/*
	trace.c

	BSP line tracing

	Copyright (C) 2004 Bill Currie

	Author: Bill Currie <bill@taniwha.org>
	Date: 2004/9/25

	This program is free software; you can redistribute it and/or
	modify it under the terms of the GNU General Public License
	as published by the Free Software Foundation; either version 2
	of the License, or (at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

	See the GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to:

		Free Software Foundation, Inc.
		59 Temple Place - Suite 330
		Boston, MA  02111-1307, USA

*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif

#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif

#include "qfalloca.h"

#include "QF/model.h"
#include "QF/sys.h"
#include "QF/winding.h"

#include "compat.h"
#include "world.h"

/* LINE TESTING IN HULLS */

// 1/32 epsilon to keep floating point happy
#ifndef DIST_EPSILON
#define	DIST_EPSILON	(0.03125)
#endif

#define PLANE_EPSILON	(0.001)

typedef struct {
	plane_t     planes[3];
	winding_t   points[3];
	winding_t   edges[3];
	clipport_t  portals[3];
} clipbox_t;

typedef struct {
	qboolean    seen_empty;
	qboolean    seen_solid;
	qboolean    moved;
	plane_t    *split_plane;
	vec3_t      dist;
	const vec_t *origin;
	const vec_t *start_point;
	const vec_t *end_point;
	clipbox_t   box;
} trace_state_t;

typedef struct {
	vec3_t     start;
	vec3_t     end;
	vec_t      start_frac;
	int        side;
	int        num;
	plane_t   *plane;
} tracestack_t;

static void
fast_norm (vec3_t v)
{
	vec_t       m;

	m = fabs (v[0]) + fabs (v[1]) + fabs (v[2]);
	VectorScale (v, 1 / m, v);
}

/** Initialize the clipbox representing the faces that might hit the portal.

	When a box is moving, at most three of its faces might hit the portal.
	Those faces all face such that the dot product of their normal and the
	box's velocity is positive (ie, n.v > 0). When the motion is in an axial
	plane, only two faces might hit. For axial motion, only one face.

	The faces are set up such that the first point of each winding is the
	leading corner of the box, and the edges are set up such that testing
	only the first three edges of each winding covers all nine edges (ie,
	the forth edge of one face is the reverse of the first edge of the next
	face).

	The windings are clockwise when looking down the face's normal (ie, when
	looking at the front of the face).
*/
static void
init_box (const trace_t *trace, clipbox_t *box, const vec3_t vel)
{
	vec3_t      p;
	int         u[3];
	int         i, j, k;
	vec_t       s[2] = {1, -1};

	//FIXME rotated box
	for (i = 0; i < 3; i++)
		u[i] = (vel[i] >= 0 ? 1 : -1);
	VectorCompMult (p, u, trace->extents);
	for (i = 0; i < 3; i++) {
		box->portals[i].planenum = i;
		box->portals[i].next[0] = 0;
		box->portals[i].next[0] = 0;
		box->portals[i].leafs[0] = 0;
		box->portals[i].leafs[0] = 0;
		box->portals[i].winding = &box->points[i];
		box->portals[i].edges = &box->edges[i];

		VectorZero (box->planes[i].normal);
		box->planes[i].normal[i] = u[i];
		box->planes[i].dist = DotProduct (p, box->planes[i].normal);
		box->planes[i].type = i;

