc_t) { .name = save_string (name), .meta_type = mf_overload, }; symtab_addsymbol (current_symtab, sym); } //if it existed, override the declaration's parameters and metafunc s->params = sym->params; s->metafunc = func; return s; } static const expr_t * set_func_symbol (const expr_t *fexpr, metafunc_t *f) { auto sym = symtab_lookup (current_symtab, f->full_name); if (!sym) { internal_error (fexpr, "overloaded function %s not found", f->full_name); } auto nf = new_expr (); *nf = *fexpr; nf->symbol = sym; return nf; } static void build_generic_scope (symbol_t *fsym, symtab_t *parent, genfunc_t *genfunc, const type_t **ref_types) { auto func = fsym->metafunc->func; func->label_scope = new_symtab (0, stab_label); auto parameters = new_symtab (parent, stab_param); parameters->space = parent->space; func->parameters = parameters; auto locals = new_symtab (parameters, stab_local); locals->space = parent->space; func->locals = locals; for (int i = 0; i < genfunc->num_types; i++) { auto type = &genfunc->types[i]; auto sym = new_symbol (type->name); sym->sy_type = sy_type_param; if (ref_types) { sym->expr = new_type_expr (ref_types[i]); } symtab_addsymbol (func->parameters, sym); } } static function_t * new_function (const char *name, const char *nice_name) { function_t *f; ALLOC (1024, function_t, functions, f); f->o_name = save_string (name); f->s_name = ReuseString (name); f->s_file = pr.loc.file; if (!(f->name = nice_name)) f->name = name; return f; } const expr_t * find_function (const expr_t *fexpr, const expr_t *params) { if (fexpr->type != ex_symbol) { return fexpr; } int num_params = params ? list_count (¶ms->list) : 0; const expr_t *args[num_params + 1] = {}; if (params) { list_scatter_rev (¶ms->list, args); } callparm_t call_params[num_params] = {}; for (int i = 0; i < num_params; i++) { auto e = args[i]; if (e->type == ex_error) { return e; } call_params[i] = (callparm_t) { .type = get_type (e), .implicit = e->implicit, }; } calltype_t calltype = { .num_params = num_params, .params = call_params, }; auto fsym = fexpr->symbol; const char *fname = fsym->name; auto genfuncs = (genfunc_t **) Hash_FindList (generic_functions, fname); if (genfuncs) { auto gen = find_generic_function (genfuncs, fexpr, &calltype, true); if (!gen) { return new_error_expr (); } const type_t *ref_types[gen->num_types] = {}; calltype.types = ref_types; auto sym = create_generic_sym (gen, fexpr, &calltype); if (gen->can_inline) { // the call will be inlined, so a new scope is needed every // time sym->metafunc->func = new_function (sym->name, gen->name); sym->metafunc->func->type = sym->type; build_generic_scope (sym, current_symtab, gen, ref_types); } return new_symbol_expr (sym); } auto funcs = (metafunc_t **) Hash_FindList (function_map, fname); if (!funcs) return fexpr; int num_funcs; for (num_funcs = 0; funcs[num_funcs]; num_funcs++) continue; if (num_funcs < 2) { if (num_funcs && funcs[0]->meta_type != mf_overload) { free (funcs); return fexpr; } } unsigned costs[num_funcs] = {}; for (int i = 0; i < num_funcs; i++) { auto f = (metafunc_t *) funcs[i]; int num_params = f->type->func.num_params; if ((num_params >= 0 && num_params != calltype.num_params) || (num_params < 0 && ~num_params > calltype.num_params)) { costs[i] = ~0u; continue; } if (num_params < 0) { num_params = ~num_params; } bool ok = true; for (int j = 0; ok && j < num_params; j++) { auto fptype = f->type->func.param_types[j]; auto cparam = calltype.params[j]; ok &= check_type (fptype, cparam, costs + i, true); } if (!ok) { costs[i] = ~0u; } } unsigned best_cost = ~0u; int best_ind = -1; for (int i = 0; i < num_funcs; i++) { if (best_ind >= 0 && costs[i] == best_cost) { error (fexpr, "unable to disambiguate %s", fsym->name); continue; } if (costs[i] < best_cost) { best_ind = i; best_cost = costs[i]; } } if (best_ind < 0) { free (funcs); return error (fexpr, "unable to find function matching"); } for (int i = 0; i < num_funcs; i++) { if (i != best_ind && costs[i] == best_cost) { free (funcs); return error (fexpr, "unable to disambiguate %s", fsym->name); } } auto best = funcs[best_ind]; if (best->meta_type == mf_overload) { fexpr = set_func_symbol (fexpr, best); } free (funcs); return fexpr; } int value_too_large (const type_t *val_type) { return current_target.value_too_large (val_type); } static void check_function (symbol_t *fsym) { function_t *func = fsym->metafunc->func; param_t *params = fsym->params; param_t *p; int i; auto ret_type = fsym->type->func.ret_type; if (!func) { internal_error (0, "function %s not defined", fsym->name); } if (!is_func (func->type)) { internal_error (0, "function type %s not a funciton", fsym->name); } if (!ret_type || !type_size (ret_type)) { error (0, "return type is an incomplete type"); return; //fsym->type->t.func.type = &type_void;//FIXME better type? } if (value_too_large (ret_type)) { error (0, "return value too large to be passed by value (%d)", type_size (&type_param)); //fsym->type->func.type = &type_void;//FIXME better type? } for (p = params, i = 0; p; p = p->next, i++) { if (!p->selector && !p->type && !p->name) continue; // ellipsis marker if (!p->type) continue; // non-param selector if (!type_size (p->type)) { error (0, "parameter %d (ā€˜%sā€™) has incomplete type", i + 1, p->name); } if (value_too_large (p->type)) { error (0, "param %d (ā€˜%sā€™) is too large to be passed by value", i + 1, p->name); } } } static void build_scope (symbol_t *fsym, symtab_t *parent) { function_t *func = fsym->metafunc->func; symtab_t *parameters; symtab_t *locals; func->label_scope = new_symtab (0, stab_label); parameters = new_symtab (parent, stab_param); parameters->space = defspace_new (ds_virtual); func->parameters = parameters; locals = new_symtab (parameters, stab_local); locals->space = defspace_new (ds_virtual); func->locals = locals; current_target.build_scope (fsym); } function_t * make_function (symbol_t *sym, const char *nice_name, defspace_t *space, storage_class_t storage) { reloc_t *relocs = 0; if (sym->sy_type != sy_func) internal_error (0, "%s is not a function", sym->name); if (storage == sc_extern && sym->metafunc->func) return sym->metafunc->func; function_t *func = sym->metafunc->func; if (!func) { func = new_function (sym->name, nice_name); func->sym = sym; func->type = unalias_type (sym->type); sym->metafunc->func = func; } if (func->def && func->def->external && storage != sc_extern) { //FIXME this really is not the right way relocs = func->def->relocs; free_def (func->def); func->def = 0; } if (!func->def) { func->def = new_def (sym->name, sym->type, space, storage); reloc_attach_relocs (relocs, &func->def->relocs); } return func; } static void add_function (function_t *f) { *pr.func_tail = f; pr.func_tail = &f->next; f->function_num = pr.num_functions++; } function_t * begin_function (specifier_t spec, const char *nicename, symtab_t *parent, rua_ctx_t *ctx) { auto sym = spec.sym; if (sym->sy_type != sy_func) { error (0, "%s is not a function", sym->name); sym = new_symbol_type (sym->name, &type_func); sym = function_symbol ((specifier_t) { .sym = sym, .is_overload = true }, ctx); } function_t *func = sym->metafunc->func; if (func && func->def && func->def->initialized) { error (0, "%s redefined", sym->name); sym = new_symbol_type (sym->name, sym->type); sym = function_symbol ((specifier_t) { .sym = sym, .is_overload = true }, ctx); } if (spec.is_generic) { auto genfunc = sym->metafunc->genfunc; func = new_function (sym->name, nicename); sym->metafunc->func = func; sym->metafunc->genfunc = genfunc; build_generic_scope (sym, parent, genfunc, nullptr); return func; } defspace_t *space = spec.is_far ? pr.far_data : sym->table->space; func = make_function (sym, nicename, space, spec.storage); if (!func->def->external) { func->def->initialized = 1; func->def->constant = 1; func->def->nosave = 1; add_function (func); reloc_def_func (func, func->def); func->def->loc = pr.loc; } func->code = pr.code->size; func->s_file = pr.loc.file; if (options.code.debug) { pr_lineno_t *lineno = new_lineno (); func->line_info = lineno - pr.linenos; } check_function (sym); build_scope (sym, parent); return func; } static void build_function (symbol_t *fsym) { const type_t *func_type = fsym->metafunc->func->type; if (options.code.max_params >= 0 && func_type->func.num_params > options.code.max_params) { error (0, "too many params"); } } void build_code_function (specifier_t spec, const expr_t *state_expr, expr_t *statements, rua_ctx_t *ctx) { auto fsym = spec.sym; if (fsym->metafunc->meta_type == mf_generic) { auto genfunc = fsym->metafunc->genfunc; if (genfunc->expr) { error (statements, "%s already defined", fsym->name); return; } genfunc->expr = statements; genfunc->can_inline = can_inline (statements, fsym); return; } if (ctx) { statements = (expr_t *) expr_process (statements, ctx); } if (fsym->sy_type != sy_func) { // probably in error recovery return; } build_function (fsym); if (state_expr) { prepend_expr (statements, state_expr); } function_t *func = fsym->metafunc->func; current_target.build_code (func, statements); } void build_builtin_function (specifier_t spec, const char *ext_name, const expr_t *bi_val) { auto sym = spec.sym; int bi; if (sym->sy_type != sy_func) { error (bi_val, "%s is not a function", sym->name); return; } if (!is_int_val (bi_val) && !(type_default != &type_int && is_float_val (bi_val))) { error (bi_val, "invalid constant for = #"); return; } if (sym->metafunc->meta_type == mf_generic) { return; } function_t *func = sym->metafunc->func; if (func && func->def && func->def->initialized) { error (bi_val, "%s redefined", sym->name); return; } defspace_t *space = spec.is_far ? pr.far_data : sym->table->space; func = make_function (sym, nullptr, space, spec.storage); if (ext_name) { func->s_name = ReuseString (ext_name); } if (func->def->external) { return; } func->def->initialized = 1; func->def->constant = 1; func->def->nosave = 1; add_function (func); if (is_int_val (bi_val)) { bi = expr_int (bi_val); } else { bi = expr_float (bi_val); if (bi != expr_float (bi_val)) { error (bi_val, "invalid constant for = #"); } } if (bi < 0) { error (bi_val, "builtin functions must be positive or 0"); return; } func->builtin = bi; reloc_def_func (func, func->def); build_function (sym); check_function (sym); // for debug info build_scope (sym, current_symtab); func->parameters->space->size = 0; func->locals->space = func->parameters->space; } void build_intrinsic_function (specifier_t spec, const expr_t *intrinsic, rua_ctx_t *ctx) { auto sym = function_symbol (spec, ctx); if (sym->type->func.num_params < 0) { error (intrinsic, "intrinsic functions cannot be variadic"); return; } if (sym->metafunc->meta_type == mf_generic) { auto genfunc = sym->metafunc->genfunc; if (genfunc->expr) { error (intrinsic, "%s already defined", sym->name); return; } genfunc->expr = intrinsic; } else { if (sym->metafunc->expr || sym->metafunc->func) { error (intrinsic, "%s already defined", sym->name); return; } sym->metafunc->expr = intrinsic; } } void clear_functions (void) { if (metafuncs) { Hash_FlushTable (generic_functions); Hash_FlushTable (metafuncs); Hash_FlushTable (function_map); } else { setup_type_progs (); generic_functions = Hash_NewTable (1021, gen_func_get_key, 0, 0, 0); metafuncs = Hash_NewTable (1021, metafunc_get_full_name, 0, 0, 0); function_map = Hash_NewTable (1021, metafunc_get_name, 0, 0, 0); } } void add_ctor_expr (const expr_t *expr) { if (!pr.ctor_exprs) { pr.ctor_exprs = new_block_expr (nullptr); } append_expr (pr.ctor_exprs, expr); } void emit_ctor (rua_ctx_t *ctx) { if (!pr.ctor_exprs) { return; } auto spec = (specifier_t) { .type = &type_func, .sym = new_symbol (".ctor"), .storage = sc_static, .is_far = true, }; spec.sym = function_symbol (spec, ctx); current_func = begin_function (spec, nullptr, current_symtab, ctx); build_code_function (spec, 0, pr.ctor_exprs, nullptr); }