/* zone.c (description) Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifdef HAVE_STRING_H # include #endif #ifdef HAVE_STRINGS_H # include #endif #include #include #include #include "QF/cmd.h" #include "QF/cvar.h" #include "QF/mathlib.h" #include "QF/qargs.h" #include "QF/sys.h" #include "QF/va.h" #include "QF/zone.h" #include "compat.h" static void Cache_FreeLow (memhunk_t *hunk, size_t new_low_hunk); static void Cache_FreeHigh (memhunk_t *hunk, size_t new_high_hunk); static void Cache_Profile_r (memhunk_t *hunk); static bool Cache_FreeLRU (memhunk_t *hunk); #define ZONEID 0x1d4a11 #define HUNK_SENTINEL 0x1df001ed #define MINFRAGMENT 64 #define HUNK_ALIGN 64 /* ZONE MEMORY ALLOCATION There is never any space between memblocks, and there will never be two contiguous free memblocks. The rover can be left pointing at a non-empty block The zone calls are pretty much used only for small strings and structures, all big things are allocated on the hunk. */ typedef struct memblock_s { size_t block_size; // including the header and possibly tiny fragments struct memblock_s *next; struct memblock_s *prev; size_t size; // requested size byte pad[64 - 3 * 4 - 4 * sizeof (size_t)]; int tag; // a tag of 0 is a free block int id; // should be ZONEID int retain; // reference counter (optional usage) } __attribute__((aligned (64))) memblock_t; struct memzone_s { size_t size; // total bytes malloced, including header size_t used; // ammount used, including header size_t offset; size_t ele_size; zone_err_f error; void *data; memblock_t *rover; memblock_t blocklist; // start / end cap for linked list } __attribute__((aligned (64))); static size_t z_block_size (memblock_t *block) { size_t size = block->block_size; size -= sizeof (memblock_t); // account for size of block header size -= 4; // space for memory trash tester return size;; } static size_t z_round_size (size_t size) { size += sizeof (memblock_t); // account for size of block header size += 4; // space for memory trash tester size = (size + 63) & ~63; // align to 64-byte boundary return size; } static int z_offset (memzone_t *zone, memblock_t *block) { int offset = ((byte *) (block + 1) - (byte *) zone); return offset / zone->ele_size + zone->offset; } static memblock_t * z_next_block (memblock_t *block, size_t offset) { return (memblock_t *) ((byte *) block + offset); } static memblock_t * z_split_block (memblock_t *block, size_t size) { size_t extra = block->block_size - size; if (extra <= MINFRAGMENT) { return 0; } auto split = z_next_block (block, size); *split = (memblock_t) { .block_size = extra, .next = block->next, .prev = block, .id = ZONEID, }; split->next->prev = split; block->next = split; block->block_size = size; return split; } static memblock_t * z_merge_blocks (memzone_t *zone, memblock_t *a, memblock_t *b) { if (a->next != b) { Sys_Error ("z_merge_blocks: blocks not adjacant"); } a->block_size += b->block_size; a->next = b->next; a->next->prev = a; if (b == zone->rover) { zone->rover = a; } return a; } static void z_set_sentinel (memblock_t *block) { *(int *) ((byte *) block + block->block_size - 4) = ZONEID; } static void z_deadbeef (memblock_t *block) { auto ptr = (uint32_t *) (block + 1); size_t count = (block->block_size - sizeof (*block)) / sizeof (uint32_t); while (count-- > 0) { *ptr++ = 0xdeadbeef; } } static memblock_t * _z_ptr_block (memzone_t *zone, void *ptr, const char *func) { auto block = (memblock_t *) ptr - 1; if (((byte *) block < (byte *) zone) || (((byte *) block) >= (byte *) zone + zone->size)) { if (zone->error) { zone->error (zone->data, "%s: pointer outside of zone: %x", func, z_offset (zone, block)); } Sys_Error ("%s: pointer outside of zone: %x", func, z_offset (zone, block)); } if (block->id != ZONEID/* || block->id2 != ZONEID*/) { if (zone->error) { zone->error (zone->data, "%s: zone without ZONEID: %p (%x)", func, ptr, z_offset (zone, block)); } Sys_Error ("%s: zone without ZONEID: %p (%x)", func, ptr, z_offset (zone, block)); } return block; } #define