/* vulkan_lighting.c Vulkan lighting pass pipeline Copyright (C) 2021 Bill Currie Author: Bill Currie Date: 2021/2/23 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifdef HAVE_STRING_H # include #endif #ifdef HAVE_STRINGS_H # include #endif #include #include "qfalloca.h" #include "QF/cvar.h" #include "QF/dstring.h" #include "QF/heapsort.h" #include "QF/plist.h" #include "QF/progs.h" #include "QF/script.h" #include "QF/set.h" #include "QF/sys.h" #include "QF/va.h" #include "QF/scene/scene.h" #include "QF/ui/view.h" #include "QF/Vulkan/qf_draw.h" #include "QF/Vulkan/qf_lighting.h" #include "QF/Vulkan/qf_matrices.h" #include "QF/Vulkan/qf_texture.h" #include "QF/Vulkan/barrier.h" #include "QF/Vulkan/buffer.h" #include "QF/Vulkan/debug.h" #include "QF/Vulkan/descriptor.h" #include "QF/Vulkan/device.h" #include "QF/Vulkan/dsmanager.h" #include "QF/Vulkan/image.h" #include "QF/Vulkan/instance.h" #include "QF/Vulkan/projection.h" #include "QF/Vulkan/render.h" #include "QF/Vulkan/resource.h" #include "QF/Vulkan/staging.h" #include "compat.h" #include "r_internal.h" #include "vid_vulkan.h" #include "vkparse.h" #define ico_verts 12 #define cone_verts 7 static int ico_inds[] = { 0, 4, 6, 9, 2, 8, 4, -1, 3, 1, 10, 5, 7, 11, 1, -1, 1, 11, 6, 4, 10, -1, 9, 6, 11, 7, 2, -1, 5, 10, 8, 2, 7, -1, 4, 8, 10, }; #define num_ico_inds (sizeof (ico_inds) / sizeof (ico_inds[0])) static int cone_inds[] = { 0, 1, 2, 3, 4, 5, 6, 1, -1, 1, 6, 5, 4, 3, 2, }; #define num_cone_inds (sizeof (cone_inds) / sizeof (cone_inds[0])) #if 0 static void lighting_draw_maps (qfv_orenderframe_t *rFrame) { vulkan_ctx_t *ctx = rFrame->vulkan_ctx; qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; lightingctx_t *lctx = ctx->lighting_context; if (rFrame->subpassCmdSets[0].size) { __auto_type sets = &rFrame->subpassCmdSets[0]; dfunc->vkFreeCommandBuffers (device->dev, lctx->cmdpool, sets->size, sets->a); sets->size = 0; } if (!lctx->ldata || !lctx->ldata->lights.size) { return; } if (!lctx->light_renderers.a[0].renderPass) { //FIXME goes away when lighting implemented properly return; } __auto_type bufferset = QFV_AllocCommandBufferSet (1, alloca); QFV_AllocateCommandBuffers (device, lctx->cmdpool, 0, bufferset); VkCommandBuffer cmd = bufferset->a[0]; QFV_duSetObjectName (device, VK_OBJECT_TYPE_COMMAND_BUFFER, cmd, va (ctx->va_ctx, "lighting:%d", ctx->curFrame)); VkCommandBufferBeginInfo beginInfo = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, }; dfunc->vkBeginCommandBuffer (cmd, &beginInfo); __auto_type rp = rFrame->renderpass; QFV_CmdBeginLabel (device, cmd, rp->name, rp->color); __auto_type lr = &lctx->light_renderers.a[0]; VkRenderPassBeginInfo renderPassInfo = { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderArea = { {0, 0}, {lr->size, lr->size} }, .framebuffer = lr->framebuffer, .renderPass = lr->renderPass, .pClearValues = lctx->qfv_renderpass->clearValues->a, }; __auto_type subpassContents = VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS; if (renderPassInfo.renderPass) { dfunc->vkCmdBeginRenderPass (cmd, &renderPassInfo, subpassContents); //... dfunc->vkCmdEndRenderPass (cmd); } QFV_CmdEndLabel (device, cmd); dfunc->vkEndCommandBuffer (cmd); DARRAY_APPEND (&rFrame->subpassCmdSets[0], cmd); } void Vulkan_Lighting_CreateRenderPasses (vulkan_ctx_t *ctx) { // extents