/* vulkan_model_alais.c Alias model processing for Vulkan Copyright (C) 2021 Bill Currie Author: Bill Currie Date: 2021/1/24 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifdef HAVE_STRING_H # include #endif #ifdef HAVE_STRINGS_H # include #endif #include #include "QF/va.h" #include "QF/modelgen.h" #include "QF/vid.h" #include "QF/Vulkan/qf_alias.h" #include "QF/Vulkan/qf_texture.h" #include "QF/Vulkan/barrier.h" #include "QF/Vulkan/buffer.h" #include "QF/Vulkan/device.h" #include "QF/Vulkan/debug.h" #include "QF/Vulkan/image.h" #include "QF/Vulkan/instance.h" #include "QF/Vulkan/staging.h" #include "mod_internal.h" #include "r_internal.h" #include "vid_vulkan.h" static vec3_t vertex_normals[NUMVERTEXNORMALS] = { #include "anorms.h" }; static void skin_clear (int skin_offset, aliashdr_t *hdr, vulkan_ctx_t *ctx) { qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; qfv_alias_skin_t *skin = (qfv_alias_skin_t *) ((byte *) hdr + skin_offset); dfunc->vkDestroyImageView (device->dev, skin->view, 0); dfunc->vkDestroyImage (device->dev, skin->image, 0); dfunc->vkFreeMemory (device->dev, skin->memory, 0); } static void vulkan_alias_clear (model_t *m, void *data) { vulkan_ctx_t *ctx = data; qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; aliashdr_t *hdr; qfv_alias_mesh_t *mesh; m->needload = true; //FIXME is this right? if (!(hdr = m->aliashdr)) { hdr = Cache_Get (&m->cache); } mesh = (qfv_alias_mesh_t *) ((byte *) hdr + hdr->commands); dfunc->vkDestroyBuffer (device->dev, mesh->vertex_buffer, 0); dfunc->vkDestroyBuffer (device->dev, mesh->uv_buffer, 0); dfunc->vkDestroyBuffer (device->dev, mesh->index_buffer, 0); dfunc->vkFreeMemory (device->dev, mesh->memory, 0); __auto_type skins = (maliasskindesc_t *) ((byte *) hdr + hdr->skindesc); for (int i = 0; i < hdr->mdl.numskins; i++) { if (skins[i].type == ALIAS_SKIN_GROUP) { __auto_type group = (maliasskingroup_t *) ((byte *) hdr + skins[i].skin); for (int j = 0; j < group->numskins; j++) { skin_clear (group->skindescs[j].skin, hdr, ctx); } } else { skin_clear (skins[i].skin, hdr, ctx); } } } void * Vulkan_Mod_LoadSkin (mod_alias_ctx_t *alias_ctx, byte *skinpix, int skinsize, int snum, int gnum, qboolean group, maliasskindesc_t *skindesc, vulkan_ctx_t *ctx) { qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; aliashdr_t *header = alias_ctx->header; qfv_alias_skin_t *skin; byte *tskin; int w, h; skin = Hunk_Alloc (sizeof (qfv_alias_skin_t)); QuatCopy (vid.palette32 + (TOP_RANGE + 15) * 4, skin->colora); QuatCopy (vid.palette32 + (BOTTOM_RANGE + 15) * 4, skin->colorb); skindesc->skin = (byte *) skin - (byte *) header; //FIXME move all skins into arrays(?) w = header->mdl.skinwidth; h = header->mdl.skinheight; tskin = malloc (2 * skinsize); memcpy (tskin, skinpix, skinsize); Mod_FloodFillSkin (tskin, w, h); int mipLevels = QFV_MipLevels (w, h); VkExtent3D extent = { w, h, 1 }; skin->image = QFV_CreateImage (device, 0, VK_IMAGE_TYPE_2D, VK_FORMAT_R8G8B8A8_UNORM, extent, mipLevels, 4, VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT); QFV_duSetObjectName (device, VK_OBJECT_TYPE_IMAGE, skin->image, va (ctx->va_ctx, "image:%s:%d:%d", alias_ctx->mod->name, snum, gnum)); skin->memory = QFV_AllocImageMemory (device, skin->image, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, 0, 0); QFV_duSetObjectName (device, VK_OBJECT_TYPE_DEVICE_MEMORY, skin->memory, va (ctx->va_ctx, "memory:%s:%d:%d", alias_ctx->mod->name, snum, gnum)); QFV_BindImageMemory (device, skin->image, skin->memory, 0); skin->view = QFV_CreateImageView (device, skin->image, VK_IMAGE_VIEW_TYPE_2D_ARRAY, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_ASPECT_COLOR_BIT); QFV_duSetObjectName (device, VK_OBJECT_TYPE_IMAGE_VIEW, skin->view, va (ctx->va_ctx, "iview:%s:%d:%d", alias_ctx->mod->name, snum, gnum)); qfv_stagebuf_t *stage = QFV_CreateStagingBuffer (device, "alias stage", 4 * skinsize * 4, ctx->cmdpool); qfv_packet_t *packet = QFV_PacketAcquire (stage); byte *base_data = QFV_PacketExtend (packet, skinsize * 4); byte *cola_data = QFV_PacketExtend (packet, skinsize * 4); byte *colb_data = QFV_PacketExtend (packet, skinsize * 4); byte *glow_data = QFV_PacketExtend (packet, skinsize * 4); Mod_CalcFullbright (tskin, tskin + skinsize, skinsize); Vulkan_ExpandPalette (glow_data, tskin + skinsize, vid.palette, 1, skinsize); Mod_ClearFullbright (tskin, tskin, skinsize); Skin_CalcTopColors (tskin, tskin + skinsize, skinsize); Vulkan_ExpandPalette (cola_data, tskin + skinsize, vid.palette, 1, skinsize); Skin_ClearTopColors (tskin, tskin, skinsize); Skin_CalcBottomColors (tskin, tskin + skinsize, skinsize); Vulkan_ExpandPalette (colb_data, tskin + skinsize, vid.palette, 1, skinsize); Skin_ClearBottomColors (tskin, tskin, skinsize); Vulkan_ExpandPalette (base_data, tskin, vid.palette, 1, skinsize); VkImageMemoryBarrier barrier; qfv_pipelinestagepair_t stages; stages = imageLayoutTransitionStages[qfv_LT_Undefined_to_TransferDst]; barrier = imageLayoutTransitionBarriers[qfv_LT_Undefined_to_TransferDst]; barrier.image = skin->image; barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS; barrier.subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS; dfunc->vkCmdPipelineBarrier (packet->cmd, stages.src, stages.dst, 0, 0, 0, 0, 0, 1, &barrier); VkBufferImageCopy copy = { packet->offset, 0, 0, {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 4}, {0, 0, 0}, {w, h, 1}, }; dfunc->vkCmdCopyBufferToImage (packet->cmd, packet->stage->buffer, skin->image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©); if (mipLevels == 1) { stages = imageLayoutTransitionStages[qfv_LT_TransferDst_to_ShaderReadOnly]; barrier=imageLayoutTransitionBarriers[qfv_LT_TransferDst_to_ShaderReadOnly]; barrier.image = skin->image; barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS; barrier.subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS; dfunc->vkCmdPipelineBarrier (packet->cmd, stages.src, stages.dst, 0, 0, 0, 0, 0, 1, &barrier); } else { QFV_GenerateMipMaps (device, packet->cmd, skin->image, mipLevels, w, h, 4); } QFV_PacketSubmit (packet); QFV_DestroyStagingBuffer (stage); free (tskin); return skinpix + skinsize; } void Vulkan_Mod_FinalizeAliasModel (mod_alias_ctx_t *alias_ctx, vulkan_ctx_t *ctx) { alias_ctx->mod->clear = vulkan_alias_clear; alias_ctx->mod->data = ctx; } void Vulkan_Mod_LoadExternalSkins (mod_alias_ctx_t *alias_ctx, vulkan_ctx_t *ctx) { } static size_t get_buffer_size (qfv_device_t *device, VkBuffer buffer) { qfv_devfuncs_t *dfunc = device->funcs; size_t size; size_t align; VkMemoryRequirements requirements; dfunc->vkGetBufferMemoryRequirements (device->dev, buffer, &requirements); size = requirements.size; align = requirements.alignment - 1; size = (size + align) & ~(align); return size; } void Vulkan_Mod_MakeAliasModelDisplayLists (mod_alias_ctx_t *alias_ctx, void *_m, int _s, int extra, vulkan_ctx_t *ctx) { aliashdr_t *header = alias_ctx->header; qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; aliasvrt_t *verts; aliasuv_t *uv; trivertx_t *pv; int *indexmap; uint32_t *indices; int numverts; int numtris; int i, j; int pose; vec3_t pos; if (header->mdl.ident == HEADER_MDL16) VectorScale (header->mdl.scale, 1/256.0, header->mdl.scale); numverts = header->mdl.numverts; numtris = header->mdl.numtris; // initialize indexmap to -1 (unduplicated). any other value indicates // both that the vertex has been duplicated and the index of the // duplicate vertex. indexmap = malloc (numverts * sizeof (int)); memset (indexmap, -1, numverts * sizeof (int)); // check for onseam verts, and duplicate any that are associated with // back-facing triangles for (i = 0; i < numtris; i++) { for (j = 0; j < 3; j++) { int vind = alias_ctx->triangles.a[i].vertindex[j]; if (alias_ctx->stverts.a[vind].onseam && !alias_ctx->triangles.a[i].facesfront) { // duplicate the vertex if it has not alreaddy been // duplicated if (indexmap[vind] == -1) { indexmap[vind] = numverts++; } } } } // we now know exactly how many vertices we need, so built the vertex // and index data arrays // The layout is: // vbuf:{vertex, normal} * (numposes * numverts) // uvbuf:{uv} * (numverts) // ibuf:{index} * (numtris * 3) // numverts includes the duplicated seam vertices. // The vertex buffer will be bound with various offsets based on the // current and previous pose, uvbuff "statically" bound as uvs are not // animated by pose, and the same for ibuf: indices will never change for // the mesh size_t vert_count = numverts * header->numposes; size_t vert_size = vert_count * sizeof (aliasvrt_t); size_t uv_size = numverts * sizeof (aliasuv_t); size_t ind_size = 3 * numtris * sizeof (uint32_t); VkBuffer vbuff = QFV_CreateBuffer (device, vert_size, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT); VkBuffer uvbuff = QFV_CreateBuffer (device, uv_size, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT); VkBuffer ibuff = QFV_CreateBuffer (device, ind_size, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT); QFV_duSetObjectName (device, VK_OBJECT_TYPE_BUFFER, vbuff, va (ctx->va_ctx, "buffer:alias:vertex:%s", alias_ctx->mod->name)); QFV_duSetObjectName (device, VK_OBJECT_TYPE_BUFFER, uvbuff, va (ctx->va_ctx, "buffer:alias:uv:%s", alias_ctx->mod->name)); QFV_duSetObjectName (device, VK_OBJECT_TYPE_BUFFER, ibuff, va (ctx->va_ctx, "buffer:alias:index:%s", alias_ctx->mod->name)); size_t voffs = 0; size_t uvoffs = voffs + get_buffer_size (device, vbuff); size_t ioffs = uvoffs + get_buffer_size (device, uvbuff); size_t buff_size = ioffs + get_buffer_size (device, ibuff); VkDeviceMemory mem; mem = QFV_AllocBufferMemory (device, vbuff, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, buff_size, 0); QFV_duSetObjectName (device, VK_OBJECT_TYPE_DEVICE_MEMORY, mem, va (ctx->va_ctx, "memory:alias:vuvi:%s", alias_ctx->mod->name)); QFV_BindBufferMemory (device, vbuff, mem, voffs); QFV_BindBufferMemory (device, uvbuff, mem, uvoffs); QFV_BindBufferMemory (device, ibuff, mem, ioffs); qfv_stagebuf_t *stage = QFV_CreateStagingBuffer (device, va (ctx->va_ctx, "alias:%s", alias_ctx->mod->name), buff_size, ctx->cmdpool); qfv_packet_t *packet = QFV_PacketAcquire (stage); verts = QFV_PacketExtend (packet, vert_size); uv = QFV_PacketExtend (packet, uv_size); indices = QFV_PacketExtend (packet, ind_size); // populate the uvs, duplicating and shifting any that are on the seam // and associated with back-facing triangles (marked by non-negative // indexmap