		box->points[i].numpoints = 4;
		box->edges[i].numpoints = 4;
		VectorCopy (u, box->points[i].points[0]);
		VectorZero (box->edges[i].points[0]);
		j = (i + (u[0]*u[1]*u[2] + 3) / 2) % 3;
		box->edges[i].points[0][j] = -u[j];
		for (j = 1; j < 4; j++) {
			box->points[i].points[j][i] = box->points[i].points[j - 1][i];
			box->edges[i].points[j][i] = box->edges[i].points[j - 1][i];
			for (k = 0; k < 2; k++) {
				int         a, b;
				a = (i + 1 + k) % 3;
				b = (i + 2 - k) % 3;
				box->points[i].points[j][a]
					= s[k] * u[i] * box->points[i].points[j - 1][b];
				box->edges[i].points[j][a]
					= s[k] * u[i] * box->edges[i].points[j - 1][b];
			}
			VectorCompMult (box->points[i].points[j - 1],
							box->points[i].points[j - 1], trace->extents);
			VectorCompMult (box->edges[i].points[j - 1],
							box->edges[i].points[j - 1], trace->extents);
			VectorScale (box->edges[i].points[j - 1], 2,
						 box->edges[i].points[j - 1]);
		}
		VectorCompMult (box->points[i].points[3],
						box->points[i].points[3], trace->extents);
		VectorCompMult (box->edges[i].points[3],
						box->edges[i].points[3], trace->extents);
		VectorScale (box->edges[i].points[3], 2,
					 box->edges[i].points[3]);
	}
}

static inline float
calc_offset (const trace_t *trace, const plane_t *plane)
{
	vec_t       d = 0;
	vec3_t      Rn;

	//FIXME rotated box/ellipsoid
	switch (trace->type) {
		case tr_point:
			break;
		case tr_box:
			if (plane->type < 3)
				d = trace->extents[plane->type];
			else
				d = (fabs (trace->extents[0] * plane->normal[0])
					 + fabs (trace->extents[1] * plane->normal[1])
					 + fabs (trace->extents[2] * plane->normal[2]));
			break;
		case tr_ellipsoid:
			VectorSet (trace->extents[0] * plane->normal[0],
					   trace->extents[1] * plane->normal[1],
					   trace->extents[2] * plane->normal[2], Rn);
			d = sqrt(DotProduct (Rn, Rn));	//FIXME no sqrt
			break;
	}
	return d;
}

static qboolean
point_inside_portal (const clipport_t *portal, const plane_t *plane,
					  const vec3_t p)
{
	vec3_t      x, c;
	const vec_t *n = plane->normal;
	int         i;
	const winding_t *points = portal->winding;
	const winding_t *edges = portal->edges;

	for (i = 0; i < points->numpoints; i++) {
		VectorSubtract (p, points->points[i], x);
		CrossProduct (x, edges->points[i], c);
		if (DotProduct (c, c) < PLANE_EPSILON)
			return false;
		if (DotProduct (c, n) <= 0)
			return false;
	}
	return true;
}

static qboolean
edges_intersect (const vec3_t p1, const vec3_t p2,
				 const vec3_t r1, const vec3_t r2)
{
	vec3_t      p, r, b;
	vec3_t      p_r, b_p, b_r;
	vec_t       tp, tr, den;

	VectorSubtract (p2, p1, p);
	VectorSubtract (r2, r1, r);
	VectorSubtract (r1, p1, b);
	CrossProduct (p, r, p_r);
	if (VectorIsZero (p_r))
		return false;
	CrossProduct (b, p, b_p);
	CrossProduct (b, r, b_r);
	tr = DotProduct (b_p, p_r);
	tp = DotProduct (b_r, p_r);
	den = DotProduct (p_r, p_r);
	if ((tr < 0 || tr > den) || (tp < 0 || tp > den))
		return false;
	return true;
}

static qboolean
trace_hits_portal (const hull_t *hull, const trace_t *trace,
				   clipport_t *portal, const vec3_t start, const vec3_t vel)
{
	int         i;
	vec_t      *point;
	vec_t      *edge;
	vec_t       dist, offset, vn;
	plane_t    *plane;
	plane_t     cutplane;