are dynamic and filled in for each light // frame buffers are highly dynamic __auto_type rp = QFV_RenderPass_New (ctx, "shadow", lighting_draw_maps); QFV_RenderPass_CreateRenderPass (rp); rp->primary_commands = 1; rp->order = QFV_rp_shadowmap; DARRAY_APPEND (&ctx->renderPasses, rp); lctx->qfv_renderpass = rp; } #endif static void lighting_update_lights (const exprval_t **params, exprval_t *result, exprctx_t *ectx) { auto taskctx = (qfv_taskctx_t *) ectx; auto ctx = taskctx->ctx; auto lctx = ctx->lighting_context; auto lframe = &lctx->frames.a[ctx->curFrame]; lframe->ico_count = 0; lframe->cone_count = 0; lframe->flat_count = 0; if (!lctx->scene || !lctx->scene->lights) { return; } lightingdata_t *ldata = lctx->ldata; Light_FindVisibleLights (ldata); dlight_t *lights[MaxLights]; auto packet = QFV_PacketAcquire (ctx->staging); qfv_light_buffer_t *light_data = QFV_PacketExtend (packet, sizeof (*light_data)); float style_intensities[NumStyles]; for (int i = 0; i < NumStyles; i++) { style_intensities[i] = d_lightstylevalue[i] / 65536.0; } uint32_t ico_ids[MaxLights]; uint32_t cone_ids[MaxLights]; uint32_t flat_ids[MaxLights]; light_data->lightCount = 0; R_FindNearLights (r_refdef.frame.position, MaxLights - 1, lights); for (int i = 0; i < MaxLights - 1; i++) { if (!lights[i]) { break; } ico_ids[lframe->ico_count++] = light_data->lightCount++; VectorCopy (lights[i]->color, light_data->lights[i].color); // dynamic lights seem a tad faint, so 16x map lights light_data->lights[i].color[3] = lights[i]->radius / 16; VectorCopy (lights[i]->origin, light_data->lights[i].position); // dlights are local point sources light_data->lights[i].position[3] = 1; light_data->lights[i].attenuation = (vec4f_t) { 0, 0, 1, 1/lights[i]->radius }; // full sphere, normal light (not ambient) light_data->lights[i].direction = (vec4f_t) { 0, 0, 1, 1 }; } for (size_t i = 0; (i < ldata->lightvis.size && light_data->lightCount < MaxLights); i++) { if (ldata->lightvis.a[i]) { uint32_t id = light_data->lightCount++; auto light = &light_data->lights[id]; *light = ldata->lights.a[i]; light->color[3] *= style_intensities[ldata->lightstyles.a[i]]; if (light->position[3] && !VectorIsZero (light->direction) && light->attenuation[3]) { if (light->direction[3] < 0) { cone_ids[lframe->cone_count++] = id; } else { ico_ids[lframe->ico_count++] = id; } } else { flat_ids[lframe->flat_count++] = id; } } } if (developer & SYS_lighting) { Vulkan_Draw_String (vid.width - 32, 8, va (ctx->va_ctx, "%3d", light_data->lightCount), ctx); } QFV_PacketCopyBuffer (packet, lframe->data_buffer, 0, &bufferBarriers[qfv_BB_TransferWrite_to_UniformRead]); QFV_PacketSubmit (packet); uint32_t id_count = lframe->ico_count + lframe->cone_count + lframe->flat_count; if (id_count) { packet = QFV_PacketAcquire (ctx->staging); uint32_t *ids = QFV_PacketExtend (packet, id_count * sizeof (uint32_t)); memcpy (ids, ico_ids, lframe->ico_count * sizeof (uint32_t)); ids += lframe->ico_count; memcpy (ids, cone_ids, lframe->cone_count * sizeof (uint32_t)); ids += lframe->cone_count; memcpy (ids, flat_ids, lframe->flat_count * sizeof (uint32_t)); QFV_PacketCopyBuffer (packet, lframe->id_buffer, 0, &bufferBarriers[qfv_BB_TransferWrite_to_IndexRead]); QFV_PacketSubmit (packet); } } static VkDescriptorBufferInfo base_buffer_info = { 0, 0, VK_WHOLE_SIZE }; static VkDescriptorImageInfo base_image_info = { 0, 0, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL }; static VkWriteDescriptorSet base_buffer_write = { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0, 0, 0, 0, 1, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, 0, 0 }; static VkWriteDescriptorSet base_attachment_write = { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0, 0, 0, 0, 1, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 0, 0, 0 }; static VkWriteDescriptorSet base_image_write = { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0, 0, 0, 0, 1, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, 0, 0 }; static void lighting_update_descriptors (const exprval_t **params, exprval_t *result, exprctx_t *ectx) { auto taskctx = (qfv_taskctx_t *) ectx; auto ctx = taskctx->ctx; auto device = ctx->device; auto dfunc = device->funcs; auto lctx = ctx->lighting_context; auto lframe = &lctx->frames.a[ctx->curFrame]; auto fb = &taskctx->renderpass->framebuffer; lframe->bufferInfo[0].buffer = lframe->data_buffer; lframe->attachInfo[0].imageView = fb->views[QFV_attachDepth]; lframe->attachInfo[1].imageView = fb->views[QFV_attachColor]; lframe->attachInfo[2].imageView = fb->views[QFV_attachEmission]; lframe->attachInfo[3].imageView = fb->views[QFV_attachNormal]; lframe->attachInfo[4].imageView = fb->views[QFV_attachPosition]; dfunc->vkUpdateDescriptorSets (device->dev, LIGHTING_DESCRIPTORS, lframe->descriptors, 0, 0); } static void lighting_bind_descriptors (const exprval_t **params, exprval_t *result, exprctx_t *ectx) { auto taskctx = (qfv_taskctx_t *) ectx; auto ctx = taskctx->ctx; auto device = ctx->device; auto dfunc = device->funcs; auto lctx = ctx->lighting_context; auto cmd = taskctx->cmd; auto layout = taskctx->pipeline->layout; auto lframe = &lctx->frames.a[ctx->curFrame]; VkDescriptorSet sets[] = { Vulkan_Matrix_Descriptors (ctx, ctx->curFrame), lframe->bufferWrite[0].dstSet, lframe->attachWrite[0].dstSet, lframe->shadowWrite.dstSet, }; dfunc->vkCmdBindDescriptorSets (cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, layout, 0, 3, sets, 0, 0); if (1) { VkBuffer buffers[] = { lframe->id_buffer, lctx->splat_verts, }; VkDeviceSize offsets[] = { 0, 0 }; dfunc->vkCmdBindVertexBuffers (cmd, 0, 2, buffers, offsets); dfunc->vkCmdBindIndexBuffer (cmd, lctx->splat_inds, 0, VK_INDEX_TYPE_UINT32); } } static void lighting_draw_splats (const exprval_t **params, exprval_t *result, exprctx_t *ectx) { auto taskctx = (qfv_taskctx_t *) ectx; auto ctx = taskctx->ctx; auto device = ctx->device; auto dfunc = device->funcs; auto lctx = ctx->lighting_context; auto cmd = taskctx->cmd; auto lframe = &lctx->frames.a[ctx->curFrame]; if (lframe->ico_count) { dfunc->vkCmdDrawIndexed (cmd, num_ico_inds, lframe->ico_count, 0, 0, 0); } if (lframe->cone_count) { dfunc->vkCmdDrawIndexed (cmd, num_cone_inds, lframe->cone_count, num_ico_inds, 12, lframe->ico_count); } } static void lighting_draw_flats (const exprval_t **params, exprval_t *result, exprctx_t *ectx) { auto taskctx = (qfv_taskctx_t *) ectx; auto ctx = taskctx->ctx; auto device = ctx->device; auto dfunc = device->funcs; auto lctx = ctx->lighting_context; auto cmd = taskctx->cmd; auto lframe = &lctx->frames.a[ctx->curFrame]; if (!lframe->flat_count) { return; } uint32_t splat_count = lframe->ico_count + lframe->cone_count; dfunc->vkCmdDraw (cmd, 3, lframe->flat_count, 0, splat_count); } static void lighting_draw_lights (const exprval_t **params, exprval_t *result, exprctx_t *ectx) { auto taskctx = (qfv_taskctx_t *) ectx; auto ctx = taskctx->ctx; auto device = ctx->device; auto dfunc = device->funcs; auto lctx = ctx->lighting_context; auto cmd = taskctx->cmd; auto lframe = &lctx->frames.a[ctx->curFrame]; if (!