/* r_main.c (description) Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ #ifdef HAVE_CONFIG_H # include "config.h" #endif static __attribute__ ((used)) const char rcsid[] = "$Id$"; #ifdef HAVE_STRING_H # include #endif #ifdef HAVE_STRINGS_H # include #endif #ifdef HAVE_STDLIB_H # include #endif #include #include "QF/cmd.h" #include "QF/console.h" #include "QF/cvar.h" #include "QF/locs.h" #include "QF/mathlib.h" #include "QF/render.h" #include "QF/screen.h" #include "QF/sound.h" #include "QF/sys.h" #include "compat.h" #include "r_cvar.h" #include "r_dynamic.h" #include "r_local.h" #include "view.h" #ifdef PIC # undef USE_INTEL_ASM //XXX asm pic hack #endif void *colormap; vec3_t viewlightvec; alight_t r_viewlighting = { 128, 192, viewlightvec }; int r_numallocatededges; qboolean r_drawpolys; qboolean r_drawculledpolys; qboolean r_worldpolysbacktofront; qboolean r_recursiveaffinetriangles = true; int r_pixbytes = 1; float r_aliasuvscale = 1.0; int r_outofsurfaces; int r_outofedges; int r_init = 0; qboolean r_dowarp, r_dowarpold, r_viewchanged; int numbtofpolys; btofpoly_t *pbtofpolys; mvertex_t *r_pcurrentvertbase; int c_surf; int r_maxsurfsseen, r_maxedgesseen, r_cnumsurfs; qboolean r_surfsonstack; int r_clipflags; byte *r_warpbuffer; byte *r_stack_start; qboolean r_fov_greater_than_90; entity_t r_worldentity; // view origin vec3_t vup, base_vup; vec3_t vpn, base_vpn; vec3_t vright, base_vright; vec3_t r_origin; // screen size info refdef_t r_refdef; float xcenter, ycenter; float xscale, yscale; float xscaleinv, yscaleinv; float xscaleshrink, yscaleshrink; float aliasxscale, aliasyscale, aliasxcenter, aliasycenter; int screenwidth; float pixelAspect; float screenAspect; float verticalFieldOfView; float xOrigin, yOrigin; mplane_t screenedge[4]; // refresh flags int r_framecount = 1; // so frame counts initialized to 0 don't match int r_visframecount; int d_spanpixcount; int r_polycount; int r_drawnpolycount; int r_wholepolycount; int *pfrustum_indexes[4]; int r_frustum_indexes[4 * 6]; int reinit_surfcache = 1; // if 1, surface cache is currently empty // and must be reinitialized for current // cache size mleaf_t *r_viewleaf, *r_oldviewleaf; float r_aliastransition, r_resfudge; int d_lightstylevalue[256]; // 8.8 fraction of base light value float dp_time1, dp_time2, db_time1, db_time2, rw_time1, rw_time2; float se_time1, se_time2, de_time1, de_time2, dv_time1, dv_time2; void R_Init (void) { int dummy; // get stack position so we can guess if we are going to overflow r_stack_start = (byte *) & dummy; R_SetFPCW (); #ifdef USE_INTEL_ASM R_InitVars (); #endif R_InitTurb (); Cmd_AddCommand ("timerefresh", R_TimeRefresh_f, "Tests the current " "refresh rate for the current location"); Cmd_AddCommand ("pointfile", R_ReadPointFile_f, "Load a pointfile to " "determine map leaks"); Cmd_AddCommand ("loadsky", R_LoadSky_f, "Load a skybox"); Cvar_SetValue (r_maxedges, (float) NUMSTACKEDGES); Cvar_SetValue (r_maxsurfs, (float) NUMSTACKSURFACES); view_clipplanes[0].leftedge = true; view_clipplanes[1].rightedge = true; view_clipplanes[1].leftedge = view_clipplanes[2].leftedge = view_clipplanes[3].leftedge = false; view_clipplanes[0].rightedge = view_clipplanes[2].rightedge = view_clipplanes[3].rightedge = false; r_refdef.xOrigin = XCENTERING; r_refdef.yOrigin = YCENTERING; // TODO: collect 386-specific code in one place #ifdef USE_INTEL_ASM Sys_MakeCodeWriteable ((long) R_EdgeCodeStart, (long) R_EdgeCodeEnd - (long) R_EdgeCodeStart); #endif // USE_INTEL_ASM D_Init (); } void R_NewMap (model_t *worldmodel, struct model_s **models, int num_models) { int i; memset (&r_worldentity, 0, sizeof (r_worldentity)); r_worldentity.model = worldmodel; // clear out efrags in case the level hasn't been reloaded // FIXME: is this one short? for (i = 0; i < r_worldentity.model->numleafs; i++) r_worldentity.model->leafs[i].efrags = NULL; if (worldmodel->skytexture) R_InitSky (worldmodel->skytexture); r_viewleaf = NULL; R_ClearParticles (); r_cnumsurfs = r_maxsurfs->int_val; if (r_cnumsurfs <= MINSURFACES) r_cnumsurfs = MINSURFACES; if (r_cnumsurfs > NUMSTACKSURFACES) { surfaces = Hunk_AllocName (r_cnumsurfs * sizeof (surf_t), "surfaces"); surface_p = surfaces; surf_max = &surfaces[r_cnumsurfs]; r_surfsonstack = false; // surface 0 doesn't really exist; it's just a dummy because index 0 // is used to indicate no edge attached to surface surfaces--; R_SurfacePatch (); } else { r_surfsonstack = true; } r_maxedgesseen = 0; r_maxsurfsseen = 0; r_numallocatededges = r_maxedges->int_val; if (r_numallocatededges < MINEDGES) r_numallocatededges = MINEDGES; if (r_numallocatededges <= NUMSTACKEDGES) { auxedges = NULL; } else { auxedges = Hunk_AllocName (r_numallocatededges * sizeof (edge_t), "edges"); } r_dowarpold = false; r_viewchanged = false; } /* R_ViewChanged Called every time the vid structure or r_refdef changes. Guaranteed to be called before the first refresh */ void R_ViewChanged (float aspect) { int i; float res_scale; r_viewchanged = true; r_refdef.horizontalFieldOfView = 2.0 * tan (r_refdef.fov_x / 360 * M_PI); r_refdef.fvrectx = (float) r_refdef.vrect.x; r_refdef.fvrectx_adj = (float) r_refdef.vrect.x - 0.5; r_refdef.vrect_x_adj_shift20 = (r_refdef.vrect.x << 20) + (1 << 19) - 1; r_refdef.fvrecty = (float) r_refdef.vrect.y; r_refdef.fvrecty_adj = (float) r_refdef.vrect.y - 0.5; r_refdef.vrectright = r_refdef.vrect.x + r_refdef.vrect.width; r_refdef.vrectright_adj_shift20 = (r_refdef.vrectright << 20) + (1 << 19) - 1; r_refdef.fvrectright = (float) r_refdef.vrectright; r_refdef.fvrectright_adj = (float) r_refdef.vrectright - 0.5; r_refdef.vrectrightedge = (float) r_refdef.vrectright - 0.99; r_refdef.vrectbottom = r_refdef.vrect.y + r_refdef.vrect.height; r_refdef.fvrectbottom = (float) r_refdef.vrectbottom; r_refdef.fvrectbottom_adj = (float) r_refdef.vrectbottom - 0.5; r_refdef.aliasvrect.x = (int) (r_refdef.vrect.x * r_aliasuvscale); r_refdef.aliasvrect.y = (int) (r_refdef.vrect.y * r_aliasuvscale); r_refdef.aliasvrect.width = (int) (r_refdef.vrect.width * r_aliasuvscale); r_refdef.aliasvrect.height = (int) (r_refdef.vrect.height * r_aliasuvscale); r_refdef.aliasvrectright = r_refdef.aliasvrect.x + r_refdef.aliasvrect.width; r_refdef.aliasvrectbottom = r_refdef.aliasvrect.y + r_refdef.aliasvrect.height; pixelAspect = (float)r_refdef.vrect.height/(float)r_refdef.vrect.width; xOrigin = r_refdef.xOrigin; yOrigin = r_refdef.yOrigin; screenAspect = 1.0; // 320*200 1.0 pixelAspect = 1.6 screenAspect // 320*240 1.0 pixelAspect = 1.3333 screenAspect // proper 320*200 pixelAspect = 0.8333333 