/* vulkan_bsp.c Vulkan bsp Copyright (C) 2012 Bill Currie Copyright (C) 2021 Bill Currie Author: Bill Currie Date: 2012/1/7 Date: 2021/1/18 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifdef HAVE_STRING_H # include #endif #ifdef HAVE_STRINGS_H # include #endif #include #include "qfalloca.h" #include "QF/cvar.h" #include "QF/darray.h" #include "QF/image.h" #include "QF/render.h" #include "QF/sys.h" #include "QF/va.h" #include "QF/scene/entity.h" #include "QF/Vulkan/qf_bsp.h" #include "QF/Vulkan/qf_lightmap.h" #include "QF/Vulkan/qf_matrices.h" #include "QF/Vulkan/qf_texture.h" #include "QF/Vulkan/buffer.h" #include "QF/Vulkan/barrier.h" #include "QF/Vulkan/command.h" #include "QF/Vulkan/debug.h" #include "QF/Vulkan/descriptor.h" #include "QF/Vulkan/device.h" #include "QF/Vulkan/image.h" #include "QF/Vulkan/instance.h" #include "QF/Vulkan/renderpass.h" #include "QF/Vulkan/scrap.h" #include "QF/Vulkan/staging.h" #include "r_internal.h" #include "vid_vulkan.h" typedef struct bsp_push_constants_s { mat4f_t Model; quat_t fog; float time; } bsp_push_constants_t; static const char * __attribute__((used)) bsp_pass_names[] = { "depth", "g-buffer", "sky", "turb", }; static QFV_Subpass subpass_map[] = { QFV_passDepth, // QFV_bspDepth QFV_passGBuffer, // QFV_bspGBuffer QFV_passTranslucent, // QFV_bspSky QFV_passTranslucent, // QFV_bspTurb }; static float identity[] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, }; #define ALLOC_CHUNK 64 typedef struct bsppoly_s { uint32_t count; uint32_t indices[1]; } bsppoly_t; #define CHAIN_SURF_F2B(surf,chain) \ ({ \ instsurf_t *inst = (surf)->instsurf; \ if (__builtin_expect(!inst, 1)) \ inst = get_instsurf (bctx); \ inst->surface = (surf); \ *(chain##_tail) = inst; \ (chain##_tail) = &inst->tex_chain; \ *(chain##_tail) = 0; \ inst; \ }) #define CHAIN_SURF_B2F(surf,chain) \ ({ \ instsurf_t *inst = (surf)->instsurf; \ if (__builtin_expect(!inst, 1)) \ inst = get_instsurf (bctx); \ inst->surface = (surf); \ inst->tex_chain = (chain); \ (chain) = inst; \ inst; \ }) #define GET_RELEASE(type,name) \ static inline type * \ get_##name (bspctx_t *bctx) \ { \ type *ele; \ if (!bctx->free_##name##s) { \ int i; \ bctx->free_##name##s = calloc (ALLOC_CHUNK, sizeof (type)); \ for (i = 0; i < ALLOC_CHUNK - 1; i++) \ bctx->free_##name##s[i]._next = &bctx->free_##name##s[i + 1]; \ } \ ele = bctx->free_##name##s; \ bctx->free_##name##s = ele->_next; \ ele->_next = 0; \ *bctx->name##s_tail = ele; \ bctx->name##s_tail = &ele->_next; \ return ele; \ } \ static inline void \ release_##name##s (bspctx_t *bctx) \ { \ if (bctx->name##s) { \ *bctx->name##s_tail = bctx->free_##name##s; \ bctx->free_##name##s = bctx->name##s; \ bctx->name##s = 0; \ bctx->name##s_tail = &bctx->name##s; \ } \ } GET_RELEASE (elechain_t, elechain) GET_RELEASE (elements_t, elements) GET_RELEASE (instsurf_t, static_instsurf) GET_RELEASE (instsurf_t, instsurf) static void add_texture (texture_t *tx, vulkan_ctx_t *ctx) { bspctx_t *bctx = ctx->bsp_context; vulktex_t *tex = tx->render; if (tex->tex) { DARRAY_APPEND (&bctx->texture_chains, tex); tex->descriptor = Vulkan_CreateTextureDescriptor (ctx, tex->tex, bctx->sampler); } tex->tex_chain = 0; tex->tex_chain_tail = &tex->tex_chain; tex->elechain = 0; tex->elechain_tail = &tex->elechain; } static void init_surface_chains (mod_brush_t *brush, vulkan_ctx_t *ctx) { bspctx_t *bctx = ctx->bsp_context; release_static_instsurfs (bctx); release_instsurfs (bctx); for (unsigned i = 0; i < brush->nummodelsurfaces; i++) { brush->surfaces[i].instsurf = get_static_instsurf (bctx); brush->surfaces[i].instsurf->surface = &brush->surfaces[i]; } } static inline void clear_tex_chain (vulktex_t *tex) { tex->tex_chain = 0; tex->tex_chain_tail = &tex->tex_chain; tex->elechain = 0; tex->elechain_tail = &tex->elechain; } static void clear_texture_chains (bspctx_t *bctx) { for (size_t i = 0; i < bctx->texture_chains.size; i++) { if (!bctx->texture_chains.a[i]) continue; clear_tex_chain (bctx->texture_chains.a[i]); } clear_tex_chain (r_notexture_mip->render); release_elechains (bctx); release_elementss (bctx); release_instsurfs (bctx); } void Vulkan_ClearElements (vulkan_ctx_t *ctx) { bspctx_t *bctx = ctx->bsp_context; release_elechains (bctx); release_elementss (bctx); } static inline void chain_surface (msurface_t *surf, vulkan_ctx_t *ctx) { bspctx_t *bctx = ctx->bsp_context; instsurf_t *is; if (surf->flags & SURF_DRAWSKY) { is = CHAIN_SURF_F2B (surf, bctx->sky_chain); } else if ((surf->flags & SURF_DRAWTURB) || (bctx->color && bctx->color[3] < 1.0)) { is = CHAIN_SURF_B2F (surf, bctx->waterchain); } else { texture_t *tx; vulktex_t *tex; if (!surf->texinfo->texture->anim_total) tx = surf->texinfo->texture; else tx = R_TextureAnimation (bctx->entity, surf); tex = tx->render; is = CHAIN_SURF_F2B (surf, tex->tex_chain); } is->transform = bctx->transform; is->color = bctx->color; } static void register_textures (mod_brush_t *brush, vulkan_ctx_t *ctx) { texture_t *tex; for (unsigned i = 0; i < brush->numtextures; i++) { tex = brush->textures[i]; if (!tex) continue; add_texture (tex, ctx); } } static void clear_textures (vulkan_ctx_t *ctx) { bspctx_t *bctx = ctx->bsp_context; bctx->texture_chains.size = 0; } void Vulkan_RegisterTextures (model_t **models, int num_models, vulkan_ctx_t *ctx) { int i; model_t *m; mod_brush_t *brush = &r_refdef.worldmodel->brush; clear_textures (ctx); init_surface_chains (brush, ctx); add_texture (r_notexture_mip, ctx); register_textures (brush, ctx); for (i = 0; i < num_models; i++) { m = models[i]; if (!m) continue; // sub-models are done as part of the main model if (*m->path == '*') continue; // world has already been done, not interested in non-brush models if (m == r_refdef.worldmodel || m->type != mod_brush) continue; brush = &m->brush; brush->numsubmodels = 1; // no support for submodels in non-world model register_textures (brush, ctx); } } static elechain_t * add_elechain (vulktex_t *tex, bspctx_t *bctx) { elechain_t *ec; ec = get_elechain (bctx); ec->elements = get_elements (bctx); ec->transform = 0; ec->color = 0; *tex->elechain_tail = ec; tex->elechain_tail = &ec->next; return ec; } static void count_verts_inds (model_t **models, msurface_t *surf, uint32_t *verts, uint32_t *inds) { *verts = surf->numedges; *inds = surf->numedges + 1; } static bsppoly_t * build_surf_displist (model_t **models, msurface_t *surf, int base, bspvert_t **vert_list) { int numverts; int numindices; int i; vec_t *vec; mvertex_t *vertices; medge_t *edges; int *surfedges; int index; bspvert_t *verts; bsppoly_t *poly; uint32_t *ind; float s, t; mod_brush_t *brush; if (surf->model_index < 0) { // instance model brush = &models[~surf->model_index]->brush; } else { // main or sub model brush = &r_refdef.worldmodel->brush; } vertices = brush->vertexes; edges = brush->edges; surfedges = brush->surfedges; // create a triangle fan numverts = surf->numedges; numindices = numverts + 1; verts = *vert_list; // surf->polys is set to the next slot before the call poly = (bsppoly_t *) surf->polys; poly->count = numindices; for (i = 0, ind = poly->indices; i < numverts; i++) { *ind++ = base + i; } *ind++ = -1; // end of primitive surf->polys = (glpoly_t *) poly; mtexinfo_t *texinfo = surf->texinfo; for (i = 0; i < numverts; i++) { index = surfedges[surf->firstedge + i]; if (index > 0) { vec = vertices[edges[index].v[0]].position; } else { vec = vertices[edges[-index].v[1]].position; } s = DotProduct (vec, texinfo->vecs[0]) + texinfo->vecs[0][3]; t = DotProduct (vec, texinfo->vecs[1]) + texinfo->vecs[1][3]; VectorCopy (vec, verts[i].vertex); verts[i].vertex[3] = 1; verts[i].tlst[0] = s / texinfo->texture->width; verts[i].tlst[1] = t / texinfo->texture->height; //lightmap texture coordinates if (!surf->lightpic) { // sky and water textures don't have lightmaps verts[i].tlst[2] = 0; verts[i].tlst[3] = 0; continue; } s = DotProduct (vec, texinfo->vecs[0]) + texinfo->vecs[0][3]; t = DotProduct (vec, texinfo->vecs[1]) + texinfo->vecs[1][3]; s -= surf->texturemins[0]; t -= surf->texturemins[1]; s += surf->lightpic->rect->x * 16 + 8; t += surf->lightpic->rect->y * 16 + 8; s /= 16; t /= 16; verts[i].tlst[2] = s * surf->lightpic->size; verts[i].tlst[3] = t * surf->lightpic->size; } *vert_list += numverts; return (bsppoly_t *) &poly->indices[numindices]; } void Vulkan_BuildDisplayLists (model_t **models, int num_models, vulkan_ctx_t *ctx) { qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; bspctx_t *bctx = ctx->bsp_context; int vertex_index_base; model_t *m; dmodel_t *dm; msurface_t *surf; qfv_stagebuf_t *stage; bspvert_t *vertices; bsppoly_t *poly; mod_brush_t *brush; // run through all surfaces, chaining them to their textures, thus // effectively sorting the surfaces by texture (without worrying about // surface order on the same texture chain). for (int i = 0; i < num_models; i++) { m = models[i]; if (!m) continue; // sub-models are done as part of the main model // and non-bsp models don't have surfaces. if (*m->path == '*' || m->type != mod_brush) continue; brush = &m->brush; dm = brush->submodels; for (unsigned j = 0; j < brush->numsurfaces; j++) { vulktex_t *tex; if (j == dm->firstface + dm->numfaces) { // move on to the next sub-model dm++; if (dm == brush->submodels + brush->numsubmodels) { // limit the surfaces // probably never hit Sys_Printf ("R_BuildDisplayLists: too many surfaces\n"); brush->numsurfaces = j; break; } } surf = brush->surfaces + j; surf->model_index = dm - brush->submodels; if (!surf->model_index && m != r_refdef.worldmodel) { surf->model_index = -1 - i; // instanced model } tex = surf->texinfo->texture->render; // append surf to the texture chain CHAIN_SURF_F2B (surf, tex->tex_chain); } } // All vertices from all brush models go into one giant vbo. uint32_t vertex_count = 0; uint32_t index_count = 0; uint32_t poly_count = 0; for (size_t i = 0; i < bctx->texture_chains.size; i++) { vulktex_t *tex = bctx->texture_chains.a[i]; for (instsurf_t *is = tex->tex_chain; is; is = is->tex_chain) { uint32_t verts, inds; count_verts_inds (models, is->surface, &verts, &inds); vertex_count += verts; index_count += inds; poly_count++; } } size_t atom = device->physDev->properties.limits.nonCoherentAtomSize; size_t atom_mask = atom - 1; size_t frames = bctx->frames.size; size_t index_buffer_size = index_count * frames * sizeof (uint32_t); size_t vertex_buffer_size = vertex_count * sizeof (bspvert_t); index_buffer_size = (index_buffer_size + atom_mask) & ~atom_mask; stage = QFV_CreateStagingBuffer (device, "bsp", vertex_buffer_size, ctx->cmdpool); qfv_packet_t *packet = QFV_PacketAcquire (stage); vertices = QFV_PacketExtend (packet, vertex_buffer_size); vertex_index_base = 0; // holds all the polygon definitions: vertex indices + poly_count "end of // primitive" markers. bctx->polys = malloc ((index_count + poly_count) * sizeof (uint32_t)); // All usable surfaces have been chained to the (base) texture they use. // Run through the textures, using their chains to build display maps. // For animated textures, if a surface is on one texture of the group, it // will be on all. poly = bctx->polys; int count = 0; for (size_t i = 0; i < bctx->texture_chains.size; i++) { vulktex_t *tex; instsurf_t *is; tex = bctx->texture_chains.a[i]; for (is = tex->tex_chain; is; is = is->tex_chain) { msurface_t *surf = is->surface; surf->polys = (glpoly_t *) poly; poly = build_surf_displist (models, surf, vertex_index_base, &vertices); vertex_index_base += surf->numedges; count++; } } clear_texture_chains (bctx); Sys_MaskPrintf (SYS_vulkan, "R_BuildDisplayLists: verts:%u, inds:%u, " "polys:%u (%d) %zd\n", vertex_count, index_count, poly_count, count, ((size_t) poly - (size_t) bctx->polys) / sizeof(uint32_t)); if (index_buffer_size > bctx->index_buffer_size) { if (bctx->index_buffer) { dfunc->vkUnmapMemory (device->dev, bctx->index_memory); dfunc->vkDestroyBuffer (device->dev, bctx->index_buffer, 0); dfunc->vkFreeMemory (device->dev, bctx->index_memory, 0); } bctx->index_buffer = QFV_CreateBuffer (device, index_buffer_size, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT); QFV_duSetObjectName (device, VK_OBJECT_TYPE_BUFFER, bctx->index_buffer, "buffer:bsp:index"); bctx->index_memory = QFV_AllocBufferMemory (device, bctx->index_buffer, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, index_buffer_size, 0); QFV_duSetObjectName (device, VK_OBJECT_TYPE_DEVICE_MEMORY, bctx->index_memory, "memory:bsp:index"); QFV_BindBufferMemory (device, bctx->index_buffer, bctx->index_memory, 0); bctx->index_buffer_size = index_buffer_size; void *data; dfunc->vkMapMemory (device->dev, bctx->index_memory, 0, index_buffer_size, 0, &data); uint32_t *index_data = data; for (size_t i = 0; i < frames; i++) { uint32_t offset = index_count * i; bctx->frames.a[i].index_data = index_data + offset; bctx->frames.a[i].index_offset = offset * sizeof (uint32_t); bctx->frames.a[i].index_count = 0; } } if (vertex_buffer_size > bctx->vertex_buffer_size) { if (bctx->vertex_buffer) { dfunc->vkDestroyBuffer (device->dev, bctx->vertex_buffer, 0); dfunc->vkFreeMemory (device->dev, bctx->vertex_memory, 0); } bctx->vertex_buffer = QFV_CreateBuffer (device, vertex_buffer_size, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT); QFV_duSetObjectName (device, VK_OBJECT_TYPE_BUFFER, bctx->vertex_buffer, "buffer:bsp:vertex"); bctx->vertex_memory = QFV_AllocBufferMemory (device, bctx->vertex_buffer, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vertex_buffer_size, 0); QFV_duSetObjectName (device, VK_OBJECT_TYPE_DEVICE_MEMORY, bctx->vertex_memory, "memory:bsp:vertex"); QFV_BindBufferMemory (device, bctx->vertex_buffer, bctx->vertex_memory, 0); bctx->vertex_buffer_size = vertex_buffer_size; } qfv_bufferbarrier_t bb = bufferBarriers[qfv_BB_Unknown_to_TransferWrite]; bb.barrier.buffer = bctx->vertex_buffer; bb.barrier.size = vertex_buffer_size; dfunc->vkCmdPipelineBarrier (packet->cmd, bb.srcStages, bb.dstStages, 0, 0, 0, 1, &bb.barrier, 0, 0); VkBufferCopy copy_region = { packet->offset, 0, vertex_buffer_size }; dfunc->vkCmdCopyBuffer (packet->cmd, stage->buffer, bctx->vertex_buffer, 1, ©_region); bb = bufferBarriers[qfv_BB_TransferWrite_to_VertexAttrRead]; bb.barrier.buffer = bctx->vertex_buffer; bb.barrier.size = vertex_buffer_size; dfunc->vkCmdPipelineBarrier (packet->cmd, bb.srcStages, bb.dstStages, 0, 0, 0, 1, &bb.barrier, 0, 0); QFV_PacketSubmit (packet); QFV_DestroyStagingBuffer (stage); } static void R_DrawBrushModel (entity_t *e, vulkan_ctx_t *ctx) { float dot, radius; model_t *model; plane_t *plane; msurface_t *surf; qboolean rotated; vec3_t mins, maxs; vec4f_t org; mod_brush_t *brush; bspctx_t *bctx = ctx->bsp_context; bctx->entity = e; bctx->transform = e->renderer.full_transform; bctx->color = e->renderer.colormod; model = e->renderer.model; brush = &model->brush; mat4f_t mat; Transform_GetWorldMatrix (e->transform, mat); memcpy (e->renderer.full_transform, mat, sizeof (mat));//FIXME if (mat[0][0] != 1 || mat[1][1] != 1 || mat[2][2] != 1) { rotated = true; radius = model->radius; if (R_CullSphere (r_refdef.frustum, (vec_t*)&mat[3], radius)) { //FIXME return; } } else { rotated = false; VectorAdd (mat[3], model->mins, mins); VectorAdd (mat[3], model->maxs, maxs); if (R_CullBox (r_refdef.frustum, mins, maxs)) return; } org = r_refdef.frame.position - mat[3]; if (rotated) { vec4f_t temp = org; org[0] = DotProduct (temp, mat[0]); org[1] = DotProduct (temp, mat[1]); org[2] = DotProduct (temp, mat[2]); } surf = &brush->surfaces[brush->firstmodelsurface]; for (unsigned i = 0; i < brush->nummodelsurfaces; i++, surf++) { // find the node side on which we are plane = surf->plane; dot = PlaneDiff (org, plane); // enqueue the polygon if (((surf->flags & SURF_PLANEBACK) && (dot < -BACKFACE_EPSILON)) || (!(surf->flags & SURF_PLANEBACK) && (dot > BACKFACE_EPSILON))) { chain_surface (surf, ctx); } } } static inline void visit_leaf (mleaf_t *leaf) { // deal with model fragments in this leaf if (leaf->efrags) R_StoreEfrags (leaf->efrags); } static inline int get_side (mnode_t *node) { // find the node side on which we are plane_t *plane = node->plane; vec4f_t org = r_refdef.frame.position; if (plane->type < 3) return (org[plane->type] - plane->dist) < 0; return (DotProduct (org, plane->normal) - plane->dist) < 0; } static inline void visit_node (mod_brush_t *brush, mnode_t *node, int side, vulkan_ctx_t *ctx) { int c; msurface_t *surf; // sneaky hack for side = side ? SURF_PLANEBACK : 0; side = (~side + 1) & SURF_PLANEBACK; // draw stuff if ((c = node->numsurfaces)) { surf = brush->surfaces + node->firstsurface; for (; c; c--, surf++) { if (surf->visframe != r_visframecount) continue; // side is either 0 or SURF_PLANEBACK if (side ^ (surf->flags & SURF_PLANEBACK)) continue; // wrong side chain_surface (surf, ctx); } } } static inline int test_node (mnode_t *node) { if (node->contents < 0) return 0; if (node->visframe != r_visframecount) return 0; if (R_CullBox (r_refdef.frustum, node->minmaxs, node->minmaxs + 3)) return 0; return 1; } static void R_VisitWorldNodes (mod_brush_t *brush, vulkan_ctx_t *ctx) { typedef struct { mnode_t *node; int side; } rstack_t; rstack_t *node_ptr; rstack_t *node_stack; mnode_t *node; mnode_t *front; int side; node = brush->nodes; // +2 for paranoia node_stack = alloca ((brush->depth + 2) * sizeof (rstack_t)); node_ptr = node_stack; while (1) { while (test_node (node)) { side = get_side (node); front = node->children[side]; if (test_node (front)) { node_ptr->node = node; node_ptr->side = side; node_ptr++; node = front; continue; } // front is either not a node (ie, is a leaf) or is not visible // if node is visible, then at least one of its child nodes // must also be visible, and a leaf child in front of the node // will be visible, so no need for vis checks on a leaf if (front->contents < 0 && front->contents != CONTENTS_SOLID) visit_leaf ((mleaf_t *) front); visit_node (brush, node, side, ctx); node = node->children[!side]; } if (node->contents < 0 && node->contents != CONTENTS_SOLID) visit_leaf ((mleaf_t *) node); if (node_ptr != node_stack) { node_ptr--; node = node_ptr->node; side = node_ptr->side; visit_node (brush, node, side, ctx); node = node->children[!side]; continue; } break; } if (node->contents < 0 && node->contents != CONTENTS_SOLID) visit_leaf ((mleaf_t *) node); } static void push_transform (vec_t *transform, VkPipelineLayout layout, qfv_device_t *device, VkCommandBuffer cmd) { qfv_push_constants_t push_constants[] = { { VK_SHADER_STAGE_VERTEX_BIT, field_offset (bsp_push_constants_t, Model), sizeof (mat4f_t), transform }, }; QFV_PushConstants (device, cmd, layout, 1, push_constants); } static void bind_texture (vulktex_t *tex, uint32_t setnum, VkPipelineLayout layout, qfv_devfuncs_t *dfunc, VkCommandBuffer cmd) { VkDescriptorSet sets[] = { tex->descriptor, }; dfunc->vkCmdBindDescriptorSets (cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, layout, setnum, 1, sets, 0, 0); } static void push_fragconst (bsp_push_constants_t *constants, VkPipelineLayout layout, qfv_device_t *device, VkCommandBuffer cmd) { qfv_push_constants_t push_constants[] = { //{ VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof (mat), mat }, { VK_SHADER_STAGE_FRAGMENT_BIT, field_offset (bsp_push_constants_t, fog), sizeof (constants->fog), &constants->fog }, { VK_SHADER_STAGE_FRAGMENT_BIT, field_offset (bsp_push_constants_t, time), sizeof (constants->time), &constants->time }, }; QFV_PushConstants (device, cmd, layout, 2, push_constants); } static void draw_elechain (elechain_t *ec, VkPipelineLayout layout, qfv_device_t *device, VkCommandBuffer cmd) { qfv_devfuncs_t *dfunc = device->funcs; elements_t *el; if (ec->transform) { push_transform (ec->transform, layout, device, cmd); } else { //FIXME should cache current transform push_transform (identity, layout, device, cmd); } for (el = ec->elements; el; el = el->next) { if (!el->index_count) continue; dfunc->vkCmdDrawIndexed (cmd, el->index_count, 1, el->first_index, 0, 0); } } static void reset_elechain (elechain_t *ec) { elements_t *el; for (el = ec->elements; el; el = el->next) { el->first_index = 0; el->index_count = 0; } } static void bsp_begin_subpass (QFV_BspSubpass subpass, VkPipeline pipeline, VkPipelineLayout layout, qfv_renderframe_t *rFrame) { vulkan_ctx_t *ctx = rFrame->vulkan_ctx; qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; bspctx_t *bctx = ctx->bsp_context; __auto_type cframe = &ctx->frames.a[ctx->curFrame]; bspframe_t *bframe = &bctx->frames.a[ctx->curFrame]; VkCommandBuffer cmd = bframe->cmdSet.a[subpass]; dfunc->vkResetCommandBuffer (cmd, 0); VkCommandBufferInheritanceInfo inherit = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO, 0, rFrame->renderpass->renderpass, subpass_map[subpass], cframe->framebuffer, 0, 0, 0, }; VkCommandBufferBeginInfo beginInfo = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, 0, VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT | VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, &inherit, }; dfunc->vkBeginCommandBuffer (cmd, &beginInfo); QFV_duCmdBeginLabel (device, cmd, va (ctx->va_ctx, "bsp:%s", bsp_pass_names[subpass]), {0, 0.5, 0.6, 1}); dfunc->vkCmdBindPipeline (cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); dfunc->vkCmdSetViewport (cmd, 0, 1, &rFrame->renderpass->viewport); dfunc->vkCmdSetScissor (cmd, 0, 1, &rFrame->renderpass->scissor); VkDeviceSize offsets[] = { 0 }; dfunc->vkCmdBindVertexBuffers (cmd, 0, 1, &bctx->vertex_buffer, offsets); dfunc->vkCmdBindIndexBuffer (cmd, bctx->index_buffer, bframe->index_offset, VK_INDEX_TYPE_UINT32); VkDescriptorSet sets[] = { Vulkan_Matrix_Descriptors (ctx, ctx->curFrame), }; dfunc->vkCmdBindDescriptorSets (cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, layout, 0, 1, sets, 0, 0); //XXX glsl_Fog_GetColor (fog); //XXX fog[3] = glsl_Fog_GetDensity () / 64.0; } static void bsp_end_subpass (VkCommandBuffer cmd, vulkan_ctx_t *ctx) { qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; QFV_duCmdEndLabel (device, cmd); dfunc->vkEndCommandBuffer (cmd); } static void bsp_begin (qfv_renderframe_t *rFrame) { vulkan_ctx_t *ctx = rFrame->vulkan_ctx; bspctx_t *bctx = ctx->bsp_context; //XXX quat_t fog; bctx->default_color[3] = 1; QuatCopy (bctx->default_color, bctx->last_color); bspframe_t *bframe = &bctx->frames.a[ctx->curFrame]; DARRAY_APPEND (&rFrame->subpassCmdSets[QFV_passDepth], bframe->cmdSet.a[QFV_bspDepth]); DARRAY_APPEND (&rFrame->subpassCmdSets[QFV_passGBuffer], bframe->cmdSet.a[QFV_bspGBuffer]); qfvPushDebug (ctx, "bsp_begin_subpass"); bsp_begin_subpass (QFV_bspDepth, bctx->depth, bctx->layout, rFrame); bsp_begin_subpass (QFV_bspGBuffer, bctx->gbuf, bctx->layout, rFrame); qfvPopDebug (ctx); } static void bsp_end (vulkan_ctx_t *ctx) { bspctx_t *bctx = ctx->bsp_context; bspframe_t *bframe = &bctx->frames.a[ctx->curFrame]; bsp_end_subpass (bframe->cmdSet.a[QFV_bspDepth], ctx); bsp_end_subpass (bframe->cmdSet.a[QFV_bspGBuffer], ctx); } static void turb_begin (qfv_renderframe_t *rFrame) { vulkan_ctx_t *ctx = rFrame->vulkan_ctx; bspctx_t *bctx = ctx->bsp_context; bctx->default_color[3] = bound (0, r_wateralpha->value, 1); QuatCopy (bctx->default_color, bctx->last_color); bspframe_t *bframe = &bctx->frames.a[ctx->curFrame]; DARRAY_APPEND (&rFrame->subpassCmdSets[QFV_passTranslucent], bframe->cmdSet.a[QFV_bspTurb]); qfvPushDebug (ctx, "bsp_begin_subpass"); bsp_begin_subpass (QFV_bspTurb, bctx->turb, bctx->layout, rFrame); qfvPopDebug (ctx); } static void turb_end (vulkan_ctx_t *ctx) { bspctx_t *bctx = ctx->bsp_context; bspframe_t *bframe = &bctx->frames.a[ctx->curFrame]; bsp_end_subpass (bframe->cmdSet.a[QFV_bspTurb], ctx); } static void sky_begin (qfv_renderframe_t *rFrame) { vulkan_ctx_t *ctx = rFrame->vulkan_ctx; bspctx_t *bctx = ctx->bsp_context; bctx->default_color[3] = 1; QuatCopy (bctx->default_color, bctx->last_color); bspframe_t *bframe = &bctx->frames.a[ctx->curFrame]; DARRAY_APPEND (&rFrame->subpassCmdSets[QFV_passTranslucent], bframe->cmdSet.a[QFV_bspSky]); qfvPushDebug (ctx, "bsp_begin_subpass"); if (bctx->skybox_tex) { bsp_begin_subpass (QFV_bspSky, bctx->skybox, bctx->layout, rFrame); } else { bsp_begin_subpass (QFV_bspSky, bctx->skysheet, bctx->layout, rFrame); } qfvPopDebug (ctx); } static void sky_end (vulkan_ctx_t *ctx) { bspctx_t *bctx = ctx->bsp_context; bspframe_t *bframe = &bctx->frames.a[ctx->curFrame]; bsp_end_subpass (bframe->cmdSet.a[QFV_bspSky], ctx); } static inline void add_surf_elements (vulktex_t *tex, instsurf_t *is, elechain_t **ec, elements_t **el, bspctx_t *bctx, bspframe_t *bframe) { bsppoly_t *poly = (bsppoly_t *) is->surface->polys; if (!tex->elechain) { (*ec) = add_elechain (tex, bctx); (*ec)->transform = is->transform; (*ec)->color = is->color; (*el) = (*ec)->elements; (*el)->first_index = bframe->index_count; } if (is->transform != (*ec)->transform || is->color != (*ec)->color) { (*ec) = add_elechain (tex, bctx); (*ec)->transform = is->transform; (*ec)->color = is->color; (*el) = (*ec)->elements; (*el)->first_index = bframe->index_count; } memcpy (bframe->index_data + bframe->index_count, poly->indices, poly->count * sizeof (poly->indices[0])); (*el)->index_count += poly->count; bframe->index_count += poly->count; } static void build_tex_elechain (vulktex_t *tex, bspctx_t *bctx, bspframe_t *bframe) { instsurf_t *is; elechain_t *ec = 0; elements_t *el = 0; for (is = tex->tex_chain; is; is = is->tex_chain) { // emit the polygon indices for the surface to the texture's // element chain add_surf_elements (tex, is, &ec, &el, bctx, bframe); } } void Vulkan_DrawWorld (qfv_renderframe_t *rFrame) { vulkan_ctx_t *ctx = rFrame->vulkan_ctx; qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; bspctx_t *bctx = ctx->bsp_context; bspframe_t *bframe = &bctx->frames.a[ctx->curFrame]; entity_t worldent; mod_brush_t *brush; clear_texture_chains (bctx); // do this first for water and skys bframe->index_count = 0; memset (&worldent, 0, sizeof (worldent)); worldent.renderer.model = r_refdef.worldmodel; brush = &r_refdef.worldmodel->brush; bctx->entity = &worldent; bctx->transform = 0; bctx->color = 0; R_VisitWorldNodes (brush, ctx); if (r_drawentities->int_val) { for (size_t i = 0; i < r_ent_queue->ent_queues[mod_brush].size; i++) { entity_t *ent = r_ent_queue->ent_queues[mod_brush].a[i]; R_DrawBrushModel (ent, ctx); } } bsp_begin (rFrame); push_transform (identity, bctx->layout, device, bframe->cmdSet.a[QFV_bspDepth]); push_transform (identity, bctx->layout, device, bframe->cmdSet.a[QFV_bspGBuffer]); bsp_push_constants_t frag_constants = { .time = vr_data.realtime }; push_fragconst (&frag_constants, bctx->layout, device, bframe->cmdSet.a[QFV_bspGBuffer]); for (size_t i = 0; i < bctx->texture_chains.size; i++) { vulktex_t *tex; elechain_t *ec = 0; tex = bctx->texture_chains.a[i]; build_tex_elechain (tex, bctx, bframe); bind_texture (tex, 1, bctx->layout, dfunc, bframe->cmdSet.a[QFV_bspGBuffer]); for (ec = tex->elechain; ec; ec = ec->next) { draw_elechain (ec, bctx->layout, device, bframe->cmdSet.a[QFV_bspDepth]); draw_elechain (ec, bctx->layout, device, bframe->cmdSet.a[QFV_bspGBuffer]); reset_elechain (ec); } tex->elechain = 0; tex->elechain_tail = &tex->elechain; } bsp_end (ctx); } void Vulkan_Bsp_Flush (vulkan_ctx_t *ctx) { qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; bspctx_t *bctx = ctx->bsp_context; bspframe_t *bframe = &bctx->frames.a[ctx->curFrame]; size_t atom = device->physDev->properties.limits.nonCoherentAtomSize; size_t atom_mask = atom - 1; size_t offset = bframe->index_offset; size_t size = bframe->index_count * sizeof (uint32_t); offset &= ~atom_mask; size = (size + atom_mask) & ~atom_mask; VkMappedMemoryRange range = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE, 0, bctx->index_memory, offset, size }; dfunc->vkFlushMappedMemoryRanges (device->dev, 1, &range); } void Vulkan_DrawWaterSurfaces (qfv_renderframe_t *rFrame) { vulkan_ctx_t *ctx = rFrame->vulkan_ctx; qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; bspctx_t *bctx = ctx->bsp_context; bspframe_t *bframe = &bctx->frames.a[ctx->curFrame]; instsurf_t *is; vulktex_t *tex = 0; elechain_t *ec = 0; elements_t *el = 0; if (!bctx->waterchain) return; turb_begin (rFrame); push_transform (identity, bctx->layout, device, bframe->cmdSet.a[QFV_bspTurb]); bsp_push_constants_t frag_constants = { .time = vr_data.realtime }; push_fragconst (&frag_constants, bctx->layout, device, bframe->cmdSet.a[QFV_bspTurb]); for (is = bctx->waterchain; is; is = is->tex_chain) { msurface_t *surf = is->surface; if (tex != surf->texinfo->texture->render) { if (tex) { bind_texture (tex, 1, bctx->layout, dfunc, bframe->cmdSet.a[QFV_bspTurb]); for (ec = tex->elechain; ec; ec = ec->next) { draw_elechain (ec, bctx->layout, device, bframe->cmdSet.a[QFV_bspTurb]); reset_elechain (ec); } tex->elechain = 0; tex->elechain_tail = &tex->elechain; } tex = surf->texinfo->texture->render; } // emit the polygon indices for the surface to the texture's // element chain add_surf_elements (tex, is, &ec, &el, bctx, bframe); } if (tex) { bind_texture (tex, 1, bctx->layout, dfunc, bframe->cmdSet.a[QFV_bspTurb]); for (ec = tex->elechain; ec; ec = ec->next) { draw_elechain (ec, bctx->layout, device, bframe->cmdSet.a[QFV_bspTurb]); reset_elechain (ec); } tex->elechain = 0; tex->elechain_tail = &tex->elechain; } turb_end (ctx); bctx->waterchain = 0; bctx->waterchain_tail = &bctx->waterchain; } void Vulkan_DrawSky (qfv_renderframe_t *rFrame) { vulkan_ctx_t *ctx = rFrame->vulkan_ctx; qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; bspctx_t *bctx = ctx->bsp_context; bspframe_t *bframe = &bctx->frames.a[ctx->curFrame]; instsurf_t *is; vulktex_t *tex = 0; elechain_t *ec = 0; elements_t *el = 0; if (!bctx->sky_chain) return; sky_begin (rFrame); vulktex_t skybox = { .descriptor = bctx->skybox_descriptor }; bind_texture (&skybox, 