z_ptr_block(zone, ptr) _z_ptr_block (zone, ptr, __FUNCTION__) static void z_error (memzone_t *zone, const char *msg) { if (zone->error) { zone->error (zone->data, "%s", msg); } Sys_Error ("%s", msg); } VISIBLE void Z_ClearZone (memzone_t *zone, size_t size, size_t zone_offset, size_t ele_size) { memblock_t *block = __builtin_choose_expr (__builtin_offsetof (memblock_t, retain) == 60, 0, (void) 0); // set the entire zone to one free block block = (memblock_t *) (zone + 1); zone->blocklist.next = block; zone->blocklist.prev = block; zone->blocklist.tag = 1; // in use block zone->blocklist.id = 0; zone->blocklist.block_size = 0; zone->blocklist.size = 0; zone->offset = zone_offset; zone->ele_size = ele_size; zone->rover = block; zone->size = size; zone->used = sizeof (memzone_t); zone->error = 0; zone->data = 0; block->prev = block->next = &zone->blocklist; block->tag = 0; // free block block->id = ZONEID; //block->id2 = ZONEID; block->block_size = size - sizeof (memzone_t); block->size = 0; } VISIBLE void Z_Free (memzone_t *zone, void *ptr) { memblock_t *block, *other; if (developer & SYS_zone) { Z_CheckHeap (zone); } if (!ptr) { if (zone->error) { zone->error (zone->data, "Z_Free: NULL pointer"); } Sys_Error ("Z_Free: NULL pointer"); } block = z_ptr_block (zone, ptr); if (block->tag == 0) { if (zone->error) { zone->error (zone->data, "Z_Free: freed a freed pointer"); } Sys_Error ("Z_Free: freed a freed pointer"); } if (block->retain) { if (zone->error) { zone->error (zone->data, "Z_Free: freed a retained pointer: %d", block->retain); } Sys_Error ("Z_Free: freed a retained pointer: %d", block->retain); } z_deadbeef (block); block->tag = 0; // mark as free block->size = 0; zone->used -= block->block_size; other = block->prev; if (!other->tag) { // merge with previous free block block = z_merge_blocks (zone, other, block); } other = block->next; if (!other->tag) { // merge the next free block onto the end z_merge_blocks (zone, block, other); } if (developer & SYS_zone) { Z_CheckHeap (zone); } } VISIBLE void * Z_Malloc (memzone_t *zone, size_t size) { void *buf; buf = Z_TagMalloc (zone, size, 1); if (!buf) { if (zone->error) { zone->error (zone->data, "Z_Malloc: failed on allocation of %zd bytes", size); } Sys_Error ("Z_Malloc: failed on allocation of %zd bytes", size); } memset (buf, 0, size); return buf; } void * Z_TagMalloc (memzone_t *zone, size_t size, int tag) { size_t requested_size = size; memblock_t *start, *rover, *base; if (developer & SYS_zone) { Z_CheckHeap (zone); } if (!tag) { if (zone->error) { zone->error (zone->data, "Z_TagMalloc: tried to use a 0 tag"); } Sys_Error ("Z_TagMalloc: tried to use a 0 tag"); } // scan through the block list looking for the first free block // of sufficient size size = z_round_size (size); base = rover = zone->rover; start = base->prev; do { if (rover == start) // scaned all the way around the list return NULL; if (rover->tag) base = rover = rover->next; else rover = rover->next; } while (base->tag || base->block_size < size); // found a block big enough z_split_block (base, size); base->retain = 0; // use is optional, but must be 0 to free base->tag = tag; // no longer a free block base->size = requested_size; zone->rover = base->next; // next allocation will start looking here base->id = ZONEID; //base->id2 = ZONEID; zone->used += base->block_size; // marker for memory trash testing z_set_sentinel (base); if (developer & SYS_zone) { Z_CheckHeap (zone); } return (void *) (base + 1); } VISIBLE void * Z_Realloc (memzone_t *zone, void *ptr, size_t size) { if (!ptr) return Z_Malloc (zone, size); if (developer & SYS_zone) { Z_CheckHeap (zone); } auto block = z_ptr_block (zone, ptr); if (block->tag == 0) { if (zone->error) { zone->error (zone->data, "Z_Realloc: realloced a freed pointer"); } Sys_Error ("Z_Realloc: realloced a freed pointer"); } auto new_size = z_round_size (size); auto old_size = block->size; auto old_ptr = ptr; if (new_size <= block->block_size) { auto hole = z_split_block (block, new_size); if (hole) { z_deadbeef (hole); if (!hole->next->tag) { // merge the hole with the free block after it z_merge_blocks (zone, hole, hole->next); } } block->size = size; z_set_sentinel (block); } else { auto other = block->next; if (!other->tag && block->block_size + other->block_size >= new_size) { z_split_block (other, new_size - block->block_size); z_merge_blocks (zone, block, other); block->size = size; z_set_sentinel (block); } else { ptr = Z_TagMalloc (zone, size, 1); } } if (!ptr) { if (zone->error) { zone->error (zone->data, "Z_Realloc: failed on allocation of %zd bytes", size); } Sys_Error ("Z_Realloc: failed on allocation of %zd bytes", size); } if (developer & SYS_zone) { Z_CheckHeap (zone); } if (ptr != old_ptr) { memmove (ptr, old_ptr, min (old_size, size)); Z_Free (zone, old_ptr); } if (old_size < size) { memset ((byte *)ptr + old_size, 0, size - old_size); } return ptr; } void Z_Print (memzone_t *zone) { memblock_t *block; Sys_Printf ("zone size: %zd location: %p used: %zd\n", zone->size, zone, zone->used); for (block = zone->blocklist.next ; ; block = block->next) { Sys_Printf ("block:%p size:%8zd tag:%5x ret: %5d ofs:%x\n", block, z_block_size (block), block->tag, block->retain, z_offset (zone, block)); if (block->next == &zone->blocklist) break; // all blocks have been hit if (block->id != ZONEID/* || block->id2 != ZONEID*/) Sys_Printf ("ERROR: block ids incorrect\n"); if ((byte *) block + block->block_size != (byte *) block->next) Sys_Printf ("ERROR: block size does not touch the next block\n"); if (block->next->prev != block) Sys_Printf ("ERROR: next block doesn't have proper back link\n"); if (!block->tag && !block->next->tag) Sys_Printf ("ERROR: two consecutive free blocks\n"); int id = *(int *) ((byte *) block + block->block_size - 4); if (block->tag && (id != ZONEID)) Sys_Printf ("ERROR: memory trashed in block %x != %x\n", id, ZONEID); fflush (stdout); } } void Z_CheckHeap (memzone_t *zone) { memblock_t *block; for (block = zone->blocklist.next ; ; block = block->next) { if (block->next == &zone->blocklist) break; // all blocks have been hit if ((byte *) block + block->block_size != (byte *) block->next) z_error (zone, "Z_CheckHeap: block size does not touch the next block"); if (block->next->prev != block) z_error (zone, "Z_CheckHeap: next block doesn't have proper back link"); if (!block->tag && !block->next->tag) z_error (zone, "Z_CheckHeap: two consecutive free blocks"); if (block->id != ZONEID/* || block->id2 != ZONEID*/) z_error (zone, "ERROR: block ids incorrect"); if ((byte *) block + block->block_size != (byte *) block->next) z_error (zone, "ERROR: block size does not touch the next block"); if (block->next->prev != block) z_error (zone, "ERROR: next block doesn't have proper back link"); if (!block->tag && !block->next->tag) z_error (zone, "ERROR: two consecutive free blocks"); if (block->tag && (*(int *) ((byte *) block + block->block_size - 4) != ZONEID)) z_error (zone, "ERROR: memory trashed in block"); } } VISIBLE void Z_SetError (memzone_t *zone, zone_err_f err, void *data) { zone->error = err; zone->data = data; } VISIBLE void Z_CheckPointer (const memzone_t *zone, const void *ptr, size_t size) { const memblock_t *block; const char *block_mem; const char *check = (char *) ptr; for (block = zone->blocklist.next ; ; block = block->next) { if (block->next == &zone->blocklist) break; // all blocks have been hit if (check < (const char *) block || check >= (const char *) block + block->block_size) continue; // a block that overlaps with the memory region has been found if (!block->tag) zone->error (zone->data, "invalid access to unallocated memory"); block_mem = (char *) &block[1]; if (check < block_mem || check + size > block_mem + block->size) zone->error (zone->data, "invalid access to allocated memory"); return; // access ok } } VISIBLE int Z_IncRetainCount (memzone_t *zone, void *ptr) { memblock_t *block = z_ptr_block (zone, ptr); if (!