	plane = hull->planes + portal->planenum;
	vn = DotProduct (vel, plane->normal);
	cutplane.type = 3;	// generic plane
	for (i = 0; i < portal->winding->numpoints; i++) {
		point = portal->winding->points[i];
		edge = portal->edges->points[i];
		// so long as the plane distance and offset are calculated using
		// the  same normal vector, the normal vector length does not
		// matter.
		CrossProduct (vel, edge, cutplane.normal);
		fast_norm (cutplane.normal);
		cutplane.dist = DotProduct (cutplane.normal, point);
		dist = PlaneDiff (start, &cutplane);
		offset = calc_offset (trace, &cutplane);
		if ((vn > 0 && dist >= offset - PLANE_EPSILON)
			|| (vn < 0 && dist <= -offset + PLANE_EPSILON))
			return false;
	}
	return true;
}

static qboolean
trace_enters_leaf (hull_t *hull, trace_t *trace, clipleaf_t *leaf,
				   plane_t *plane, const vec3_t vel, const vec3_t org)
{
	clipport_t *portal;
	int         side;
	int         planenum;
	vec_t       v_n;

	planenum = plane - hull->planes;
	v_n = DotProduct (vel, plane->normal);
	if (!v_n) {
		//FIXME is this correct? The assumption is that if we got to a leaf
		//travelliing parallel to its plane, then we have to be in the leaf
		return true;
	}

	for (portal = leaf->portals; portal; portal = portal->next[side]) {
		side = portal->leafs[1] == leaf;
		if (portal->planenum != planenum)
			continue;
		if (trace_hits_portal (hull, trace, portal, org, vel))
			return true;
	}
	return false;
}

static vec_t
edge_portal_dist (const plane_t *plane, const clipport_t *portal,
				  const vec3_t p1, const vec3_t p2, const vec3_t vel)
{
	int         i;
	winding_t  *winding = portal->winding;
	winding_t  *edges = portal->edges;

	// check for edge point hitting portal face
	{
		vec_t       t1, t2, vn;

		vn = DotProduct (vel, plane->normal);
		t1 = PlaneDiff (p1, plane);
		t2 = PlaneDiff (p2, plane);
		// ensure p1 is the closest point to the plane
		if ((0 < t2 && t2 < t1)
				   || (0 > t2 && t2 > t1)) {
			// p2 is closer to the plane, so swap the points and times
			const vec_t *r = p2;
			vec_t       t = t2;
			t2 = t1; t1 = t;
			p2 = p1; p1 = r;
		}
		if (vn * t1 > 0) {
			// the edge is travelling away from the portal's plane
			return 1;
		}
		// if t1 * t2 < 0, the points straddle the portal's plane and the
		// nearest point test can be skipped
		if (vn && t1 * t2 > 0) {		//FIXME epsilon
			vec3_t      x, c;
			vec3_t      imp;

			t1 /= vn;
			if (t1 <= -1) {
				// the edge doesn't make it as far as the portal's plane
				return 1;
			}
			VectorMultSub (p1, t1, vel, imp);
			for (i = 0; i < winding->numpoints; i++) {
				VectorSubtract (imp, winding->points[i], x);
				CrossProduct (x, edges->points[i], c);
				if (DotProduct (c, plane->normal) < 0)
					break;		// miss
			}
			if (i == winding->numpoints) {
				// the closer end of the edge hit the portal, so -t1 is the
				// fraction
				return -t1;
			}
			// the closer end of the edge missed the portal, check the farther
			// end, but only with this portal edge.
			VectorMultSub (p2, t2 / vn, vel, imp);
			VectorSubtract (imp, winding->points[i], x);
			CrossProduct (x, edges->points[i], c);
			if (DotProduct (c, plane->normal) < 0) {
				// both impacts are on the outside of this portal edge, so the
				// edge being tested misses the portal
				return 1;
			}
			// the two impact points are on both sides of a portal edge, so the
			// edge being tested might hit a portal edge rather than the portal
			// face
		}
	}
	{
		vec3_t      e;
		vec_t       frac = 1.0;
		plane_t     ep;

