/* flow.c PVS PHS generator tool Copyright (C) 1996-1997 Id Software, Inc. Copyright (C) 2002 Colin Thompson This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #ifdef HAVE_UNISTD_H # include #endif #ifdef HAVE_IO_H # include #endif #ifdef HAVE_STRING_H # include #endif #ifdef HAVE_STRINGS_H # include #endif #include #include #include #include #include "QF/alloc.h" #include "QF/bspfile.h" #include "QF/cmd.h" #include "QF/mathlib.h" #include "QF/quakefs.h" #include "QF/sys.h" #include "vis.h" #include "options.h" static int CheckStack (cluster_t *cluster, threaddata_t *thread) { pstack_t *portal; for (portal = thread->pstack_head.next; portal; portal = portal->next) if (portal->cluster == cluster) { printf ("CheckStack: cluster recursion\n"); return 1; } return 0; } static sep_t * new_separator (threaddata_t *thread) { sep_t *sep; ALLOC (128, sep_t, thread->sep, sep); return sep; } static void delete_separator (threaddata_t *thread, sep_t *sep) { FREE (thread->sep, sep); } static void free_separators (threaddata_t *thread, sep_t *sep_list) { while (sep_list) { sep_t *sep = sep_list; sep_list = sep->next; delete_separator (thread, sep); } } /* Find the planes separating source from pass. The planes form a double pyramid with source as the base (ie, source's edges will all be in one plane each) and the vertex of the pyramid is between source and pass. Edges from pass may or may not be in a plane, but each vertex will be in at least one plane. If flip is false, the planes will be such that the space enclosed by the planes and on the pass side of the vertex are on the front sides of the planes. If flip is true, then the space on the source side of the vertex and enclosed by the planes is on the front side of the planes. */ static sep_t * FindSeparators (threaddata_t *thread, winding_t *source, winding_t *pass, int flip) { float d; int i, j, k, l; int counts[3]; qboolean fliptest; plane_t plane; vec3_t v1, v2; vec_t length; sep_t *separators = 0; for (i = 0; i < source->numpoints; i++) { l = (i + 1) % source->numpoints; VectorSubtract (source->points[l], source->points[i], v1); // find a vertex of pass that makes a plane that puts all of the // vertexes of pass on the front side and all of the vertexes of // source on the back side for (j = 0; j < pass->numpoints; j++) { VectorSubtract (pass->points[j], source->points[i], v2); plane.normal[0] = v1[1] * v2[2] - v1[2] * v2[1]; plane.normal[1] = v1[2] * v2[0] - v1[0] * v2[2]; plane.normal[2] = v1[0] * v2[1] - v1[1] * v2[0]; length = DotProduct (plane.normal, plane.normal); // if points don't make a valid plane, skip it if (length < ON_EPSILON) continue; length = 1 / sqrt (length); VectorScale (plane.normal, length, plane.normal); plane.dist = DotProduct (pass->points[j], plane.normal); // find out which side of the generated seperating plane has the // source portal fliptest = false; for (k = 0; k < source->numpoints; k++) { if (k == i || k == l) continue; d = DotProduct (source->points[k], plane.normal) - plane.dist; if (d < -ON_EPSILON) { // source is on the negative side, so we want all // pass and target on the positive side fliptest = false; break; } else if (d > ON_EPSILON) { // source is on the positive side, so we want all // pass and target on the negative side fliptest = true; break; } } if (k == source->numpoints) continue; // planar with source portal // flip the normal if the source portal is backwards if (fliptest) { VectorNegate (plane.normal, plane.normal); plane.dist = -plane.dist; } // if all of the pass portal points are now on the positive side, // this is the seperating plane counts[0] = counts[1] = counts[2] = 0; for (k = 0; k < pass->numpoints; k++) { if (k == j) continue; d = DotProduct (pass->points[k], plane.normal) - plane.dist; if (d < -ON_EPSILON) break; else if (d > ON_EPSILON) counts[0]++; else counts[2]++; } if (k != pass->numpoints) continue; // points on negative side, not a seperating plane if (!counts[0]) { continue; // planar with seperating plane } // flip the normal if we want the back side if (flip) { VectorNegate (plane.normal, plane.normal); plane.dist = -plane.dist; } sep_t *sep = new_separator (thread); sep->plane = plane; sep->next = separators; separators = sep; break; } } return separators; } static winding_t * ClipToSeparators (const sep_t *separators, winding_t *target) { const sep_t *sep; for (sep = separators; target && sep; sep = sep->next) { target = ClipWinding (target, &sep->plane, false); } return target; } static inline set_t * select_test_set (portal_t *portal, threaddata_t *thread) { set_t *test; if (portal->status == stat_done) { thread->stats.vistest++; test = portal->visbits; } else { thread->stats.mighttest++; test = portal->mightsee; } return test; } static inline int mightsee_more (set_t *might, const set_t *prev_might, const set_t *test, const set_t *vis) { set_assign (might, prev_might); set_intersection (might, test); return !set_is_subset (vis, might); } /* RecursiveClusterFlow Flood fill through the clusters If src_portal is NULL, this is the originating