(lframe->ico_count + lframe->cone_count + lframe->flat_count)) { return; } dfunc->vkCmdDraw (cmd, 3, 1, 0, 0); } static exprfunc_t lighting_update_lights_func[] = { { .func = lighting_update_lights }, {} }; static exprfunc_t lighting_update_descriptors_func[] = { { .func = lighting_update_descriptors }, {} }; static exprfunc_t lighting_bind_descriptors_func[] = { { .func = lighting_bind_descriptors }, {} }; static exprfunc_t lighting_draw_splats_func[] = { { .func = lighting_draw_splats }, {} }; static exprfunc_t lighting_draw_flats_func[] = { { .func = lighting_draw_flats }, {} }; static exprfunc_t lighting_draw_lights_func[] = { { .func = lighting_draw_lights }, {} }; static exprsym_t lighting_task_syms[] = { { "lighting_update_lights", &cexpr_function, lighting_update_lights_func }, { "lighting_update_descriptors", &cexpr_function, lighting_update_descriptors_func }, { "lighting_bind_descriptors", &cexpr_function, lighting_bind_descriptors_func }, { "lighting_draw_splats", &cexpr_function, lighting_draw_splats_func }, { "lighting_draw_flats", &cexpr_function, lighting_draw_flats_func }, { "lighting_draw_lights", &cexpr_function, lighting_draw_lights_func }, {} }; void Vulkan_Lighting_Init (vulkan_ctx_t *ctx) { lightingctx_t *lctx = calloc (1, sizeof (lightingctx_t)); ctx->lighting_context = lctx; QFV_Render_AddTasks (ctx, lighting_task_syms); } static void make_ico (qfv_packet_t *packet) { vec3_t *verts = QFV_PacketExtend (packet, sizeof (vec3_t[ico_verts])); float p = (sqrt(5) + 1) / 2; float a = sqrt (3) / p; float b = a / p; for (int i = 0; i < 3; i++) { for (int j = 0; j < 4; j++) { float my = j & 1 ? a : -a; float mz = j & 2 ? b : -b; int vind = i * 4 + j; int ix = i; int iy = (i + 1) % 3; int iz = (i + 2) % 3; verts[vind][ix] = 0; verts[vind][iy] = my; verts[vind][iz] = mz; } } } static void make_cone (qfv_packet_t *packet) { vec3_t *verts = QFV_PacketExtend (packet, sizeof (vec3_t[cone_verts])); float a = 2 / sqrt (3); float b = 1 / sqrt (3); VectorSet ( 0, 0, 0, verts[0]); VectorSet ( a, 0, -1, verts[1]); VectorSet ( b, 1, -1, verts[2]); VectorSet (-b, 1, -1, verts[3]); VectorSet (-a, 0, -1, verts[4]); VectorSet (-b, -1, -1, verts[5]); VectorSet ( b, -1, -1, verts[6]); } static void write_inds (qfv_packet_t *packet) { uint32_t *inds = QFV_PacketExtend (packet, sizeof (ico_inds) + sizeof (cone_inds)); memcpy (inds, ico_inds, sizeof (ico_inds)); inds += num_ico_inds; memcpy (inds, cone_inds, sizeof (cone_inds)); } void Vulkan_Lighting_Setup (vulkan_ctx_t *ctx) { qfvPushDebug (ctx, "lighting init"); auto device = ctx->device; auto lctx = ctx->lighting_context; lctx->sampler = QFV_Render_Sampler (ctx, "shadow_sampler"); Vulkan_Script_SetOutput (ctx, &(qfv_output_t) { .format = VK_FORMAT_X8_D24_UNORM_PACK32 }); #if 0 plitem_t *rp_def = lctx->qfv_renderpass->renderpassDef; plitem_t *rp_cfg = PL_ObjectForKey (rp_def, "renderpass_6"); lctx->renderpass_6 = QFV_ParseRenderPass (ctx, rp_cfg, rp_def); rp_cfg = PL_ObjectForKey (rp_def, "renderpass_4"); lctx->renderpass_4 = QFV_ParseRenderPass (ctx, rp_cfg, rp_def); rp_cfg = PL_ObjectForKey (rp_def, "renderpass_1"); lctx->renderpass_1 = QFV_ParseRenderPass (ctx, rp_cfg, rp_def); #endif DARRAY_INIT (&lctx->light_mats, 16); DARRAY_INIT (&lctx->light_images, 16); DARRAY_INIT (&lctx->light_renderers, 16); auto rctx = ctx->render_context; size_t frames = rctx->frames.size; DARRAY_INIT (&lctx->frames, frames); DARRAY_RESIZE (&lctx->frames, frames); lctx->frames.grow = 0; lctx->light_resources = malloc (sizeof (qfv_resource_t) // splat vertices + sizeof (qfv_resobj_t) // splat indices + sizeof (qfv_resobj_t) // light data + sizeof (qfv_resobj_t[frames]) // light indices + sizeof (qfv_resobj_t[frames])); auto splat_verts = (qfv_resobj_t *) &lctx->light_resources[1]; auto splat_inds = &splat_verts[1]; auto light_data = &splat_inds[1]; auto light_ids = &light_data[frames]; lctx->light_resources[0] = (qfv_resource_t) { .name = "lights", .va_ctx = ctx->va_ctx, .memory_properties = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, .num_objects = 2 + 2 * frames, .objects = splat_verts, }; splat_verts[0] = (qfv_resobj_t) { .name = "splat:vertices", .type = qfv_res_buffer, .buffer = { .size = (20 + 7) * sizeof (vec3_t), .usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, }, }; splat_inds[0] = (qfv_resobj_t) { .name = "splat:indices", .type = qfv_res_buffer, .buffer = { .size = sizeof (ico_inds) + sizeof (cone_inds), .usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT, }, }; for (size_t i = 0; i < frames; i++) { light_data[i] = (qfv_resobj_t) { .name = "data", .type = qfv_res_buffer, .buffer = { .size = sizeof (qfv_light_buffer_t), .usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, }, }; light_ids[i] = (qfv_resobj_t) { .name = "ids", .type = qfv_res_buffer, .buffer = { .size = 2 * MaxLights * sizeof (uint32_t), .usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, }, }; } QFV_CreateResource (device, lctx->light_resources); lctx->splat_verts = splat_verts[0].buffer.buffer; lctx->splat_inds = splat_inds[0].buffer.buffer; auto attach_mgr = QFV_Render_DSManager (ctx, "lighting_attach"); auto lights_mgr = QFV_Render_DSManager (ctx, "lighting_lights"); auto shadow_mgr = QFV_Render_DSManager (ctx, "lighting_shadow"); for (size_t i = 0; i < frames; i++) { auto lframe = &lctx->frames.a[i]; *lframe = (lightingframe_t) { .data_buffer = light_data[i].buffer.buffer, .id_buffer = light_ids[i].buffer.buffer, }; auto attach = QFV_DSManager_AllocSet (attach_mgr); auto lights = QFV_DSManager_AllocSet (lights_mgr); auto shadow = QFV_DSManager_AllocSet (shadow_mgr); QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET, attach, va (ctx->va_ctx, "lighting:attach_set:%zd", i)); QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET, lights, va (ctx->va_ctx, "lighting:lights_set:%zd", i)); QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET, shadow, va (ctx->va_ctx, "lighting:shadow_set:%zd", i)); for (int j = 0; j < LIGHTING_BUFFER_INFOS; j++) { lframe->bufferInfo[j] = base_buffer_info; lframe->bufferWrite[j] = base_buffer_write; lframe->bufferWrite[j].dstSet = lights; lframe->bufferWrite[j].dstBinding = j; lframe->bufferWrite[j].pBufferInfo = &lframe->bufferInfo[j]; } for (int j = 0; j < LIGHTING_ATTACH_INFOS; j++) { lframe->attachInfo[j] = base_image_info; lframe->attachInfo[j].sampler = 0; lframe->attachWrite[j] = base_attachment_write; lframe->attachWrite[j].dstSet = attach; lframe->attachWrite[j].dstBinding = j; lframe->attachWrite[j].pImageInfo = &lframe->attachInfo[j]; } for (int j = 0; j < LIGHTING_SHADOW_INFOS; j++) { lframe->shadowInfo[j] = base_image_info; lframe->shadowInfo[j].sampler = lctx->sampler; lframe->shadowInfo[j].imageView = ctx->default_black->view; } lframe->shadowWrite = base_image_write; lframe->shadowWrite.dstSet = shadow; lframe->shadowWrite.dstBinding = 0; lframe->shadowWrite.descriptorCount = LIGHTING_SHADOW_INFOS; lframe->shadowWrite.pImageInfo = lframe->shadowInfo; } auto packet = QFV_PacketAcquire (ctx->staging); make_ico (packet); make_cone (packet); QFV_PacketCopyBuffer (packet, splat_verts[0].buffer.buffer, 0, &bufferBarriers[qfv_BB_TransferWrite_to_UniformRead]); QFV_PacketSubmit (packet); packet = QFV_PacketAcquire (ctx->staging); write_inds (packet); QFV_PacketCopyBuffer (packet, splat_inds[0].buffer.buffer, 0, &bufferBarriers[qfv_BB_TransferWrite_to_IndexRead]); QFV_PacketSubmit (packet); qfvPopDebug (ctx); } static void clear_shadows (vulkan_ctx_t *ctx) { qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; lightingctx_t *lctx = ctx->lighting_context; for (size_t i = 0; i < lctx->light_renderers.size; i++) { __auto_type lr = &lctx->light_renderers.a[i]; dfunc->vkDestroyFramebuffer (device->dev, lr->framebuffer, 0); dfunc->vkDestroyImageView (device->dev, lr->view, 0); } if (lctx->shadow_resources) { QFV_DestroyResource (device, lctx->shadow_resources); free (lctx->shadow_resources); lctx->shadow_resources = 0; } lctx->light_images.size = 0; lctx->light_renderers.size = 0; } void Vulkan_Lighting_Shutdown (vulkan_ctx_t *ctx) { qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; lightingctx_t *lctx = ctx->lighting_context; clear_shadows (ctx); dfunc->vkDestroyRenderPass (device->dev, lctx->renderpass_6, 0); dfunc->vkDestroyRenderPass (device->dev, lctx->renderpass_4, 0); dfunc->vkDestroyRenderPass (device->dev, lctx->renderpass_1, 0); QFV_DestroyResource (device, lctx->light_resources); free (lctx->light_resources); DARRAY_CLEAR (&lctx->light_mats); DARRAY_CLEAR (&lctx->light_images); DARRAY_CLEAR (&lctx->light_renderers); free (lctx->frames.a); free (lctx); } static vec4f_t ref_direction = { 0, 0, 1, 0 }; static void create_light_matrices (lightingctx_t *lctx) { lightingdata_t *ldata = lctx->ldata; DARRAY_RESIZE (&lctx->light_mats, ldata->lights.size); for (size_t i = 0; i < ldata->lights.size; i++) { light_t *light = &ldata->lights.a[i]; mat4f_t view; mat4f_t proj; int mode = ST_NONE; if (!light->position[3]) { mode = ST_CASCADE; } else { if (light->direction[3] > -0.5) { mode = ST_CUBE; } else { mode = ST_PLANE; } } switch (mode) { default: case ST_NONE: case ST_CUBE: mat4fidentity (view); break; case ST_CASCADE: case ST_PLANE: //FIXME will fail for -ref_direction vec4f_t dir = light->direction; dir[3] = 0; mat4fquat (view, qrotf (dir, ref_direction)); break; } VectorNegate (light->position, view[3]); switch (mode) { case ST_NONE: mat4fidentity (proj); break; case ST_CUBE: QFV_PerspectiveTan (proj, 1, 