		// set up the plane through which the edge travels
		VectorSubtract (p2, p1, e);
		CrossProduct (e, vel, ep.normal);
		ep.dist = DotProduct (p1, ep.normal);
		ep.type = 3;
		for (i = 0; i < winding->numpoints; i++) {
			vec_t       t, vn;
			const vec_t *r = winding->points[i];
			const vec_t *v = edges->points[i];
			vec3_t      x, y;

			vn = DotProduct (v, ep.normal);
			if (!vn)	// FIXME epsilon
				continue;	// portal edge is parallel to the plane
			t = PlaneDiff (r, &ep) / vn;
			if (t < -1 || t > 0)
				continue;	// portal edge does not reach the plane
			// impact point of portal edge with the plane
			VectorMultSub (r, t, v, x);
			// project the impact point back to the edge along the velocity
			VectorSubtract (x, p1, y);
			t = DotProduct (y, vel) / DotProduct (vel, vel);
			VectorMultSub (x, t, vel, y);
			VectorSubtract (y, p1, y);
			t = DotProduct (y, y) / DotProduct (e, y);
			if (t < 0 || t > 1)
				continue;	// the edge misses the portal edge
			VectorMultAdd (p1, t, e, y);
			VectorSubtract (x, y, y);
			t = DotProduct (y, vel) / DotProduct (vel, vel);
			if (t < 0 || t >= frac)
				continue;	// this is not the nearest edge pair
			// the edges hit, and they are the closes edge pair so far
			frac = t;
		}
		return frac;
	}
}

static vec_t
box_portal_dist (const hull_t *hull, const clipport_t *portal,
				 const trace_state_t *state)
{
	vec3_t      nvel;
	plane_t    *plane = hull->planes + portal->planenum;
	int         i, j;
	vec_t       frac, t;
	vec3_t      p1, p2;
	const clipbox_t *box = &state->box;
	const vec_t *start = state->start_point;
	const vec_t *vel = state->dist;

	frac = 1.0;
	for (i = 0; i < 3; i++) {
		// all faces on box have 4 points (and edges), but we need test only
		// three on each face
		for (j = 0; j < 3; j++) {
			VectorAdd (box->points[i].points[j], start, p1);
			VectorAdd (box->points[i].points[j + 1], start, p2);
			t = edge_portal_dist (plane, portal, p1, p2, vel);
			if (t < frac)
				frac = t;
		}
	}

	VectorNegate (vel, nvel);
	for (i = 0; i < portal->winding->numpoints; i++) {
		j = i + 1;
		if (j >= portal->winding->numpoints)
			j -= portal->winding->numpoints;
		VectorSubtract (portal->winding->points[i], start, p1);
		VectorSubtract (portal->winding->points[j], start, p2);
		for (j = 0; j < 3; j++) {
			const clipport_t *p = &box->portals[j];
			t = edge_portal_dist (box->planes + p->planenum, p, p1, p2, nvel);
			if (t < frac)
				frac = t;
		}
	}
	return frac;
}

static inline void
calc_impact (hull_t *hull, trace_t *trace, trace_state_t *state,
			 clipleaf_t *leaf)
{
	vec_t       t1, t2, frac, offset;

	t1 = PlaneDiff (state->start_point, state->split_plane);
	t2 = PlaneDiff (state->end_point, state->split_plane);
	offset = calc_offset (trace, state->split_plane);

	if (t1 < 0) {
		frac = (t1 + offset + DIST_EPSILON) / (t1 - t2);
		// invert plane paramterers
	} else {
		frac = (t1 - offset - DIST_EPSILON) / (t1 - t2);
	}
	frac = bound (0, frac, 1);

	if (leaf && trace->type != tr_point) {
		int         i;
		int         side;
		int         planenum;
		clipport_t *portal;
		vec3_t      impact;

		planenum = state->split_plane - hull->planes;