verticalFieldOfView = r_refdef.horizontalFieldOfView / screenAspect; // values for perspective projection // if math were exact, the values would range from 0.5 to to range+0.5 // hopefully they wll be in the 0.000001 to range+.999999 and truncate // the polygon rasterization will never render in the first row or column // but will definately render in the [range] row and column, so adjust the // buffer origin to get an exact edge to edge fill xcenter = ((float) r_refdef.vrect.width * XCENTERING) + r_refdef.vrect.x - 0.5; aliasxcenter = xcenter * r_aliasuvscale; ycenter = ((float) r_refdef.vrect.height * YCENTERING) + r_refdef.vrect.y - 0.5; aliasycenter = ycenter * r_aliasuvscale; xscale = r_refdef.vrect.width / r_refdef.horizontalFieldOfView; aliasxscale = xscale * r_aliasuvscale; xscaleinv = 1.0 / xscale; yscale = xscale * pixelAspect; aliasyscale = yscale * r_aliasuvscale; yscaleinv = 1.0 / yscale; xscaleshrink = (r_refdef.vrect.width - 6) / r_refdef.horizontalFieldOfView; yscaleshrink = xscaleshrink * pixelAspect; // left side clip screenedge[0].normal[0] = -1.0 / (xOrigin * r_refdef.horizontalFieldOfView); screenedge[0].normal[1] = 0; screenedge[0].normal[2] = 1; screenedge[0].type = PLANE_ANYZ; // right side clip screenedge[1].normal[0] = 1.0 / ((1.0 - xOrigin) * r_refdef.horizontalFieldOfView); screenedge[1].normal[1] = 0; screenedge[1].normal[2] = 1; screenedge[1].type = PLANE_ANYZ; // top side clip screenedge[2].normal[0] = 0; screenedge[2].normal[1] = -1.0 / (yOrigin * verticalFieldOfView); screenedge[2].normal[2] = 1; screenedge[2].type = PLANE_ANYZ; // bottom side clip screenedge[3].normal[0] = 0; screenedge[3].normal[1] = 1.0 / ((1.0 - yOrigin) * verticalFieldOfView); screenedge[3].normal[2] = 1; screenedge[3].type = PLANE_ANYZ; for (i = 0; i < 4; i++) VectorNormalize (screenedge[i].normal); res_scale = sqrt ((double) (r_refdef.vrect.width * r_refdef.vrect.height) / (320.0 * 152.0)) * (2.0 / r_refdef.horizontalFieldOfView); r_aliastransition = r_aliastransbase->value * res_scale; r_resfudge = r_aliastransadj->value * res_scale; if (scr_fov->value <= 90.0) r_fov_greater_than_90 = false; else r_fov_greater_than_90 = true; // TODO: collect 386-specific code in one place #ifdef USE_INTEL_ASM Sys_MakeCodeWriteable ((long) R_Surf8Start, (long) R_Surf8End - (long) R_Surf8Start); colormap = vid.colormap8; R_SurfPatch (); #endif // USE_INTEL_ASM D_ViewChanged (); } void R_MarkLeaves (void) { byte *vis; mnode_t *node; mleaf_t *leaf; msurface_t **mark; int c; int i; if (r_oldviewleaf == r_viewleaf) return; r_visframecount++; r_oldviewleaf = r_viewleaf; vis = Mod_LeafPVS (r_viewleaf, r_worldentity.model); for (i = 0; i < r_worldentity.model->numleafs; i++) { if (vis[i >> 3] & (1 << (i & 7))) { leaf = &r_worldentity.model->leafs[i + 1]; mark = leaf->firstmarksurface; c = leaf->nummarksurfaces; if (c) { do { (*mark)->visframe = r_visframecount; mark++; } while (--c); } node = (mnode_t *) leaf; do { if (node->visframe == r_visframecount) break; node->visframe = r_visframecount; node = node->parent; } while (node); } } } static void R_DrawEntitiesOnList (void) { int i, j; unsigned int lnum; alight_t lighting; // FIXME: remove and do real lighting float lightvec[3] = { -1, 0, 0 }; vec3_t dist; float add; float minlight = 0; if (!r_drawentities->int_val) return; for (i = 0; i < r_numvisedicts; i++) { currententity = r_visedicts[i]; switch (currententity->model->type) { case mod_sprite: VectorCopy (currententity->origin, r_entorigin); VectorSubtract (r_origin, r_entorigin, modelorg); R_DrawSprite (); break; case mod_alias: VectorCopy (currententity->origin, r_entorigin); VectorSubtract (r_origin, r_entorigin, modelorg); minlight = max (currententity->model->min_light, currententity->min_light); // see if the bounding box lets us trivially reject, also // sets trivial accept status if (R_AliasCheckBBox ()) { // 128 instead of 255 due to clamping below j = max (R_LightPoint (currententity->origin), minlight * 128); lighting.ambientlight = j; lighting.shadelight = j; lighting.plightvec = lightvec; for (lnum = 0; lnum < r_maxdlights; lnum++) { if (r_dlights[lnum].die >= r_realtime) { VectorSubtract (currententity->origin, r_dlights[lnum].origin, dist); add = r_dlights[lnum].radius - VectorLength (dist); if (add > 0) lighting.ambientlight += add; } } // clamp lighting so it doesn't overbright as much if (lighting.ambientlight > 128) lighting.ambientlight = 128; if (lighting.ambientlight + lighting.shadelight > 192) lighting.shadelight = 192 - lighting.ambientlight; R_AliasDrawModel (&lighting); } break; default: break; } } } static void R_DrawViewModel (void) { // FIXME: remove and do real lighting float lightvec[3] = { -1, 0, 0 }; int j; unsigned int lnum; vec3_t dist; float add; float minlight; dlight_t *dl; if (r_inhibit_viewmodel || !r_drawviewmodel->int_val || !r_drawentities->int_val) return; currententity = r_view_model; if (!currententity->model) return; VectorCopy (currententity->origin, r_entorigin); VectorSubtract (r_origin, r_entorigin, modelorg); VectorCopy (vup, viewlightvec); VectorNegate (viewlightvec, viewlightvec); minlight = max (currententity->min_light, currententity->model->min_light); j = max (R_LightPoint (currententity->origin), minlight * 128); r_viewlighting.ambientlight = j; r_viewlighting.shadelight = j; // add dynamic lights for (lnum = 0; lnum < r_maxdlights; lnum++) { dl = &r_dlights[lnum]; if (!dl->radius) continue; if (!dl->radius) continue; if (dl->die < r_realtime) continue; VectorSubtract (currententity->origin, dl->origin, dist); add = dl->radius - VectorLength (dist); if (add > 0) r_viewlighting.ambientlight += add; } // clamp lighting so it doesn't overbright as much if (r_viewlighting.ambientlight > 128) r_viewlighting.ambientlight = 128; if (r_viewlighting.ambientlight + r_viewlighting.shadelight > 192) r_viewlighting.shadelight = 192 - r_viewlighting.ambientlight; r_viewlighting.plightvec = lightvec; R_AliasDrawModel (&r_viewlighting); } static int R_BmodelCheckBBox (model_t *clmodel, float *minmaxs) { int i, *pindex, clipflags; vec3_t acceptpt, rejectpt; double d; clipflags = 0; if (currententity->angles[0] || currententity->angles[1] || currententity->angles[2]) { for (i = 0; i < 4; i++) { d = DotProduct (currententity->origin, view_clipplanes[i].normal); d -= view_clipplanes[i].dist; if (d <= -clmodel->radius) return BMODEL_FULLY_CLIPPED; if (d <= clmodel->radius) clipflags |= (1 << i); } } else { for (i = 0; i < 4; i++) { // generate accept and reject points // FIXME: do with fast look-ups or integer tests based on the // sign bit of the