++block->retain) { z_error (zone, "inc retain count wrapped to 0"); } return block->retain; } VISIBLE int Z_DecRetainCount (memzone_t *zone, void *ptr) { memblock_t *block = z_ptr_block (zone, ptr); if (--block->retain == -1) { z_error (zone, "dec retain count wrapped past 0"); } return block->retain; } VISIBLE int Z_GetRetainCount (memzone_t *zone, void *ptr) { memblock_t *block = z_ptr_block (zone, ptr); return block->retain; } VISIBLE int Z_GetTag (memzone_t *zone, void *ptr) { memblock_t *block = z_ptr_block (zone, ptr); return block->tag; } VISIBLE void Z_SetTag (memzone_t *zone, void *ptr, int tag) { if (!tag) { z_error (zone, "Attept to set tag to 0"); } memblock_t *block = z_ptr_block (zone, ptr); block->tag = tag; } VISIBLE void Z_MemInfo (const memzone_t *zone, size_t *used, size_t *size) { *used = zone->used; *size = zone->size; } //============================================================================ typedef struct cache_system_s cache_system_t; struct cache_system_s { uint32_t prev; uint32_t next; uint32_t lru_prev; uint32_t lru_next; struct memhunk_s *hunk; size_t size; // including this header cache_user_t *user; char name[16]; int readlock; } __attribute__((aligned (64))); typedef struct { int sentinel1; int sentinel2; size_t size; // including sizeof(hunkblk_t), -1 = not allocated char name[16]; } __attribute__((aligned (64))) hunkblk_t; struct memhunk_s { byte *base; size_t size; size_t low_used; size_t high_used; size_t tempmark; bool tempactive; cache_system_t cache_head[1]; } __attribute__((aligned (64))); static cache_system_t * cs_ptr (memhunk_t *hunk, uint32_t cs_ind) { return &hunk->cache_head[cs_ind]; } static uint32_t cs_ind (memhunk_t *hunk, cache_system_t *cs_ptr) { return cs_ptr - hunk->cache_head; } static memhunk_t *global_hunk; static int hunk_check (memhunk_t *hunk, hunkblk_t *h, int err) { const char *msg = 0; if (h->sentinel1 != HUNK_SENTINEL || h->sentinel2 != HUNK_SENTINEL) { msg = "Hunk_Check: trashed sentinel"; } if (!msg && (h->size < sizeof (hunkblk_t) || h->size + (byte *) h > hunk->base + hunk->size)) { msg = "Hunk_Check: bad size"; } if (!msg) { return 1; } byte *buf = (byte *) h; int len = sizeof (*h); int pos = 0, llen, i; fflush (stdout); fprintf (stderr, "\n"); while (pos < len) { llen = (len - pos < 16 ? len - pos : 16); fprintf (stderr, "%08x: ", pos); for (i = 0; i < llen; i++) fprintf (stderr, "%02x ", buf[pos + i]); for (i = 0; i < 16 - llen; i++) fprintf (stderr, " "); fprintf (stderr, " | "); for (i = 0; i < llen; i++) fprintf (stderr, "%c", isprint (buf[pos + i]) ? buf[pos + i] : '.'); for (i = 0; i < 16 - llen; i++) fprintf (stderr, " "); fprintf (stderr, "\n"); pos += llen; } if (err) { Sys_Error ("%p: %zd: %s", h, (byte *) h - (byte *) hunk, msg); } fprintf (stderr, "%p: %zd: %s", h, (byte *) h - (byte *) hunk, msg); return 0; } /* Hunk_Check Run consistancy and sentinel trahing checks */ VISIBLE void Hunk_Check (memhunk_t *hunk) { if (!hunk) { hunk = global_hunk; } //FIXME clean up callers hunkblk_t *h; byte *hunk_end = hunk->base + hunk->low_used; for (h = (hunkblk_t *) hunk->base; (byte *) h < hunk_end; ) { hunk_check (hunk, h, 1); h = (hunkblk_t *) ((byte *) h + h->size); } } /* Hunk_Print If "all" is specified, every single allocation is printed. Otherwise, allocations with the same name will be totaled up before printing. */ VISIBLE void Hunk_Print (memhunk_t *hunk, bool all) { if (!hunk) { hunk = global_hunk; } //FIXME clean up callers hunkblk_t *h, *next, *endlow, *starthigh, *endhigh; int sum, totalblocks; sum = 0; totalblocks = 0; h = (hunkblk_t *) hunk->base; endlow = (hunkblk_t *) (hunk->base + hunk->low_used); starthigh = (hunkblk_t *) (hunk->base + hunk->size - hunk->high_used); endhigh = (hunkblk_t *) (hunk->base + hunk->size); Sys_Printf (" :%8zd total hunk size\n", hunk->size); Sys_Printf ("-------------------------\n"); while (1) { // skip to the high hunk if done with low hunk if (h == endlow) { Sys_Printf ("-------------------------\n"); Sys_Printf (" :%8zd REMAINING\n", hunk->size - hunk->low_used - hunk->high_used); Sys_Printf ("-------------------------\n"); h = starthigh; } // if totally done, break if (h == endhigh) break; // run consistancy checks if (!hunk_check (hunk, h, 0)) { break; } next = (hunkblk_t *) ((byte *) h + h->size); totalblocks++; sum += h->size; // print the single block if (all) { const int sz = sizeof (h->name); Sys_Printf ("%8p :%8zd %*.