/* mathlib.c math primitives Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ static const char rcsid[] = "$Id$"; #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifdef HAVE_STRING_H # include #endif #ifdef HAVE_STRINGS_H # include #endif #include #define IMPLEMENT_R_CullBox #include "QF/mathlib.h" #include "QF/qtypes.h" #include "QF/sys.h" int nanmask = 255 << 23; mplane_t frustum[4]; const vec3_t vec3_origin = { 0, 0, 0 }; #define DEG2RAD(a) (a * (M_PI / 180.0)) void ProjectPointOnPlane (vec3_t dst, const vec3_t p, const vec3_t normal) { float inv_denom, d; vec3_t n; inv_denom = 1.0F / DotProduct (normal, normal); d = DotProduct (normal, p) * inv_denom; n[0] = normal[0] * inv_denom; n[1] = normal[1] * inv_denom; n[2] = normal[2] * inv_denom; dst[0] = p[0] - d * n[0]; dst[1] = p[1] - d * n[1]; dst[2] = p[2] - d * n[2]; } // assumes "src" is normalized void PerpendicularVector (vec3_t dst, const vec3_t src) { int pos, i; float minelem = 1.0F; vec3_t tempvec; /* find the smallest magnitude axially aligned vector */ for (pos = 0, i = 0; i < 3; i++) { if (fabs (src[i]) < minelem) { pos = i; minelem = fabs (src[i]); } } tempvec[0] = tempvec[1] = tempvec[2] = 0.0F; tempvec[pos] = 1.0F; /* project the point onto the plane defined by src */ ProjectPointOnPlane (dst, tempvec, src); /* normalize the result */ VectorNormalize (dst); } #if defined(_WIN32) && !defined(__GNUC__) # pragma optimize( "", off ) #endif void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up) { float d; right[0] = forward[2]; right[1] = -forward[0]; right[2] = forward[1]; d = DotProduct(forward, right); right[0] -= d * forward[0]; right[1] -= d * forward[1]; right[2] -= d * forward[2]; VectorNormalize (right); CrossProduct(right, forward, up); } void RotatePointAroundVector (vec3_t dst, const vec3_t dir, const vec3_t point, float degrees) { float m[3][3]; float im[3][3]; float zrot[3][3]; float tmpmat[3][3]; float rot[3][3]; int i; vec3_t vr, vup, vf; vf[0] = dir[0]; vf[1] = dir[1]; vf[2] = dir[2]; PerpendicularVector (vr, dir); CrossProduct (vr, vf, vup); m[0][0] = vr[0]; m[1][0] = vr[1]; m[2][0] = vr[2]; m[0][1] = vup[0]; m[1][1] = vup[1]; m[2][1] = vup[2]; m[0][2] = vf[0]; m[1][2] = vf[1]; m[2][2] = vf[2]; memcpy (im, m, sizeof (im)); im[0][1] = m[1][0]; im[0][2] = m[2][0]; im[1][0] = m[0][1]; im[1][2] = m[2][1]; im[2][0] = m[0][2]; im[2][1] = m[1][2]; memset (zrot, 0, sizeof (zrot)); zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F; zrot[0][0] = cos (DEG2RAD (degrees)); zrot[0][1] = sin (DEG2RAD (degrees)); zrot[1][0] = -sin (DEG2RAD (degrees)); zrot[1][1] = cos (DEG2RAD (degrees)); R_ConcatRotations (m, zrot, tmpmat); R_ConcatRotations (tmpmat, im, rot); for (i = 0; i < 3; i++) { dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2]; } } #if defined(_WIN32) && !defined(__GNUC__) # pragma optimize( "", on ) #endif float anglemod (float a) { #if 0 if (a >= 0) a -= 360 * (int) (a / 360); else a += 360 * (1 + (int) (-a / 360)); #endif a = (360.0 / 65536) * ((int) (a * (65536 / 360.0)) & 65535); return a; } /* BOPS_Error Split out like this for ASM to call. */ void BOPS_Error (void) { Sys_Error ("BoxOnPlaneSide: Bad signbits"); } #ifndef USE_INTEL_ASM /* BoxOnPlaneSide Returns 1, 2, or 1 + 2 */ int BoxOnPlaneSide (const vec3_t emins, const vec3_t emaxs, mplane_t *p) { float dist1, dist2; int sides; #if 0 // this is done by the BOX_ON_PLANE_SIDE macro before // calling this function // fast axial cases if (p->type < 3) { if (p->dist <= emins[p->type]) return 1; if (p->dist >= emaxs[p->type]) return 2; return 3; } #endif // general case switch (p->signbits) { case 0: dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]; dist2 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]; break; case 1: dist1 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]; dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]; break; case 2: dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]; dist2 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]; break; case 3: dist1 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]; dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]; break; case 4: dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]; dist2 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]; break; case 5: dist1 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]; dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]; break; case 6: dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]; dist2 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]; break; case 7: dist1 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]; dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]; break; default: dist1 = dist2 = 0; // shut up compiler