		VectorMultAdd (state->start_point, frac, state->dist, impact);
		if (DotProduct (state->dist, state->split_plane->normal) > 0)
			VectorMultAdd (impact, offset, state->split_plane->normal, impact);
		else
			VectorMultSub (impact, offset, state->split_plane->normal, impact);

		for (portal = leaf->portals; portal; portal = portal->next[side]) {
			side = portal->leafs[1] == leaf;
			if (portal->planenum != planenum)
				continue;
			for (i = 0; i < portal->winding->numpoints; i++) {
				vec3_t      r, s;
				VectorSubtract (impact, portal->winding->points[i], r);
				CrossProduct (r, portal->edges->points[i], s);
				if (DotProduct (s, state->split_plane->normal) > 0)
					continue;	// "hit"
				break;	// "miss";
			}
			if (i == portal->winding->numpoints)
				goto finish_impact;	// impact with the face of the polygon
		}
		frac = 1.0;
		for (portal = leaf->portals; portal; portal = portal->next[side]) {
			vec_t       t;

			side = portal->leafs[1] == leaf;
			if (portal->planenum != planenum)
				continue;
			t = box_portal_dist (hull, portal, state);
			if (t < frac)
				frac = t;
		}
	}
finish_impact:
	if (frac < trace->fraction) {
		trace->fraction = frac;
		VectorMultAdd (state->start_point, frac, state->dist, trace->endpos);
		if (t1 < 0) {
			// invert plane paramterers
			VectorNegate (state->split_plane->normal, trace->plane.normal);
			trace->plane.dist = -state->split_plane->dist;
		} else {
			VectorCopy (state->split_plane->normal, trace->plane.normal);
			trace->plane.dist = state->split_plane->dist;
		}
	}
}

static qboolean
portal_intersect (trace_t *trace, clipport_t *portal, plane_t *plane,
				  const vec3_t origin)
{
	vec3_t      r;
	vec_t       o_n;
	int         i;
	static vec3_t verts[][2] = {
		{{ -1, -1, -1}, {  1, -1, -1}},
		{{ -1, -1,  1}, {  1, -1,  1}},
		{{ -1,  1, -1}, {  1,  1, -1}},
		{{ -1,  1,  1}, {  1,  1,  1}},
		{{ -1, -1, -1}, { -1,  1, -1}},
		{{  1, -1, -1}, {  1,  1, -1}},
		{{ -1, -1,  1}, { -1,  1,  1}},
		{{  1, -1,  1}, {  1,  1,  1}},
		{{ -1, -1, -1}, { -1, -1,  1}},
		{{ -1,  1, -1}, { -1,  1,  1}},
		{{  1, -1, -1}, {  1, -1,  1}},
		{{  1,  1, -1}, {  1,  1,  1}},
	};

	// if any portal point is inside or touches the box, then they intersect
	for (i = 0; i < portal->winding->numpoints; i++) {
		VectorSubtract (portal->winding->points[i], origin, r);
		if (fabs(r[0]) <= trace->extents[0]
			&& fabs(r[1]) <= trace->extents[1]
			&& fabs(r[2]) <= trace->extents[2])
			return true;
	}
	// if any box edge crosses or touches the plane within the portal, then
	// they intersect
	o_n = DotProduct (origin, plane->normal);
	for (i = 0; i < 12; i++) {
		vec3_t      p1, p2, imp, dist;
		vec_t       t1, t2, frac;