1); break; case ST_CASCADE: // dependent on view fustrum and cascade level mat4fidentity (proj); break; case ST_PLANE: QFV_PerspectiveCos (proj, -light->direction[3]); break; } mmulf (lctx->light_mats.a[i], proj, view); } } static int light_compare (const void *_li2, const void *_li1, void *_ldata) { const int *li1 = _li1; const int *li2 = _li2; lightingdata_t *ldata = _ldata; const light_t *l1 = &ldata->lights.a[*li1]; const light_t *l2 = &ldata->lights.a[*li2]; int s1 = abs ((int) l1->color[3]); int s2 = abs ((int) l2->color[3]); if (s1 == s2) { return (l1->position[3] == l2->position[3]) && (l1->direction[3] > -0.5) == (l2->direction[3] > -0.5); } return s1 - s2; } static VkImageView create_view (const light_renderer_t *lr, int id, vulkan_ctx_t *ctx) { qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; VkImageViewType type = 0; const char *viewtype = 0; switch (lr->mode) { case ST_NONE: return 0; case ST_PLANE: type = VK_IMAGE_VIEW_TYPE_2D; viewtype = "plane"; break; case ST_CASCADE: type = VK_IMAGE_VIEW_TYPE_2D_ARRAY; viewtype = "cascade"; break; case ST_CUBE: type = VK_IMAGE_VIEW_TYPE_CUBE; viewtype = "cube"; break; } VkImageViewCreateInfo createInfo = { VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, 0, 0, lr->image, type, VK_FORMAT_X8_D24_UNORM_PACK32, { VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, }, { VK_IMAGE_ASPECT_DEPTH_BIT, 0, 1, lr->layer, lr->numLayers } }; VkImageView view; dfunc->vkCreateImageView (device->dev, &createInfo, 0, &view); QFV_duSetObjectName (device, VK_OBJECT_TYPE_IMAGE_VIEW, view, va (ctx->va_ctx, "iview:shadowmap:%s:%d", viewtype, id)); (void) viewtype;//silence unused warning when vulkan debug disabled return view; } static VkFramebuffer create_framebuffer (const light_renderer_t *lr, vulkan_ctx_t *ctx) { return 0;//FIXME qfv_device_t *device = ctx->device; qfv_devfuncs_t *dfunc = device->funcs; VkFramebuffer framebuffer; VkFramebufferCreateInfo cInfo = { .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .renderPass = lr->renderPass, .attachmentCount = 1, .pAttachments = &lr->view, .width = lr->size, .height = lr->size, .layers = 1, }; dfunc->vkCreateFramebuffer (device->dev, &cInfo, 0, &framebuffer); return framebuffer; } static void build_shadow_maps (lightingctx_t *lctx, vulkan_ctx_t *ctx) { typedef struct { int size; int layers; int cube; } mapdesc_t; qfv_device_t *device = ctx->device; qfv_physdev_t *physDev = device->physDev; int maxLayers = physDev->properties->limits.maxImageArrayLayers; lightingdata_t *ldata = lctx->ldata; light_t *lights = ldata->lights.a; int numLights = ldata->lights.size; int size = -1; int numLayers = 0; int totalLayers = 0; int *imageMap = alloca (numLights * sizeof (int)); int *lightMap = alloca (numLights * sizeof (int)); int numMaps = 0; mapdesc_t *maps = alloca (numLights * sizeof (mapdesc_t)); for (int i = 0; i < numLights; i++) { lightMap[i] = i; } heapsort_r (lightMap, numLights, sizeof (int), light_compare, ldata); DARRAY_RESIZE (&lctx->light_renderers, numLights); for (int i = 0; i < numLights; i++) { int layers = 1; int li = lightMap[i]; __auto_type lr = &lctx->light_renderers.a[li]; *lr = (light_renderer_t) {}; if (!lights[li].position[3]) { if (!VectorIsZero (lights[li].direction)) { lr->mode = ST_CASCADE; } } else { if (lights[li].direction[3] > -0.5) { lr->mode = ST_CUBE; } else { lr->mode = ST_PLANE; } } if (lr->mode == ST_CASCADE || lr->mode == ST_NONE) { // cascade shadows will be handled separately, and "none" has no // shadow map at all imageMap[li] = -1; continue; } if (lr->mode == ST_CUBE) { layers = 6; } if (size != abs ((int) lights[li].color[3]) || numLayers + layers > maxLayers) { if (numLayers) { maps[numMaps++] = (mapdesc_t) { .size = size, .layers = numLayers, .cube = 1, }; numLayers = 0; } size = abs ((int) lights[li].color[3]); } imageMap[li] = numMaps; lr->size = size; lr->layer = numLayers; lr->numLayers = layers; numLayers += layers; totalLayers += layers; } if (numLayers) { maps[numMaps++] = (mapdesc_t) { .size = size, .layers = numLayers, .cube = 1, }; } numLayers = 0; size = 1024; for (int i = 0; i < numLights; i++) { int layers = 4; int li = lightMap[i]; __auto_type lr = &lctx->light_renderers.a[li]; if (lr->mode != ST_CASCADE) { continue; } if (numLayers + layers > maxLayers) { maps[numMaps++] = (mapdesc_t) { .size = size, .layers = numLayers, .cube = 0, }; numLayers = 0; } imageMap[li] = numMaps; lr->size = size; lr->layer = numLayers; lr->numLayers = layers; numLayers += layers; totalLayers += layers; } if (numLayers) { maps[numMaps++] = (mapdesc_t) { .size = size, .layers = numLayers, .cube = 0, }; } if (numMaps) { qfv_resource_t *shad = calloc (1, sizeof (qfv_resource_t) + numMaps * sizeof (qfv_resobj_t)); lctx->shadow_resources = shad; *shad = (qfv_resource_t) { .name = "shadow", .va_ctx = ctx->va_ctx, .memory_properties = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, .num_objects = numMaps, .objects = (qfv_resobj_t *) &shad[1], }; for (int i = 0; i < numMaps; i++) { int cube = maps[i].layers < 6 ? 0 : maps[i].cube; shad->objects[i] = (qfv_resobj_t) { .name = "map", .type = qfv_res_image, .image = { .flags = cube ? VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT : 0, .type = VK_IMAGE_TYPE_2D, .format = VK_FORMAT_X8_D24_UNORM_PACK32, .extent = { maps[i].size, maps[i].size, 1 }, .num_mipmaps = 1, .num_layers = maps[i].layers, .samples = VK_SAMPLE_COUNT_1_BIT, .usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, }, }; } QFV_CreateResource (device, shad); for (int i = 0; i < numMaps; i++) { DARRAY_APPEND (&lctx->light_images, shad->objects[i].image.image); } } for (int i = 0; i < numLights; i++) { int li = lightMap[i]; __auto_type lr = &lctx->light_renderers.a[li]; if (imageMap[li] == -1) { continue; } switch (lr->numLayers) { case 6: lr->renderPass = lctx->renderpass_6; break; case 4: lr->renderPass = lctx->renderpass_4; break; case 1: lr->renderPass = lctx->renderpass_1; break; default: Sys_Error ("build_shadow_maps: invalid light layer count: %u", lr->numLayers); } lr->image = lctx->light_images.a[imageMap[li]]; lr->view = create_view (lr, li, ctx); lr->framebuffer = create_framebuffer(lr, ctx); } Sys_MaskPrintf (SYS_vulkan, "shadow maps: %d layers in %zd images: %"PRId64"\n", totalLayers, lctx->light_images.size, lctx->shadow_resources->size); } void Vulkan_LoadLights (scene_t *scene, vulkan_ctx_t *ctx) { lightingctx_t *lctx = ctx->lighting_context; lctx->scene = scene; lctx->ldata = scene ? scene->lights : 0; clear_shadows (ctx); if (lctx->ldata && lctx->ldata->lights.size) { build_shadow_maps (lctx, ctx); create_light_matrices (lctx); } }