/* image.c Vulkan image functions Copyright (C) 1996-1997 Id Software, Inc. Copyright (C) 2020 Bill Currie This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifdef HAVE_MATH_H # include #endif #ifdef HAVE_STRING_H # include #endif #ifdef HAVE_STRINGS_H # include #endif #include "QF/cvar.h" #include "QF/dstring.h" #include "QF/input.h" #include "QF/mathlib.h" #include "QF/qargs.h" #include "QF/quakefs.h" #include "QF/sys.h" #include "QF/va.h" #include "QF/vid.h" #include "QF/Vulkan/qf_vid.h" #include "QF/Vulkan/barrier.h" #include "QF/Vulkan/device.h" #include "QF/Vulkan/image.h" #include "QF/Vulkan/instance.h" #include "QF/Vulkan/memory.h" #include "compat.h" #include "d_iface.h" #include "r_internal.h" #include "vid_vulkan.h" #include "util.h" VkImage QFV_CreateImage (qfv_device_t *device, int cubemap, VkImageType type, VkFormat format, VkExtent3D size, uint32_t num_mipmaps, uint32_t num_layers, VkSampleCountFlags samples, VkImageUsageFlags usage_scenarios) { VkDevice dev = device->dev; qfv_devfuncs_t *dfunc = device->funcs; VkImageCreateInfo createInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, 0, cubemap ? VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT : 0, type, format, size, num_mipmaps, cubemap ? 6 * num_layers : num_layers, samples, VK_IMAGE_TILING_OPTIMAL, usage_scenarios, VK_SHARING_MODE_EXCLUSIVE, 0, 0, VK_IMAGE_LAYOUT_UNDEFINED, }; VkImage image; dfunc->vkCreateImage (dev, &createInfo, 0, &image); return image; } VkDeviceMemory QFV_AllocImageMemory (qfv_device_t *device, VkImage image, VkMemoryPropertyFlags properties, VkDeviceSize size, VkDeviceSize offset) { VkDevice dev = device->dev; qfv_physdev_t *physdev = device->physDev; VkPhysicalDeviceMemoryProperties *memprops = &physdev->memory_properties; qfv_devfuncs_t *dfunc = device->funcs; VkMemoryRequirements requirements; dfunc->vkGetImageMemoryRequirements (dev, image, &requirements); size = max (size, offset + requirements.size); VkDeviceMemory object = 0; for (uint32_t type = 0; type < memprops->memoryTypeCount; type++) { if ((requirements.memoryTypeBits & (1 << type)) && ((memprops->memoryTypes[type].propertyFlags & properties) == properties)) { VkMemoryAllocateInfo allocate_info = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, 0, size, type }; VkResult res = dfunc->vkAllocateMemory (dev, &allocate_info, 0, &object); if (res == VK_SUCCESS) { break; } } } return object; } int QFV_BindImageMemory (qfv_device_t *device, VkImage image, VkDeviceMemory object, VkDeviceSize offset) { VkDevice dev = device->dev; qfv_devfuncs_t *dfunc = device->funcs; VkResult res = dfunc->vkBindImageMemory (dev, image, object, offset); return res == VK_SUCCESS; } qfv_imagebarrierset_t * QFV_CreateImageTransitionSet (qfv_imagetransition_t *transitions, int numTransitions) { qfv_imagebarrierset_t *barrierset; barrierset = DARRAY_ALLOCFIXED (*barrierset, numTransitions, malloc); for (int i = 0; i < numTransitions; i++) { barrierset->a[i].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; barrierset->a[i].pNext = 0; barrierset->a[i].srcAccessMask = transitions[i].srcAccess; barrierset->a[i].dstAccessMask = transitions[i].dstAccess; barrierset->a[i].oldLayout = transitions[i].oldLayout; barrierset->a[i].newLayout = transitions[i].newLayout; barrierset->a[i].srcQueueFamilyIndex = transitions[i].srcQueueFamily; barrierset->a[i].dstQueueFamilyIndex = transitions[i].dstQueueFamily; barrierset->a[i].image = transitions[i].image; barrierset->a[i].subresourceRange.aspectMask = transitions[i].aspect; barrierset->a[i].subresourceRange.baseMipLevel = 