		VectorCompMult (p1, trace->extents, verts[i][0]);
		VectorCompMult (p2, trace->extents, verts[i][1]);
		t1 = PlaneDiff (p1, plane) + o_n;
		t2 = PlaneDiff (p2, plane) + o_n;
		// if both ends of the box edge are on the same side (or touching) the
		// plane, the edge does not cross the plane
		// if only one end of the edge is touching, then we still have to
		// check the impact point.
		if ((t1 > 0 && t2 > 0) || (t1 < 0 && t2 < 0) || (t1 == t2))
			continue;
		if (t1 == t2) {
			int         j;
			// the edge is on the plane
			// if either end touches the portal, then the box and portal touch
			if (point_inside_portal (portal, plane, p1))
				return true;
			if (point_inside_portal (portal, plane, p2))
				return true;
			// if the edge intersects with a portal edge, then the box and
			// portal touch
			for (j = 0; j < portal->winding->numpoints; j++) {
				int         k = j + 1;
				if (k == portal->winding->numpoints)
					k = 0;
				if (edges_intersect (p1, p2, portal->winding->points[j],
									 portal->winding->points[k]))
					return true;
			}
			continue;
		}
		// since t1 and t2 are guaranteed to be on opposite sides of the plane,
		// or only one touching, they are guaranteed to be unequal. Also, frac
		// is guaranteed to be between 0 and 1
		frac = t1 / (t1 - t2);
		VectorSubtract (p2, p1, dist);
		VectorMultAdd (p1, frac, dist, imp);
		VectorAdd (imp, origin, imp);
		if (point_inside_portal (portal, plane, imp)) {
			// the impact point is in the portal
			return true;
		}
	}
	return 0;
}

static int test_count;

static int
trace_contents (hull_t *hull, trace_t *trace, clipleaf_t *leaf,
				const vec3_t origin)
{
	clipport_t *portal;
	int         side;
	int         contents = leaf->contents;

	leaf->test_count = test_count;
	// set the auxiliary contents data. this is a bit field of all contents
	// types contained within the trace.
	// contents start at -1 (empty). bit 0 represents CONTENTS_EMPTY
	trace->contents |= 1 << (~contents);
	// check all adjoining leafs that contain part of the trace
	for (portal = leaf->portals; portal; portal = portal->next[side]) {
		vec_t       offset;
		vec_t       dist;
		plane_t    *plane;
		int         res;
		clipleaf_t *l;

		side = portal->leafs[1] == leaf;
		l = portal->leafs[side ^ 1];
		if (l->test_count == test_count)
			continue;

		plane = hull->planes + portal->planenum;
		dist = PlaneDiff (origin, plane);
		offset = calc_offset (trace, plane);
		// the side of the plane on which we are does not matter, only
		// whether we're crossing the plane. merely touching the plane does
		// not cause us to cross it
		if (fabs (dist) >= offset - PLANE_EPSILON)
			continue;
		if (!portal_intersect (trace, portal, plane, origin))
			continue;
		res = trace_contents (hull, trace, l, origin);
		//FIXME better test?
		// solid > lava > slime > water > empty (desired)
		// solid > current (good)
		// problem is, current > sky > lava (what is best?)
		if (res == CONTENTS_SOLID
			|| (contents != CONTENTS_SOLID && res < contents))
			contents = res;
	}
	return contents;
}

static vec_t
trace_to_leaf (const hull_t *hull, clipleaf_t *leaf,
			   const trace_t *trace, const trace_state_t *state, vec3_t stop)
{
	clipport_t *portal;
	plane_t    *plane;
	int         side;
	vec_t       frac = 1;
	vec_t       t1, t2, offset, f;
	qboolean    clipped = false;
	clipleaf_t *l;
	trace_state_t lstate = *state;

	leaf->test_count = test_count;
	for (portal = leaf->portals; portal; portal = portal->next[side]) {
		side = portal->leafs[1] == leaf;
		plane = hull->planes + portal->planenum;
		if (plane == state->split_plane)
			continue;
		if (!trace_hits_portal (hull, trace, portal,
								state->start_point, state->dist))
			continue;
		l = portal->leafs[side^1];
		if (l->test_count == test_count)
			continue;
		//FIXME the decision on whether to recurse needs to be reviewed
		t1 = PlaneDiff (state->start_point, plane);
		t2 = PlaneDiff (state->end_point, plane);
		offset = calc_offset (trace, plane);
		f = (t1 + (t1 < 0 ? offset : -offset)) / (t1 - t2);
		if (f < 0 && l->contents != CONTENTS_SOLID
			&& l->test_count != test_count) {
			f = trace_to_leaf (hull, l, trace, state, 0);
		} else {
			lstate.split_plane = plane;
			f = box_portal_dist (hull, portal, &lstate);
		}
		if (f >= 0) {
			clipped = true;
			if (f < frac)
				frac = f;
		}
	}
	//printf ("%d %g\n", clipped, frac);
	if (!clipped)
		frac = 0;
	if (stop)
		VectorMultAdd (state->start_point, frac, state->dist, stop);
	return frac;
}

static int
visit_leaf (hull_t *hull, int num, clipleaf_t *leaf, trace_t *trace,
			trace_state_t *state)
{
	int         contents;