BOPS_Error (); break; } #if 0 int i; vec3_t corners[2]; for (i = 0; i < 3; i++) { if (plane->normal[i] < 0) { corners[0][i] = emins[i]; corners[1][i] = emaxs[i]; } else { corners[1][i] = emins[i]; corners[0][i] = emaxs[i]; } } dist = DotProduct (plane->normal, corners[0]) - plane->dist; dist2 = DotProduct (plane->normal, corners[1]) - plane->dist; sides = 0; if (dist1 >= 0) sides = 1; if (dist2 < 0) sides |= 2; #endif sides = 0; if (dist1 >= p->dist) sides = 1; if (dist2 < p->dist) sides |= 2; #ifdef PARANOID if (sides == 0) Sys_Error ("BoxOnPlaneSide: sides==0"); #endif return sides; } #endif void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) { float angle, sr, sp, sy, cr, cp, cy; angle = angles[YAW] * (M_PI * 2 / 360); sy = sin (angle); cy = cos (angle); angle = angles[PITCH] * (M_PI * 2 / 360); sp = sin (angle); cp = cos (angle); angle = angles[ROLL] * (M_PI * 2 / 360); sr = sin (angle); cr = cos (angle); forward[0] = cp * cy; forward[1] = cp * sy; forward[2] = -sp; right[0] = (-1 * sr * sp * cy + -1 * cr * -sy); right[1] = (-1 * sr * sp * sy + -1 * cr * cy); right[2] = -1 * sr * cp; up[0] = (cr * sp * cy + -sr * -sy); up[1] = (cr * sp * sy + -sr * cy); up[2] = cr * cp; } int _VectorCompare (const vec3_t v1, const vec3_t v2) { int i; for (i = 0; i < 3; i++) if (v1[i] != v2[i]) return 0; return 1; } void _VectorMA (const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc) { vecc[0] = veca[0] + scale * vecb[0]; vecc[1] = veca[1] + scale * vecb[1]; vecc[2] = veca[2] + scale * vecb[2]; } vec_t _DotProduct (const vec3_t v1, const vec3_t v2) { return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2]; } void _VectorSubtract (const vec3_t veca, const vec3_t vecb, vec3_t out) { out[0] = veca[0] - vecb[0]; out[1] = veca[1] - vecb[1]; out[2] = veca[2] - vecb[2]; } void _VectorAdd (const vec3_t veca, const vec3_t vecb, vec3_t out) { out[0] = veca[0] + vecb[0]; out[1] = veca[1] + vecb[1]; out[2] = veca[2] + vecb[2]; } void _VectorCopy (const vec3_t in, vec3_t out) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } void CrossProduct (const vec3_t v1, const vec3_t v2, vec3_t cross) { float v10 = v1[0]; float v11 = v1[1]; float v12 = v1[2]; float v20 = v2[0]; float v21 = v2[1]; float v22 = v2[2]; cross[0] = v11 * v22 - v12 * v21; cross[1] = v12 * v20 - v10 * v22; cross[2] = v10 * v21 - v11 * v20; } vec_t _Length (const vec3_t v) { float length; length = sqrt (DotProduct (v, v)); return length; } float VectorNormalize (vec3_t v) { float length; length = DotProduct (v, v); if (length) { float ilength; length = sqrt (length); ilength = 1.0 / length; v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; } return length; } void VectorInverse (vec3_t v) { v[0] = -v[0]; v[1] = -v[1]; v[2] = -v[2]; } void _VectorScale (const vec3_t in, vec_t scale, vec3_t out) { out[0] = in[0] * scale; out[1] = in[1] * scale; out[2] = in[2] * scale; } int Q_log2 (int val) { int answer = 0; while ((val >>= 1) != 0) answer++; return answer; } void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; } void R_ConcatTransforms (float in1[3][4], float in2[3][4], float out[3][4]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] + in1[0][2] * in2[2][3] + in1[0][3]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] + in1[1][2] * in2[2][3] + in1[1][3]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] + in1[2][2] * in2[2][3] + in1[2][3]; } /* FloorDivMod Returns mathematically correct (floor-based) quotient and remainder for numer and denom, both of which should contain no fractional part. The quotient must fit in 32 bits. */ void FloorDivMod (double numer, double denom, int *quotient, int *rem) { double x; int q, r; #ifndef PARANOID if (denom <= 0.0) Sys_Error ("FloorDivMod: bad denominator %f\n", denom); // if ((floor(numer) != numer) || (floor(denom) != denom)) // Sys_Error ("FloorDivMod: non-integer numer or denom %f %f\n", // numer, denom); #endif if (numer >= 0.0) { x = floor (numer / denom); q = (int) x; r = (int) floor (numer - (x * denom)); } else { // perform operations with positive values, and fix mod to make // floor-based x = floor (-numer / denom); q = -(int) x; r = (int) floor (-numer - (x * denom)); if (r != 0) { q--; r = (int) denom - r; } } *quotient = q; *rem = r; } int GreatestCommonDivisor (int i1, int i2) { if (i1 > i2) { if (i2 == 0) return (i1); return GreatestCommonDivisor (i2, i1 % i2); } else { if (i1 == 0) return (i2); return GreatestCommonDivisor (i1, i2 % i1); } } #ifndef USE_INTEL_ASM /* Invert24To16 Inverts an 8.24 value to a 16.16 value TODO: move to nonintel.c */ fixed16_t Invert24To16 (fixed16_t val) { if (val < 256) return (0xFFFFFFFF); return (fixed16_t) (((double) 0x10000 * (double) 0x1000000 / (double) val) + 0.5); } #endif