entry). // the s coordinate is shifted right by half the skin width. for (i = 0; i < header->mdl.numverts; i++) { int vind = indexmap[i]; uv[i].u = (float) alias_ctx->stverts.a[i].s / header->mdl.skinwidth; uv[i].v = (float) alias_ctx->stverts.a[i].t / header->mdl.skinheight; if (vind != -1) { uv[vind] = uv[i]; uv[vind].u += 0.5; } } // poputlate the vertex position and normal data, duplicating for // back-facing on-seam verts (indicated by non-negative indexmap entry) for (i = 0, pose = 0; i < header->numposes; i++, pose += numverts) { for (j = 0; j < header->mdl.numverts; j++) { pv = &alias_ctx->poseverts.a[i][j]; if (extra) { VectorMultAdd (pv[header->mdl.numverts].v, 256, pv->v, pos); } else { VectorCopy (pv->v, pos); } VectorCompMultAdd (header->mdl.scale_origin, header->mdl.scale, pos, verts[pose + j].vertex); verts[pose + j].vertex[3] = 1; VectorCopy (vertex_normals[pv->lightnormalindex], verts[pose + j].normal); verts[pose + j].normal[3] = 0; // duplicate on-seam vert associated with back-facing triangle if (indexmap[j] != -1) { verts[pose + indexmap[j]] = verts[pose + j]; } } } // now build the indices for DrawElements for (i = 0; i < numtris; i++) { for (j = 0; j < 3; j++) { int vind = alias_ctx->triangles.a[i].vertindex[j]; if (alias_ctx->stverts.a[vind].onseam && !alias_ctx->triangles.a[i].facesfront) { vind = indexmap[vind]; } indices[3 * i + j] = vind; } } // finished with indexmap free (indexmap); header->poseverts = numverts; VkBufferMemoryBarrier wr_barriers[] = { { VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, 0, 0, VK_ACCESS_TRANSFER_WRITE_BIT, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, vbuff, 0, vert_size}, { VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, 0, 0, VK_ACCESS_TRANSFER_WRITE_BIT, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, uvbuff, 0, uv_size}, { VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, 0, 0, VK_ACCESS_TRANSFER_WRITE_BIT, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, ibuff, 0, ind_size}, }; dfunc->vkCmdPipelineBarrier (packet->cmd, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, 0, 3, wr_barriers, 0, 0); VkBufferCopy copy_region[] = { { packet->offset, 0, vert_size }, { packet->offset + vert_size, 0, uv_size }, { packet->offset + vert_size + uv_size, 0, ind_size }, }; dfunc->vkCmdCopyBuffer (packet->cmd, stage->buffer, vbuff, 1, ©_region[0]); dfunc->vkCmdCopyBuffer (packet->cmd, stage->buffer, uvbuff, 1, ©_region[1]); dfunc->vkCmdCopyBuffer (packet->cmd, stage->buffer, ibuff, 1, ©_region[2]); VkBufferMemoryBarrier rd_barriers[] = { { VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, 0, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, vbuff, 0, vert_size }, { VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, 0, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, uvbuff, 0, uv_size }, { VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, 0, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_INDEX_READ_BIT, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, ibuff, 0, ind_size }, }; dfunc->vkCmdPipelineBarrier (packet->cmd, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, 0, 0, 0, 3, rd_barriers, 0, 0); QFV_PacketSubmit (packet); QFV_DestroyStagingBuffer (stage); qfv_alias_mesh_t *mesh = Hunk_Alloc (sizeof (qfv_alias_mesh_t)); mesh->vertex_buffer = vbuff; mesh->uv_buffer = uvbuff; mesh->index_buffer = ibuff; mesh->memory = mem; header->commands = (byte *) mesh - (byte *) header; }