*s\n", h, h->size, sz, sz, h->name[0] ? h->name : "unknown"); } // print the total if (next == endlow || next == endhigh || strncmp (h->name, next->name, sizeof (h->name))) { if (!all) { const int sz = sizeof (h->name); Sys_Printf (" :%8i %*.*s (TOTAL)\n", sum, sz, sz, h->name[0] ? h->name : "unknown"); } sum = 0; } h = next; } Sys_Printf ("-------------------------\n"); Sys_Printf ("%8i total blocks\n", totalblocks); } static void Hunk_FreeToHighMark (memhunk_t *hunk, size_t mark) { if (!hunk) { hunk = global_hunk; } //FIXME clean up callers if (hunk->tempactive) { hunk->tempactive = false; Hunk_FreeToHighMark (hunk, hunk->tempmark); } if (mark == hunk->high_used) return; if (mark > hunk->high_used) Sys_Error ("Hunk_FreeToHighMark: bad mark %zd", mark); memset (hunk->base + hunk->size - hunk->high_used, 0, hunk->high_used - mark); hunk->high_used = mark; } static int Hunk_HighMark (memhunk_t *hunk) { if (!hunk) { hunk = global_hunk; } //FIXME clean up callers if (hunk->tempactive) { hunk->tempactive = false; Hunk_FreeToHighMark (hunk, hunk->tempmark); } return hunk->high_used; } VISIBLE void * Hunk_RawAlloc (memhunk_t *hunk, size_t size) { hunkblk_t *h; #ifdef PARANOID Hunk_Check (hunk); #endif size = sizeof (hunkblk_t) + ((size + HUNK_ALIGN - 1) & ~(HUNK_ALIGN - 1)); if (hunk->size - hunk->low_used - hunk->high_used < size) { Hunk_HighMark (hunk); // force free of temp hunk } if (hunk->size - hunk->low_used - hunk->high_used < size) { int mem = (hunk->size + sizeof (memhunk_t)) / (1024 * 1024); mem += 8; mem &= ~7; Hunk_Print (hunk, 1); Cache_Profile_r (hunk); Sys_Error ("Not enough RAM allocated. Try starting using \"-mem %d\" on " "the %s command line. (%zd - %zd - %zd < %zd)", mem, PACKAGE_NAME, hunk->size, hunk->low_used, hunk->high_used, size); } h = (hunkblk_t *) (hunk->base + hunk->low_used); hunk->low_used += size; Cache_FreeLow (hunk, hunk->low_used); h->size = size; h->sentinel1 = HUNK_SENTINEL; h->sentinel2 = HUNK_SENTINEL; h->name[0] = 0; return (void *) (h + 1); } VISIBLE void * Hunk_RawAllocName (memhunk_t *hunk, size_t size, const char *name) { void *mem = Hunk_RawAlloc (hunk, size); hunkblk_t *h = ((hunkblk_t *) mem) - 1; memccpy (h->name, name, 0, sizeof (h->name)); return mem; } VISIBLE void * Hunk_AllocName (memhunk_t *hunk, size_t size, const char *name) { if (!hunk) { hunk = global_hunk; } //FIXME clean up callers void *mem = Hunk_RawAllocName (hunk, size, name); memset (mem, 0, size); return mem; } VISIBLE void * Hunk_Alloc (memhunk_t *hunk, size_t size) { if (!hunk) { hunk = global_hunk; } //FIXME clean up callers void *mem = Hunk_RawAlloc (hunk, size); memset (mem, 0, size); return mem; } VISIBLE size_t Hunk_LowMark (memhunk_t *hunk) { if (!hunk) { hunk = global_hunk; } //FIXME clean up callers return hunk->low_used; } VISIBLE void Hunk_RawFreeToLowMark (memhunk_t *hunk, size_t mark) { if (mark == hunk->low_used) return; if (mark > hunk->low_used) Sys_Error ("Hunk_FreeToLowMark: bad mark %zd", mark); hunk->low_used = mark; } VISIBLE void Hunk_FreeToLowMark (memhunk_t *hunk, size_t mark) { if (!hunk) { hunk = global_hunk; } //FIXME clean up callers if (mark == hunk->low_used) return; if (mark > hunk->low_used) Sys_Error ("Hunk_FreeToLowMark: bad mark %zd", mark); memset (hunk->base + mark, 0, hunk->low_used - mark); hunk->low_used = mark; } static void * Hunk_HighAlloc (memhunk_t *hunk, size_t size) { hunkblk_t *h; if (hunk->tempactive) { Hunk_FreeToHighMark (hunk, hunk->tempmark); hunk->tempactive = false; } #ifdef PARANOID Hunk_Check (hunk); #endif size = sizeof (hunkblk_t) + ((size + HUNK_ALIGN - 1) & ~(HUNK_ALIGN - 1)); if (hunk->size - hunk->low_used - hunk->high_used < size) { Sys_Printf ("Hunk_HighAlloc: failed on %zd bytes\n", size); return NULL; } hunk->high_used += size; Cache_FreeHigh (hunk, hunk->high_used); h = (void *) (hunk->base + hunk->size - hunk->high_used); h->sentinel1 = HUNK_SENTINEL; h->sentinel2 = HUNK_SENTINEL; h->size = size; h->name[0] = 0; return h + 1; } /* Hunk_TempAlloc Return space from the top of the hunk */ VISIBLE void * Hunk_TempAlloc (memhunk_t *hunk, size_t size) { if (!hunk) { hunk = global_hunk; } //FIXME clean up callers void *buf; size = (size + HUNK_ALIGN - 1) & ~(HUNK_ALIGN - 1); if (hunk->tempactive) { size_t temp_free = hunk->high_used - hunk->tempmark; if (temp_free >= size + (int) sizeof (hunkblk_t)) { byte *temp_block = hunk->base + hunk->size - hunk->high_used; return (hunkblk_t *) temp_block + 1; } Hunk_FreeToHighMark (hunk, hunk->tempmark); hunk->tempactive = false; } hunk->tempmark = Hunk_HighMark (hunk); buf = Hunk_HighAlloc (hunk, size); hunk->tempactive = true; return buf; } VISIBLE int Hunk_PointerIsValid (memhunk_t *hunk, void *ptr) { if (!hunk) { hunk = global_hunk; } //FIXME clean up callers size_t offset = (byte *) ptr - hunk->base; if (offset >= hunk->size) { return 0; } if (offset < hunk->low_used) { // the pointer is somewhere in the lower space of the hunk // FIXME better checking? return 1; } if (offset >= hunk->size - hunk->high_used + sizeof (hunkblk_t)) { // the pointer is somewhere in the upper space of the hunk // FIXME better checking? return 1; } // the pointer is somewhere in between the two marks, so it has probably // been freed return 0; } /* CACHE MEMORY */ static inline void Cache_UnlinkLRU (cache_system_t * cs) { memhunk_t *hunk = cs->hunk; cs_ptr (hunk, cs->lru_next)->lru_prev = cs->lru_prev; cs_ptr (hunk, cs->lru_prev)->lru_next = cs->lru_next; cs->lru_prev = cs->lru_next = 0; } static void Cache_MakeLRU (cache_system_t * cs) { memhunk_t *hunk = cs->hunk; __auto_type nx = cs_ptr (hunk, hunk->cache_head[0].lru_next); nx->lru_prev = cs_ind (hunk, cs); cs->lru_next = cs_ind (hunk, nx); cs->lru_prev = 0; hunk->cache_head[0].lru_next = cs_ind (hunk, cs); } static void link_cache_system (cache_system_t *new, cache_system_t *cs) { memhunk_t *hunk = cs->hunk; new->next = cs_ind (hunk, cs); new->prev = cs->prev; cs_ptr (hunk, cs->prev)->next = cs_ind (hunk, new); cs->prev = cs_ind (hunk, new); } /* Cache_TryAlloc Looks for a free block of memory between the high and low hunk marks Size should already include the header and padding */ static cache_system_t * Cache_TryAlloc (memhunk_t *hunk, size_t size, size_t low_space, size_t high_space) { cache_system_t *cs, *new; low_space = max (low_space, hunk->low_used); high_space = max (high_space, hunk->high_used); if (hunk->cache_head[0].prev == 0) { // The cache is completely empty, so just check for space if (hunk->size - high_space < low_space + size) { return 0; } // cache memory comes from the free region of the hunk. Should either // end of the hunk need to grow, interfering cache blocks will be // either moved or freed if there is nowhere to move the block. new = (cache_system_t *) (hunk->base + hunk->low_used); new->size = size; new->hunk = hunk; hunk->cache_head[0].prev = cs_ind (hunk, new); hunk->cache_head[0].next = cs_ind (hunk, new); new->prev = new->next = 0; new->readlock = 0; new->name[0] = 0; Cache_MakeLRU (new); return new; } new = (cache_system_t *) (hunk->base + low_space); uint32_t csi = hunk->cache_head[0].next; do { cs = cs_ptr (hunk, csi); if ((byte *) cs >= (byte *) new + size) { new->size = size; new->hunk = hunk; link_cache_system (new, cs); new->readlock = 0; new->name[0] = 0; Cache_MakeLRU (new); return new; } // try next block. If it is a hole, then the resulting cs will be // greater than new (though possibly not sufficiently so), but if // it's not a hole, then they'll be the same and the difference in // the test above will be 0 new = (cache_system_t *) ((byte *) cs + cs->size); csi = cs->next; } while (csi); // came to the end of the cache. try to allocate from between the cache // and the high