	// it's not possible to not be in the leaf when doing a point trace
	if (trace->type != tr_point) {
		vec3_t      origin;

		// if split_plane is null, the trace did not cross the last node plane
		if (state->split_plane
			&& !trace_enters_leaf (hull, trace, leaf, state->split_plane,
								   state->dist, state->origin))
			return 0;	// we're not here
		contents = leaf->contents;
		if (contents != CONTENTS_SOLID) {
			//FIXME this is probably slow
			test_count++;
			trace_to_leaf (hull, leaf, trace, state, origin);
			//printf ("(%g %g %g) (%g %g %g)\n",
					//VectorExpand (state->start_point), VectorExpand (origin));
			test_count++;
			trace->contents = 0;
			contents = trace_contents (hull, trace, leaf, origin);
			//printf ("%d\n", contents);
		}
	} else {
		contents = num;
	}
	if (contents == CONTENTS_SOLID) {
		if (!state->seen_empty && !state->seen_solid) {
			// this is the first leaf visited, thus the start leaf
			trace->startsolid = state->seen_solid = true;
		} else if (!state->seen_empty && state->seen_solid) {
			// If crossing from one solid leaf to another, treat the
			// whole trace as solid (this is what id does).
			// However, since allsolid is initialized to true, no need
			// to do anything.
			if (state->moved)
				return 1;
		} else {
			// crossing from an empty leaf to a solid leaf: the trace
			// has collided.
			if (state->split_plane) {
				calc_impact (hull, trace, state, leaf);
			} else {
				// if there's no split plane, then there is no impact
				trace->fraction = 1.0;
			}
			if (trace->type == tr_point)
				return 1;
		}
	} else {
		state->seen_empty = true;
		trace->allsolid = false;
		if (contents == CONTENTS_EMPTY)
			trace->inopen = true;
		else
			trace->inwater = true;
	}
	return 0;
}

VISIBLE void
MOD_TraceLine (hull_t *hull, int num,
			   const vec3_t start_point, const vec3_t end_point,
			   trace_t *trace)
{
	vec_t       start_dist, end_dist, frac[2], offset;
	vec3_t      start, end, dist;
	int         side;
	tracestack_t *tstack;
	tracestack_t *tracestack;
	mclipnode_t *node;
	plane_t    *plane;
	clipleaf_t *leaf;
	trace_state_t trace_state;

	if (!hull->depth)
		Sys_Error ("hull depth not set");
	// +2 for paranoia
	tracestack = alloca ((hull->depth + 2) * sizeof (tracestack_t));
	VectorCopy (start_point, start);
	VectorCopy (end_point, end);
	VectorSubtract (end, start, trace_state.dist);

	tstack = tracestack;
	trace_state.start_point = start_point;
	trace_state.end_point = end_point;
	trace_state.origin = start;
	trace_state.seen_empty = false;
	trace_state.seen_solid = false;
	trace_state.moved = false;
	trace_state.split_plane = 0;
	if (trace->type == tr_box)
		init_box (trace, &trace_state.box, trace_state.dist);

	leaf = 0;
	plane = 0;

	trace->allsolid = true;
	trace->startsolid = false;
	trace->inopen = false;
	trace->inwater = false;
	trace->fraction = 1.0;

	while (1) {
		while (num < 0) {
			if (visit_leaf (hull, num, leaf, trace, &trace_state))
				return;