cluster */ static void RecursiveClusterFlow (int clusternum, threaddata_t *thread, pstack_t *prevstack) { int i; set_t *might; const set_t *test, *vis; cluster_t *cluster; pstack_t stack; portal_t *portal; plane_t backplane; winding_t *source, *target; thread->stats.chains++; cluster = &clusters[clusternum]; if (CheckStack(cluster, thread)) return; // mark the cluster as visible if (!set_is_member (thread->clustervis, clusternum)) { set_add (thread->clustervis, clusternum); thread->base->numcansee++; } prevstack->next = &stack; stack.next = NULL; stack.cluster = cluster; stack.portal = NULL; LOCK; stack.mightsee = set_new_size (portalclusters); UNLOCK; stack.separators[0] = 0; stack.separators[1] = 0; might = stack.mightsee; vis = thread->clustervis; // check all portals for flowing into other clusters for (i = 0; i < cluster->numportals; i++) { portal = cluster->portals[i]; if (!set_is_member (prevstack->mightsee, portal->cluster)) continue; // can't possibly see it // if the portal can't see anything we haven't already seen, skip it test = select_test_set (portal, thread); if (!mightsee_more (might, prevstack->mightsee, test, vis)) { // can't see anything new continue; } // get plane of portal, point normal into the neighbor cluster stack.portalplane = portal->plane; VectorNegate (portal->plane.normal, backplane.normal); backplane.dist = -portal->plane.dist; if (_VectorCompare (prevstack->portalplane.normal, backplane.normal)) continue; // can't go out a coplanar face thread->stats.portalcheck++; stack.portal = portal; stack.next = NULL; target = ClipWinding (portal->winding, &thread->pstack_head.portalplane, false); if (!target) continue; if (!prevstack->pass) { // the second cluster can be blocked only if coplanar stack.source = prevstack->source; stack.pass = target; RecursiveClusterFlow (portal->cluster, thread, &stack); FreeWinding (target); continue; } target = ClipWinding (target, &prevstack->portalplane, false); if (!target) continue; source = CopyWinding (prevstack->source); source = ClipWinding (source, &backplane, false); if (!source) { FreeWinding (target); continue; } thread->stats.portaltest++; thread->stats.targettested++; if (options.level > 0) { // clip target to the image that would be formed by a laser // pointing from the edges of source passing though the corners of // pass winding_t *old = target; if (!stack.separators[0]) stack.separators[0] = FindSeparators (thread, source, prevstack->pass, 0); target = ClipToSeparators (stack.separators[0], target); if (!target) { thread->stats.targetclipped++; FreeWinding (source); continue; } if (target != old) thread->stats.targettrimmed++; } if (options.level > 1) { // now pass the laser along the edges of pass from the corners of // source. the resulting image will have a smaller aree. The // resulting shape will be the light image produced by a backlit // source shining past pass. eg, if source and pass are equilateral // triangles rotated 60 (or 180) degrees relative to each other, // parallel and in line, target will wind up being a hexagon. winding_t *old = target; if (!stack.separators[1]) stack.separators[1] = FindSeparators (thread, prevstack->pass, source, 1); target = ClipToSeparators (stack.separators[1], target); if (!target) { thread->stats.targetclipped++; FreeWinding (source); continue; } if (target != old) thread->stats.targettrimmed++; } thread->stats.sourcetested++; // now do the same as for levels 1 and 2, but trimming source using // the trimmed target if (options.level > 2) { winding_t *old = source; sep_t *sep; sep = FindSeparators (thread, target, prevstack->pass, 0); source = ClipToSeparators (sep, source); free_separators (thread, sep); if (!source) { thread->stats.sourceclipped++; FreeWinding (target); continue; } if (source != old) thread->stats.sourcetrimmed++; } if (options.level > 3) { winding_t *old = source; sep_t *sep; sep = FindSeparators (thread, prevstack->pass, target, 1); source = ClipToSeparators (sep, source); free_separators (thread, sep); if (!source) { thread->stats.sourceclipped++; FreeWinding (target); continue; } if (source != old) thread->stats.sourcetrimmed++; } stack.source = source; stack.pass = target; thread->stats.portalpass++; // flow through it for real RecursiveClusterFlow (portal->cluster, thread, &stack); FreeWinding (source); FreeWinding (target); } free_separators (thread, stack.separators[1]); free_separators (thread, stack.separators[0]); LOCK; set_delete (stack.mightsee); UNLOCK; } void PortalFlow (threaddata_t *data, portal_t *portal) { LOCK; if (portal->status != stat_selected) Sys_Error ("PortalFlow: reflowed"); portal->status = stat_working; portal->visbits = set_new_size (portalclusters); UNLOCK; data->clustervis = portal->visbits; data->base = portal; memset (&data->pstack_head, 0, sizeof (data->pstack_head)); data->pstack_head.portal = portal; data->pstack_head.source = portal->winding; data->pstack_head.portalplane = portal->plane; data->pstack_head.mightsee = portal->mightsee; RecursiveClusterFlow (portal->cluster, data, &data->pstack_head); }