2, bctx->layout, dfunc, bframe->cmdSet.a[QFV_bspSky]); push_transform (identity, bctx->layout, device, bframe->cmdSet.a[QFV_bspSky]); bsp_push_constants_t frag_constants = { .time = vr_data.realtime }; push_fragconst (&frag_constants, bctx->layout, device, bframe->cmdSet.a[QFV_bspSky]); for (is = bctx->sky_chain; is; is = is->tex_chain) { msurface_t *surf = is->surface; if (tex != surf->texinfo->texture->render) { if (tex) { bind_texture (tex, 1, bctx->layout, dfunc, bframe->cmdSet.a[QFV_bspSky]); for (ec = tex->elechain; ec; ec = ec->next) { draw_elechain (ec, bctx->layout, device, bframe->cmdSet.a[QFV_bspSky]); reset_elechain (ec); } tex->elechain = 0; tex->elechain_tail = &tex->elechain; } tex = surf->texinfo->texture->render; } // emit the polygon indices for the surface to the texture's // element chain add_surf_elements (tex, is, &ec, &el, bctx, bframe); } if (tex) { bind_texture (tex, 1, bctx->layout, dfunc, bframe->cmdSet.a[QFV_bspSky]); for (ec = tex->elechain; ec; ec = ec->next) { draw_elechain (ec, bctx->layout, device, bframe->cmdSet.a[QFV_bspSky]); reset_elechain (ec); } tex->elechain = 0; tex->elechain_tail = &tex->elechain; } sky_end (ctx); bctx->sky_chain = 0; bctx->sky_chain_tail = &bctx->sky_chain; } static void create_default_skys (vulkan_ctx_t *ctx) { qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; bspctx_t *bctx = ctx->bsp_context; VkImage skybox; VkImage skysheet; VkDeviceMemory memory; VkImageView boxview; VkImageView sheetview; bctx->default_skybox = calloc (2, sizeof (qfv_tex_t)); bctx->default_skysheet = bctx->default_skybox + 1; VkExtent3D extents = { 1, 1, 1 }; skybox = QFV_CreateImage (device, 1, VK_IMAGE_TYPE_2D, VK_FORMAT_B8G8R8A8_UNORM, extents, 1, 1, VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT); QFV_duSetObjectName (device, VK_OBJECT_TYPE_IMAGE, skybox, "bsp:image:default_skybox"); skysheet = QFV_CreateImage (device, 0, VK_IMAGE_TYPE_2D, VK_FORMAT_B8G8R8A8_UNORM, extents, 1, 2, VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT); QFV_duSetObjectName (device, VK_OBJECT_TYPE_IMAGE, skysheet, "bsp:image:default_skysheet"); VkMemoryRequirements requirements; dfunc->vkGetImageMemoryRequirements (device->dev, skybox, &requirements); size_t boxsize = requirements.size; dfunc->vkGetImageMemoryRequirements (device->dev, skysheet, &requirements); size_t sheetsize = requirements.size; memory = QFV_AllocImageMemory (device, skybox, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, boxsize + sheetsize, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT); QFV_duSetObjectName (device, VK_OBJECT_TYPE_DEVICE_MEMORY, memory, "bsp:memory:default_skys"); QFV_BindImageMemory (device, skybox, memory, 0); QFV_BindImageMemory (device, skysheet, memory, boxsize); boxview = QFV_CreateImageView (device, skybox, VK_IMAGE_VIEW_TYPE_CUBE, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_ASPECT_COLOR_BIT); QFV_duSetObjectName (device, VK_OBJECT_TYPE_IMAGE_VIEW, boxview, "bsp:iview:default_skybox"); sheetview = QFV_CreateImageView (device, skysheet, VK_IMAGE_VIEW_TYPE_2D_ARRAY, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_ASPECT_COLOR_BIT); QFV_duSetObjectName (device, VK_OBJECT_TYPE_IMAGE_VIEW, sheetview, "bsp:iview:default_skysheet"); bctx->default_skybox->image = skybox; bctx->default_skybox->view = boxview; bctx->default_skybox->memory = memory; bctx->default_skysheet->image = skysheet; bctx->default_skysheet->view = sheetview; // temporarily commandeer the light map's staging buffer qfv_packet_t *packet = QFV_PacketAcquire (bctx->light_stage); qfv_imagebarrier_t ib = imageBarriers[qfv_LT_Undefined_to_TransferDst]; ib.barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS; ib.barrier.subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS; VkImageMemoryBarrier barriers[2] = { ib.barrier, ib.barrier }; barriers[0].image = skybox; barriers[1].image = skysheet; dfunc->vkCmdPipelineBarrier (packet->cmd, ib.srcStages, ib.dstStages, 0, 0, 0, 0, 0, 2, barriers); VkClearColorValue color = {}; VkImageSubresourceRange range = { VK_IMAGE_ASPECT_COLOR_BIT, 0, VK_REMAINING_MIP_LEVELS, 0, VK_REMAINING_ARRAY_LAYERS }; dfunc->vkCmdClearColorImage (packet->cmd, skybox, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &color, 1, &range); dfunc->vkCmdClearColorImage (packet->cmd, skysheet, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &color, 1, &range); ib = imageBarriers[qfv_LT_TransferDst_to_ShaderReadOnly]; ib.barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS; ib.barrier.subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS; barriers[0] = ib.barrier; barriers[1] = ib.barrier; barriers[0].image = skybox; barriers[1].image = skysheet; dfunc->vkCmdPipelineBarrier (packet->cmd, ib.srcStages, ib.dstStages, 0, 0, 0, 0, 0, 2, barriers); QFV_PacketSubmit (packet); } void Vulkan_Bsp_Init (vulkan_ctx_t *ctx) { qfv_device_t *device = ctx->device; qfvPushDebug (ctx, "bsp init"); bspctx_t *bctx = calloc (1, sizeof (bspctx_t)); ctx->bsp_context = bctx; bctx->waterchain_tail = &bctx->waterchain; bctx->sky_chain_tail = &bctx->sky_chain; bctx->static_instsurfs_tail = &bctx->static_instsurfs; bctx->elechains_tail = &bctx->elechains; bctx->elementss_tail = &bctx->elementss; bctx->instsurfs_tail = &bctx->instsurfs; bctx->light_scrap = QFV_CreateScrap (device, "lightmap_atlas", 2048, tex_frgba, ctx->staging); size_t size = QFV_ScrapSize (bctx->light_scrap); bctx->light_stage = QFV_CreateStagingBuffer (device, "lightmap", size, ctx->cmdpool); create_default_skys (ctx); DARRAY_INIT (&bctx->texture_chains, 64); size_t frames = ctx->frames.size; DARRAY_INIT (&bctx->frames, frames); DARRAY_RESIZE (&bctx->frames, frames); bctx->frames.grow = 0; bctx->depth = Vulkan_CreateGraphicsPipeline (ctx, "bsp_depth"); bctx->gbuf = Vulkan_CreateGraphicsPipeline (ctx, "bsp_gbuf"); bctx->skybox = Vulkan_CreateGraphicsPipeline (ctx, "bsp_skybox"); bctx->skysheet = Vulkan_CreateGraphicsPipeline (ctx, "bsp_skysheet"); bctx->turb = Vulkan_CreateGraphicsPipeline (ctx, "bsp_turb"); bctx->layout = Vulkan_CreatePipelineLayout (ctx, "quakebsp_layout"); bctx->sampler = Vulkan_CreateSampler (ctx, "quakebsp_sampler"); for (size_t i = 0; i < frames; i++) { __auto_type bframe = &bctx->frames.a[i]; DARRAY_INIT (&bframe->cmdSet, QFV_bspNumPasses); DARRAY_RESIZE (&bframe->cmdSet, QFV_bspNumPasses); bframe->cmdSet.grow = 0; QFV_AllocateCommandBuffers (device, ctx->cmdpool, 1, &bframe->cmdSet); for (int j = 0; j < QFV_bspNumPasses; j++) { QFV_duSetObjectName (device, VK_OBJECT_TYPE_COMMAND_BUFFER, bframe->cmdSet.a[i], va (ctx->va_ctx, "cmd:bsp:%zd:%s", i, bsp_pass_names[j])); } } bctx->skybox_descriptor = Vulkan_CreateTextureDescriptor (ctx, bctx->default_skybox, bctx->sampler); qfvPopDebug (ctx); } void Vulkan_Bsp_Shutdown (struct vulkan_ctx_s *ctx) { qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; bspctx_t *bctx = ctx->bsp_context; for (size_t i = 0; i < bctx->frames.size; i++) { __auto_type bframe = &bctx->frames.a[i]; free (bframe->cmdSet.a); } dfunc->vkDestroyPipeline (device->dev, bctx->depth, 0); dfunc->vkDestroyPipeline (device->dev, bctx->gbuf, 0); dfunc->vkDestroyPipeline (device->dev, bctx->skybox, 0); dfunc->vkDestroyPipeline (device->dev, bctx->skysheet, 0); dfunc->vkDestroyPipeline (device->dev, bctx->turb, 0); DARRAY_CLEAR (&bctx->texture_chains); DARRAY_CLEAR (&bctx->frames); QFV_DestroyStagingBuffer (bctx->light_stage); QFV_DestroyScrap (bctx->light_scrap); if (bctx->vertex_buffer) { dfunc->vkDestroyBuffer (device->dev, bctx->vertex_buffer, 0); dfunc->vkFreeMemory (device->dev, bctx->vertex_memory, 0); } if (bctx->index_buffer) { dfunc->vkDestroyBuffer (device->dev, bctx->index_buffer, 0); dfunc->vkFreeMemory (device->dev, bctx->index_memory, 0); } if (bctx->skybox_tex) { Vulkan_UnloadTex (ctx, bctx->skybox_tex); } dfunc->vkDestroyImageView (device->dev, bctx->default_skysheet->view, 0); dfunc->vkDestroyImage (device->dev, bctx->default_skysheet->image, 0); dfunc->vkDestroyImageView (device->dev, bctx->default_skybox->view, 0); dfunc->vkDestroyImage (device->dev, bctx->default_skybox->image, 0); dfunc->vkFreeMemory (device->dev, bctx->default_skybox->memory, 0); free (bctx->default_skybox); } void Vulkan_LoadSkys (const char *sky, vulkan_ctx_t *ctx) { bspctx_t *bctx = ctx->bsp_context; const char *name; int i; tex_t *tex; static const char *sky_suffix[] = { "ft", "bk", "up", "dn", "rt", "lf"}; if (bctx->skybox_tex) { Vulkan_UnloadTex (ctx, bctx->skybox_tex); Vulkan_FreeTexture (ctx, bctx->skybox_descriptor); } bctx->skybox_tex = 0; if (!sky || !*sky) { sky = r_skyname->string; } if (!*sky || !strcasecmp (sky, "none")) { Sys_MaskPrintf (SYS_vulkan, "Skybox unloaded\n"); bctx->skybox_descriptor = Vulkan_CreateTextureDescriptor (ctx, bctx->default_skybox, bctx->sampler); return; } name = va (ctx->va_ctx, "env/%s_map", sky); tex = LoadImage (name, 1); if (tex) { bctx->skybox_tex = Vulkan_LoadEnvMap (ctx, tex, sky); Sys_MaskPrintf (SYS_vulkan, "Loaded %s\n", name); } else { int failed = 0; tex_t *sides[6] = { }; for (i = 0; i < 6; i++) { name = va (ctx->va_ctx, "env/%s%s", sky, sky_suffix[i]); tex = LoadImage (name, 1); if (!tex) { Sys_MaskPrintf (SYS_vulkan, "Couldn't load %s\n", name); // also look in gfx/env, where Darkplaces looks for skies name = va (ctx->va_ctx, "gfx/env/%s%s", sky, sky_suffix[i]); tex = LoadImage (name, 1); if (!tex) { Sys_MaskPrintf (SYS_vulkan, "Couldn't load %s\n", name); failed = 1; continue; } } //FIXME find a better way (also, assumes data and struct together) sides[i] = malloc (ImageSize (tex, 1)); memcpy (sides[i], tex, ImageSize (tex, 1)); sides[i]->data = (byte *)(sides[i] + 1); Sys_MaskPrintf (SYS_vulkan, "Loaded %s\n", name); } if (!failed) { bctx->skybox_tex = Vulkan_LoadEnvSides (ctx, sides, sky); } for (i = 0; i < 6; i++) { free (sides[i]); } } if (bctx->skybox_tex) { bctx->skybox_descriptor = Vulkan_CreateTextureDescriptor (ctx, bctx->skybox_tex, bctx->sampler); Sys_MaskPrintf (SYS_vulkan, "Skybox %s loaded\n", sky); } }