hunk if ((byte *) new < hunk->base + low_space) { new = (cache_system_t *) (hunk->base + low_space); } if (hunk->base + hunk->size - high_space >= (byte *) new + size) { new->size = size; new->hunk = hunk; link_cache_system (new, hunk->cache_head); new->readlock = 0; new->name[0] = 0; Cache_MakeLRU (new); return new; } return 0; // couldn't allocate } static void Cache_Move (cache_system_t *c, size_t new_low_hunk, size_t new_high_hunk) { memhunk_t *hunk = c->hunk; cache_system_t *new; new = Cache_TryAlloc (hunk, c->size, new_low_hunk, new_high_hunk); if (new) { Sys_MaskPrintf (SYS_cache, "cache_move ok\n"); memcpy (new + 1, c + 1, c->size - sizeof (cache_system_t)); new->user = c->user; memccpy (new->name, c->name, 0, sizeof (new->name)); Cache_Free (c->user); new->user->data = (void *) (new + 1); } else { Sys_MaskPrintf (SYS_cache, "cache_move failed\n"); Cache_Free (c->user); // tough luck... } } /* Cache_FreeLow Throw things out until the hunk can be expanded to the given point */ static void Cache_FreeLow (memhunk_t *hunk, size_t new_low_hunk) { cache_system_t *c; uint32_t ci; // if next is 0, then there is nothing in the cache while ((ci = hunk->cache_head[0].next)) { c = cs_ptr (hunk, ci); if ((byte *) c >= hunk->base + new_low_hunk) { // there is space to grow the hunk return; } // reclaim the space (the block will be moved or freed) Cache_Move (c, new_low_hunk, 0); } } static void Cache_FreeHigh (memhunk_t *hunk, size_t new_high_hunk) { cache_system_t *c; uint32_t ci; while ((ci = hunk->cache_head[0].prev)) { c = cs_ptr (hunk, ci); if ((byte *) c + c->size <= hunk->base + hunk->size - new_high_hunk) { // there is space to grow the hunk return; } // reclaim the space (the block will be moved or freed) Cache_Move (c, 0, new_high_hunk); } } static bool Cache_FreeLRU (memhunk_t *hunk) { cache_system_t *cs; for (cs = cs_ptr (hunk, hunk->cache_head[0].lru_prev); cs != hunk->cache_head && cs->readlock; cs = cs_ptr (hunk, cs->lru_prev)) { } if (cs == hunk->cache_head) return 0; Cache_Free (cs->user); return 1; } static void Cache_Profile_r (memhunk_t *hunk) { unsigned int i; unsigned int items[31] = {0}, sizes[31] = {0}; int count = 0, total = 0; cache_system_t *cs; for (uint32_t ind = hunk->cache_head[0].next; ind; ind = cs->next) { cs = cs_ptr (hunk, ind); for (i = 0; (cs->size >> (i + 1)) && i < 30; i++) { } items[i]++; sizes[i] += cs->size; total += cs->size; count++; ind = cs->next; } Sys_Printf ("Cache Profile:\n"); Sys_Printf ("%8s %8s %8s %8s %8s\n", "count", "min", "max", "average", "percent"); for (i = 0; i < 31; i++) { if (!items[i]) continue; Sys_Printf ("%8d %8d %8d %8d %7d%%\n", items[i], 1 << i, (1 << (i + 1)) - 1, sizes[i] / items[i], (sizes[i] * 100) / total); } Sys_Printf ("Total allocations: %d in %d allocations, average of" " %d per allocation\n", total, count, count ? total / count : -1); } static void Cache_Profile (void) { Cache_Profile_r (global_hunk); } static void Cache_Print_r (memhunk_t *hunk) { cache_system_t *cs; for (uint32_t ind = hunk->cache_head[0].next; ind; ind = cs->next) { const int sz = sizeof (cs->name); cs = cs_ptr (hunk, ind); Sys_Printf ("%8zd : %.*s\n", cs->size, sz, cs->name); } } static void Cache_Print (void) { Cache_Print_r (global_hunk); } static void init_cache (memhunk_t *hunk) { hunk->cache_head[0].hunk = hunk; hunk->cache_head[0].size = 0; hunk->cache_head[0].next = hunk->cache_head[0].prev = 0; hunk->cache_head[0].lru_next = hunk->cache_head[0].lru_prev = 0; hunk->cache_head[0].user = (cache_user_t *) 1; // make it look allocated hunk->cache_head[0].readlock = 1; // don't try to free or move it } static void Cache_Init (void) { Cmd_AddCommand ("cache_flush", Cache_Flush, "Clears the current game " "cache"); Cmd_AddCommand ("cache_profile", Cache_Profile, "Prints a profile of " "the current cache"); Cmd_AddCommand ("cache_print", Cache_Print, "Prints out items in the " "cache"); } /* Cache_Flush Throw everything out, so new data will be demand cached */ static void Cache_Flush_r (memhunk_t *hunk) { // cache_head.prev is guaranteed to not be free because it's the bottom // one and Cache_Free actually properly releases it while (hunk->cache_head[0].prev) { __auto_type cs = cs_ptr (hunk, hunk->cache_head[0].prev); if (!cs->user->data) { const int sz = sizeof (cs->name); Sys_Error ("Cache_Flush: user/system out of sync for " "'%.