0; barrierset->a[i].subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS; barrierset->a[i].subresourceRange.baseArrayLayer = 0; barrierset->a[i].subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS; } return barrierset; } VkImageView QFV_CreateImageView (qfv_device_t *device, VkImage image, VkImageViewType type, VkFormat format, VkImageAspectFlags aspect) { VkDevice dev = device->dev; qfv_devfuncs_t *dfunc = device->funcs; VkImageViewCreateInfo createInfo = { VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, 0, 0, image, type, format, { VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, }, { aspect, 0, VK_REMAINING_MIP_LEVELS, 0, VK_REMAINING_ARRAY_LAYERS, } }; VkImageView view; dfunc->vkCreateImageView (dev, &createInfo, 0, &view); return view; } void QFV_GenerateMipMaps (qfv_device_t *device, VkCommandBuffer cmd, VkImage image, unsigned mips, unsigned width, unsigned height, unsigned layers) { qfv_devfuncs_t *dfunc = device->funcs; qfv_pipelinestagepair_t pre_stages = { VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, }; qfv_pipelinestagepair_t post_stages = { VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, }; qfv_pipelinestagepair_t final_stages = { VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, }; VkImageMemoryBarrier pre_barrier = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, 0, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, image, { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, layers } }; VkImageMemoryBarrier post_barrier = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, 0, VK_ACCESS_TRANSFER_READ_BIT, VK_ACCESS_SHADER_READ_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, image, { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, layers } }; VkImageMemoryBarrier final_barrier = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, 0, VK_ACCESS_TRANSFER_READ_BIT, VK_ACCESS_SHADER_READ_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, image, { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, layers } }; VkImageBlit blit = { {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, layers}, {{0, 0, 0}, {width, height, 1}}, {VK_IMAGE_ASPECT_COLOR_BIT, 1, 0, layers}, {{0, 0, 0}, {max (width >> 1, 1), max (height >> 1, 1), 1}}, }; while (--mips > 0) { dfunc->vkCmdPipelineBarrier (cmd, pre_stages.src, pre_stages.dst, 0, 0, 0, 0, 0, 1, &pre_barrier); dfunc->vkCmdBlitImage (cmd, image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blit, VK_FILTER_LINEAR); dfunc->vkCmdPipelineBarrier (cmd, post_stages.src, post_stages.dst, 0, 0, 0, 0, 0, 1, &post_barrier); blit.srcSubresource.mipLevel++; blit.srcOffsets[1].x = blit.dstOffsets[1].x; blit.srcOffsets[1].y = blit.dstOffsets[1].y; blit.dstSubresource.mipLevel++; blit.dstOffsets[1].x = max (blit.dstOffsets[1].x >> 1, 1); blit.dstOffsets[1].y = max (blit.dstOffsets[1].y >> 1, 1); pre_barrier.subresourceRange.baseMipLevel++; post_barrier.subresourceRange.baseMipLevel++; final_barrier.subresourceRange.baseMipLevel++; } dfunc->vkCmdPipelineBarrier (cmd, final_stages.src, final_stages.dst, 0, 0, 0, 0, 0, 1, &final_barrier); } static int ilog2 (unsigned x) { unsigned o = x; if (x > 0x7fffffff) { // avoid overflow return 31; } x--; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; x++; int y = 0; y |= ((x & 0xffff0000) != 0) << 4; y |= ((x & 0xff00ff00) != 0) << 3; y |= ((x & 0xf0f0f0f0) != 0) << 2; y |= ((x & 0xcccccccc) != 0) << 1; y |= ((x & 0xaaaaaaaa) != 0) << 0; return y - ((o & (x - 1)) != 0); } int QFV_MipLevels (int width, int height) { return ilog2 (max (width, height)) + 1; }