			// pop up the stack for a back side
			do {
				if (tstack-- == tracestack) {
					// we've finished.
					return;
				}
			} while (tstack->start_frac > trace->fraction);

			// go down the back side
			VectorCopy (tstack->start, start);
			VectorCopy (tstack->end, end);
			side = tstack->side;
			trace_state.split_plane = tstack->plane;
			trace_state.moved = tstack->start_frac > 0;

			if (hull->nodeleafs)
				leaf = hull->nodeleafs[tstack->num].leafs[side ^ 1];
			num = hull->clipnodes[tstack->num].children[side ^ 1];
		}
		//printf ("%d\n", num);

		node = hull->clipnodes + num;
		plane = hull->planes + node->planenum;

		start_dist = PlaneDiff (start, plane);
		end_dist = PlaneDiff (end, plane);
		offset = calc_offset (trace, plane);

		if (start_dist >= offset && end_dist >= offset) {
			// entirely in front of the plane
			plane = 0;
			if (hull->nodeleafs)
				leaf = hull->nodeleafs[num].leafs[0];
			num = node->children[0];
			continue;
		}
		//non-zero offset lets the object touch the plane but still be
		//behind the plane. however, point traces are assumed to be on the
		//front side of the plane if touching the plane
		if ((offset && start_dist <= -offset && end_dist <= -offset)
			|| (!offset && start_dist < -offset && end_dist < -offset)) {
			// entirely behind the plane
			plane = 0;
			if (hull->nodeleafs)
				leaf = hull->nodeleafs[num].leafs[1];
			num = node->children[1];
			continue;
		}

		// cross the plane

		if (start_dist == end_dist) {
			// avoid division by zero (non-point clip only)
			// since neither side is forward and we need to check both sides
			// anyway, it doesn't matter which side we start with, so long as
			// the fractions are correct.
			side = 0;
			frac[0] = 1;
			frac[1] = 0;
		} else {
			// choose the side such that we are always moving forward through
			// the map
			side = start_dist < end_dist;
			// if either start or end have the box straddling the plane, then
			// frac will be appropriately clipped to 0 and 1, otherwise, frac
			// will be inside that range
			frac[0] = (start_dist + offset) / (start_dist - end_dist);
			frac[1] = (start_dist - offset) / (start_dist - end_dist);
			frac[0] = bound (0, frac[0], 1);
			frac[1] = bound (0, frac[1], 1);
		}

		VectorSubtract (end, start, dist);

		tstack->num = num;
		tstack->side = side;
		tstack->plane = plane;
		// if the move is parallel to the plane, then the plane is not a good
		// split plane
		if (start_dist == end_dist)
			tstack->plane = trace_state.split_plane;
		VectorCopy (end, tstack->end);
		VectorMultAdd (start, frac[side ^ 1], dist, tstack->start);
		tstack->start_frac = frac[side ^ 1];
		tstack++;

		VectorMultAdd (start, frac[side], dist, end);

		if (hull->nodeleafs)
			leaf = hull->nodeleafs[num].leafs[side];
		num = node->children[side];
	}
}

VISIBLE int
MOD_HullContents (hull_t *hull, int num, const vec3_t origin, trace_t *trace)
{
	int         prevnode = -1;
	int         side = 0;
	clipleaf_t *leaf;
	// follow origin down the bsp tree to find the "central" leaf
	while (num >= 0) {
		vec_t       d;
		mclipnode_t *node;
		plane_t    *plane;

		node = hull->clipnodes + num;
		plane = hull->planes + node->planenum;
		d = PlaneDiff (origin, plane);
		prevnode = num;
		side = d < 0;
		num = node->children[side];
	}
	if (trace)
		trace->contents = 0;
	if (!trace || trace->type == tr_point
		|| prevnode == -1 || !hull->nodeleafs) {
		return num;
	}
	// check the contents of the "central" and surrounding touched leafs
	leaf = hull->nodeleafs[prevnode].leafs[side];
	test_count++;
	return trace_contents (hull, trace, leaf, origin);
}