*s' with %zd size", sz, cs->name, cs->size); } Cache_Free (cs->user); // reclaim the space } } VISIBLE void Cache_Flush (void) { // cache_head.prev is guaranteed to not be free because it's the bottom Cache_Flush_r (global_hunk); } VISIBLE void * Cache_Check (cache_user_t *c) { cache_system_t *cs; if (!c->data) return NULL; cs = ((cache_system_t *) c->data) - 1; // move to head of LRU Cache_UnlinkLRU (cs); Cache_MakeLRU (cs); return c->data; } /* Cache_Free Frees the memory and removes it from the LRU list */ VISIBLE void Cache_Free (cache_user_t *c) { cache_system_t *cs; if (!c->data) Sys_Error ("Cache_Free: not allocated"); cs = ((cache_system_t *) c->data) - 1; if (cs->readlock) Sys_Error ("Cache_Free: attempt to free locked block"); const int sz = sizeof (cs->name); Sys_MaskPrintf (SYS_cache, "Cache_Free: freeing '%.*s' %p\n", sz, cs->name, cs); memhunk_t *hunk = cs->hunk; cs_ptr (hunk, cs->prev)->next = cs->next; cs_ptr (hunk, cs->next)->prev = cs->prev; cs->next = cs->prev = 0; c->data = NULL; Cache_UnlinkLRU (cs); } static void * Cache_Alloc_r (memhunk_t *hunk, cache_user_t *c, size_t size, const char *name) { cache_system_t *cs; if (c->data) Sys_Error ("Cache_Alloc_r: already allocated"); if (size <= 0) Sys_Error ("Cache_Alloc_r: size %zd", size); size = (size + sizeof (cache_system_t) + HUNK_ALIGN - 1) & ~(HUNK_ALIGN-1); // find memory for it while (1) { cs = Cache_TryAlloc (hunk, size, 0, 0); if (cs) { memccpy (cs->name, name, 0, sizeof (cs->name)); c->data = (void *) (cs + 1); cs->user = c; break; } // free the least recently used cachedat if (!Cache_FreeLRU (hunk)) Sys_Error ("Cache_Alloc: out of memory"); } return Cache_Check (c); } VISIBLE void * Cache_Alloc (cache_user_t *c, size_t size, const char *name) { return Cache_Alloc_r (global_hunk, c, size, name); } static void Cache_Report_r (memhunk_t *hunk) { Sys_Printf ("%4.1f megabyte data cache\n", (hunk->size - hunk->high_used - hunk->low_used) / (float) (1024 * 1024)); } VISIBLE void Cache_Report (void) { if (developer & SYS_cache) { Cache_Report_r (global_hunk); } } VISIBLE void Cache_Add (cache_user_t *c, void *object, cache_loader_t loader) { if (c->data || c->object || c->loader) Sys_Error ("Cache_Add: cache item already exists!"); c->object = object; c->loader = loader; // c->loader (c, Cache_Alloc); // for debugging } VISIBLE void Cache_Remove (cache_user_t *c) { if (!c->object || !c->loader) Sys_Error ("Cache_Remove: already removed!"); if (Cache_Check (c)) Cache_Free (c); c->object = 0; c->loader = 0; } VISIBLE void * Cache_TryGet (cache_user_t *c) { void *mem; mem = Cache_Check (c); if (!mem) { c->loader (c->object, Cache_Alloc); mem = Cache_Check (c); } if (mem) (((cache_system_t *)c->data) - 1)->readlock++; return mem; } VISIBLE void * Cache_Get (cache_user_t *c) { void *mem = Cache_TryGet (c); if (!mem) Sys_Error ("Cache_Get: couldn't get cache!"); return mem; } VISIBLE void Cache_Release (cache_user_t *c) { int *readlock; readlock = &(((cache_system_t *)c->data) - 1)->readlock; if (!*readlock) Sys_Error ("Cache_Release: already released!"); (*readlock)--; // if (!*readlock) // Cache_Free (c); // for debugging } VISIBLE int Cache_ReadLock (cache_user_t *c) { return (((cache_system_t *)c->data) - 1)->readlock; } //============================================================================ VISIBLE memhunk_t * Hunk_Init (void *buf, size_t size) { memhunk_t *hunk = buf; hunk->base = (byte *) (hunk + 1); hunk->size = size - sizeof (memhunk_t); hunk->low_used = 0; hunk->high_used = 0; init_cache (hunk); return hunk; } VISIBLE memhunk_t * Memory_Init (void *buf, size_t size) { global_hunk = Hunk_Init (buf, size); Cache_Init (); return global_hunk; }