#version 450 layout (input_attachment_index = 0, set = 0, binding = 0) uniform subpassInput depth; layout (input_attachment_index = 1, set = 0, binding = 1) uniform subpassInput color; layout (input_attachment_index = 2, set = 0, binding = 2) uniform subpassInput emission; layout (input_attachment_index = 3, set = 0, binding = 3) uniform subpassInput normal; layout (input_attachment_index = 4, set = 0, binding = 4) uniform subpassInput position; struct LightData { vec4 color; // .a is intensity vec4 position; // .w = 0 -> directional, .w = 1 -> point/cone vec4 direction; // .w = -cos(cone_angle/2) (1 for omni/dir) vec4 attenuation; }; #define StyleMask 0x07f #define ModelMask 0x380 #define ShadowMask 0xc00 #define LM_LINEAR (0 << 7) // light - dist (or radius + dist if -ve) #define LM_INVERSE (1 << 7) // distFactor1 * light / dist #define LM_INVERSE2 (2 << 7) // distFactor2 * light / (dist * dist) #define LM_INFINITE (3 << 7) // light #define LM_AMBIENT (4 << 7) // light #define LM_INVERSE3 (5 << 7) // distFactor2 * light / (dist + distFactor2)**2 #define ST_NONE (0 << 10) // no shadows #define ST_PLANE (1 << 10) // single plane shadow map (small spotlight) #define ST_CASCADE (2 << 10) // cascaded shadow maps #define ST_CUBE (3 << 10) // cubemap (omni, large spotlight) layout (constant_id = 0) const int MaxLights = 768; layout (set = 2, binding = 0) uniform sampler2DArrayShadow shadowCascade[MaxLights]; layout (set = 2, binding = 0) uniform sampler2DShadow shadowPlane[MaxLights]; layout (set = 2, binding = 0) uniform samplerCubeShadow shadowCube[MaxLights]; layout (set = 1, binding = 0) uniform Lights { LightData lights[MaxLights]; int lightCount; //mat4 shadowMat[MaxLights]; //vec4 shadowCascale[MaxLights]; }; layout (location = 0) out vec4 frag_color; float spot_cone (LightData light, vec3 incoming) { vec3 dir = light.direction.xyz; float cone = light.direction.w; float spotdot = dot (incoming, dir); return 1 - smoothstep (cone, .995 * cone + 0.005, spotdot); } float diffuse (vec3 incoming, vec3 normal) { float lightdot = dot (incoming, normal); return clamp (lightdot, 0, 1); } float shadow_cascade (sampler2DArrayShadow map) { return 1; } float shadow_plane (sampler2DShadow map) { return 1; } float shadow_cube (samplerCubeShadow map) { return 1; } void main (void) { //float d = subpassLoad (depth).r; vec3 c = subpassLoad (color).rgb; vec3 e = subpassLoad (emission).rgb; vec3 n = subpassLoad (normal).rgb; vec3 p = subpassLoad (position).rgb; vec3 light = vec3 (0); //vec3 minLight = vec3 (0); for (int i = 0; i < lightCount; i++) { LightData l = lights[i]; vec3 dir = l.position.xyz - l.position.w * p; float r2 = dot (dir, dir); vec4 a = l.attenuation; if (l.position.w * a.w * a.w * r2 >= 1) { continue; } vec4 r = vec4 (r2, sqrt(r2), 1, 0); vec3 incoming = dir / r.y; float I = (1 - a.w * r.y) / dot (a, r); /*int shadow = lights[i].data & ShadowMask; if (shadow == ST_CASCADE) { I *= shadow_cascade (shadowCascade[i]); } else if (shadow == ST_PLANE) { I *= shadow_plane (shadowPlane[i]); } else if (shadow == ST_CUBE) { I *= shadow_cube (shadowCube[i]); }*/ float namb = dot(l.direction.xyz, l.direction.xyz); I *= spot_cone (l, incoming) * diffuse (incoming, n); I = mix (1, I, namb); light += I * l.color.w * l.color.xyz; } //light = max (light, minLight); frag_color = vec4 (c * light + e, 1); }