floating point values pindex = pfrustum_indexes[i]; rejectpt[0] = minmaxs[pindex[0]]; rejectpt[1] = minmaxs[pindex[1]]; rejectpt[2] = minmaxs[pindex[2]]; d = DotProduct (rejectpt, view_clipplanes[i].normal); d -= view_clipplanes[i].dist; if (d <= 0) return BMODEL_FULLY_CLIPPED; acceptpt[0] = minmaxs[pindex[3 + 0]]; acceptpt[1] = minmaxs[pindex[3 + 1]]; acceptpt[2] = minmaxs[pindex[3 + 2]]; d = DotProduct (acceptpt, view_clipplanes[i].normal); d -= view_clipplanes[i].dist; if (d <= 0) clipflags |= (1 << i); } } return clipflags; } static void R_DrawBEntitiesOnList (void) { int i, j, clipflags; unsigned int k; vec3_t oldorigin; model_t *clmodel; float minmaxs[6]; if (!r_drawentities->int_val) return; VectorCopy (modelorg, oldorigin); insubmodel = true; for (i = 0; i < r_numvisedicts; i++) { currententity = r_visedicts[i]; switch (currententity->model->type) { case mod_brush: clmodel = currententity->model; // see if the bounding box lets us trivially reject, also // sets trivial accept status for (j = 0; j < 3; j++) { minmaxs[j] = currententity->origin[j] + clmodel->mins[j]; minmaxs[3 + j] = currententity->origin[j] + clmodel->maxs[j]; } clipflags = R_BmodelCheckBBox (clmodel, minmaxs); if (clipflags != BMODEL_FULLY_CLIPPED) { VectorCopy (currententity->origin, r_entorigin); VectorSubtract (r_origin, r_entorigin, modelorg); // FIXME: is this needed? VectorCopy (modelorg, r_worldmodelorg); r_pcurrentvertbase = clmodel->vertexes; // FIXME: stop transforming twice R_RotateBmodel (); // calculate dynamic lighting for bmodel if it's not an // instanced model if (clmodel->firstmodelsurface != 0) { vec3_t lightorigin; for (k = 0; k < r_maxdlights; k++) { if ((r_dlights[k].die < r_realtime) || (!r_dlights[k].radius)) continue; VectorSubtract (r_dlights[k].origin, currententity->origin, lightorigin); R_RecursiveMarkLights (lightorigin, &r_dlights[k], 1 << k, clmodel->nodes + clmodel->hulls[0].firstclipnode); } } // if the driver wants polygons, deliver those. // Z-buffering is on at this point, so no clipping to the // world tree is needed, just frustum clipping if (r_drawpolys | r_drawculledpolys) { R_ZDrawSubmodelPolys (clmodel); } else { r_pefragtopnode = NULL; for (j = 0; j < 3; j++) { r_emins[j] = minmaxs[j]; r_emaxs[j] = minmaxs[3 + j]; } R_SplitEntityOnNode2 (r_worldentity.model->nodes); if (r_pefragtopnode) { currententity->topnode = r_pefragtopnode; if (r_pefragtopnode->contents >= 0) { // not a leaf; has to be clipped to the world // BSP r_clipflags = clipflags; R_DrawSolidClippedSubmodelPolygons (clmodel); } else { // falls entirely in one leaf, so we just put // all the edges in the edge list and let 1/z // sorting handle drawing order R_DrawSubmodelPolygons (clmodel, clipflags); } currententity->topnode = NULL; } } // put back world rotation and frustum clipping // FIXME: R_RotateBmodel should just work off base_vxx VectorCopy (base_vpn, vpn); VectorCopy (base_vup, vup); VectorCopy (base_vright, vright); VectorCopy (base_modelorg, modelorg); VectorCopy (oldorigin, modelorg); R_TransformFrustum (); } break; default: break; } } insubmodel = false; } static void R_EdgeDrawing (void) { edge_t ledges[NUMSTACKEDGES + ((CACHE_SIZE - 1) / sizeof (edge_t)) + 1]; surf_t lsurfs[NUMSTACKSURFACES + ((CACHE_SIZE - 1) / sizeof (surf_t)) + 1]; if (auxedges) { r_edges = auxedges; } else { r_edges = (edge_t *) (((long) &ledges[0] + CACHE_SIZE - 1) & ~(CACHE_SIZE - 1)); } if (r_surfsonstack) { surfaces = (surf_t *) (((long) &lsurfs[0] + CACHE_SIZE - 1) & ~(CACHE_SIZE - 1)); surf_max = &surfaces[r_cnumsurfs]; // surface 0 doesn't really exist; it's just a dummy because index 0 // is used to indicate no edge attached to surface surfaces--; R_SurfacePatch (); } R_BeginEdgeFrame (); if (r_dspeeds->int_val) { rw_time1 = Sys_DoubleTime (); } R_RenderWorld (); if (r_drawculledpolys) R_ScanEdges (); // only the world can be drawn back to front with no z reads or compares, // just z writes, so have the driver turn z compares on now D_TurnZOn (); if (r_dspeeds->int_val) { rw_time2 = Sys_DoubleTime (); db_time1 = rw_time2; } R_DrawBEntitiesOnList (); if (r_dspeeds->int_val) { db_time2 = Sys_DoubleTime (); se_time1 = db_time2; } if (!r_dspeeds->int_val) { VID_UnlockBuffer (); S_ExtraUpdate (); // don't let sound get messed up if going slow VID_LockBuffer (); } if (!(r_drawpolys | r_drawculledpolys)) R_ScanEdges (); } /* R_RenderView r_refdef must be set before the first call */ static void R_RenderView_ (void) { byte warpbuffer[WARP_WIDTH * WARP_HEIGHT]; if (r_norefresh->int_val) return; r_warpbuffer = warpbuffer; if (r_timegraph->int_val || r_speeds->int_val || r_dspeeds->int_val) r_time1 = Sys_DoubleTime (); R_SetupFrame (); R_MarkLeaves (); // done here so we know if we're in water R_PushDlights (vec3_origin); // make FDIV fast. This reduces timing precision after we've been running for a // while, so we don't do it globally. This also sets chop mode, and we do it // here so that setup stuff like the refresh area calculations match what's // done in screen.c R_LowFPPrecision (); if (!r_worldentity.model) Sys_Error ("R_RenderView: NULL worldmodel"); if (!r_dspeeds->int_val) { VID_UnlockBuffer (); S_ExtraUpdate (); // don't let sound get messed up if going slow VID_LockBuffer (); } R_EdgeDrawing (); if (!r_dspeeds->int_val) { VID_UnlockBuffer (); S_ExtraUpdate (); // don't let sound get messed up if going slow VID_LockBuffer (); } if (r_dspeeds->int_val) { se_time2 = Sys_DoubleTime (); de_time1 = se_time2; } R_DrawEntitiesOnList (); if (r_dspeeds->int_val) { de_time2 = Sys_DoubleTime (); dv_time1 = de_time2; } R_DrawViewModel (); if (r_dspeeds->int_val) { dv_time2 = Sys_DoubleTime (); dp_time1 = Sys_DoubleTime (); } R_DrawParticles (); if (r_dspeeds->int_val) dp_time2 = Sys_DoubleTime (); if (r_dowarp) D_WarpScreen (); V_SetContentsColor (r_viewleaf->contents); if (r_timegraph->int_val) R_TimeGraph (); if (r_zgraph->int_val) R_ZGraph (); if (r_aliasstats->int_val) R_PrintAliasStats (); if (r_speeds->int_val) R_PrintTimes (); if (r_dspeeds->int_val) R_PrintDSpeeds (); if (r_reportsurfout->int_val && r_outofsurfaces) Con_Printf ("Short %d surfaces\n", r_outofsurfaces); if (r_reportedgeout->int_val && r_outofedges) Con_Printf ("Short roughly %d edges\n", r_outofedges * 2 / 3); // back to high floating-point precision R_HighFPPrecision (); } static void R_RenderViewFishEye (void); void R_RenderView (void) { int dummy; int delta; delta = (byte *) & dummy - r_stack_start; if (delta < -10000 || delta > 10000) Sys_Error ("R_RenderView: called without enough stack"); if (Hunk_LowMark () & 3) Sys_Error ("Hunk is missaligned"); if ((long) (&dummy) & 3) Sys_Error ("Stack is missaligned"); if ((long) (&r_warpbuffer) & 3) Sys_Error ("Globals are missaligned"); if (!scr_fisheye->int_val) R_RenderView_ (); else R_RenderViewFishEye (); } void R_InitTurb (void) { int i; for (i = 0; i < (SIN_BUFFER_SIZE); i++) { sintable[i] = AMP + sin (i * 3.14159 * 2 / CYCLE) * AMP; intsintable[i] = AMP2 + sin (i * 3.14159 * 2 / CYCLE) * AMP2; // AMP2 not 20 } } #define BOX_FRONT 0 #define BOX_BEHIND 2 #define BOX_LEFT 3 #define BOX_RIGHT 1 #define BOX_TOP 4 #define BOX_BOTTOM 5 #define DEG(x) (x / M_PI * 180.0) #define RAD(x) (x * M_PI / 180.0) struct my_coords { double x, y, z; }; struct my_angles { double yaw, pitch, roll; }; static void x_rot (struct my_coords *c, double pitch) { double nx, ny, nz; nx = c->x; ny = (c->y * cos(pitch)) - (c->z * sin(pitch)); nz = (c->y * sin(pitch)) + (c->z * cos(pitch)); c->x = nx; c->y = ny; c->z = nz; } static void y_rot (struct my_coords *c, double yaw) { double nx, ny, nz; nx = (c->x * cos(yaw)) - (c->z * sin(yaw)); ny = c->y; nz = (c->x * sin(yaw)) + (c->z * cos(yaw)); c->x = nx; c->y = ny; c->z = nz; } static void z_rot (struct my_coords *c, double roll) { double nx, ny, nz; nx = (c->x * cos(roll)) - (c->y * sin(roll)); ny = (c->x * sin(roll)) + (c->y * cos(roll)); nz = c->z; c->x = nx; c->y = ny; c->z = nz; } static void my_get_angles (struct my_coords *in_o, struct my_coords *in_u, struct my_angles *a) { double rad_yaw, rad_pitch; struct my_coords o, u; a->pitch = 0.0; a->yaw = 0.0; a->roll = 0.0; // make a copy of the coords o.x = in_o->x; o.y = in_o->y; o.z = in_o->z; u.x = in_u->x; u.y = in_u->y; u.z = in_u->z; // special case when looking straight up or down if ((o.x == 0.0) && (o.z == 0.0)) { a->yaw = 0.0; if (o.y > 0.0) { a->pitch = -90.0; a->roll = 180.0 - DEG(atan2(u.x, u.z)); } // down else { a->pitch = 90.0; a->roll = DEG(atan2(u.x, u.z)); } // up return; } // get yaw angle and then rotate o and u so that yaw = 0 rad_yaw = atan2 (-o.x, o.z); a->yaw = DEG (rad_yaw); y_rot (&o, -rad_yaw); y_rot (&u, -rad_yaw); // get pitch and then rotate o and u so that pitch = 0 rad_pitch = atan2 (-o.y, o.z); a->pitch = DEG (rad_pitch); x_rot (&o, -rad_pitch); x_rot (&u, -rad_pitch); // get roll a->roll = DEG (-atan2(u.x, u.y)); } static void get_ypr (double yaw, double pitch, double roll, int side, struct my_angles *a) { struct my_coords o, u; // get 'o' (observer) and 'u' ('this_way_up') depending on box side switch(side) { case BOX_FRONT: o.x = 0.0; o.y = 0.0; o.z = 1.0; u.x = 0.0; u.y = 1.0; u.z = 0.0; break; case BOX_BEHIND: o.x = 0.0; o.y = 0.0; o.z = -1.0; u.x = 0.0; u.y = 1.0; u.z = 0.0; break; case BOX_LEFT: o.x = -1.0; o.y = 0.0; o.z = 0.0; u.x = -1.0; u.y = 1.0; u.z = 0.0; break; case BOX_RIGHT: o.x = 1.0; o.y = 0.0; o.z = 0.0; u.x = 0.0; u.y = 1.0; u.z = 0.0; break; case BOX_TOP: o.x = 0.0; o.y = -1.0; o.z = 0.0; u.x = 0.0; u.y = 0.0; u.z = -1.0; break; case BOX_BOTTOM: o.x = 0.0; o.y = 1.0; o.z = 0.0; u.x = 0.0; u.y = 0.0; u.z = -1.0; break; } z_rot (&o, roll); z_rot (&u, roll); x_rot (&o, pitch); x_rot (&u, pitch); y_rot (&o, yaw); y_rot (&u, yaw); my_get_angles (&o, &u, a); // normalise angles while (a->yaw < 0.0) a->yaw += 360.0; while (a->yaw > 360.0) a->yaw -= 360.0; while (a->pitch < 0.0) a->pitch += 360.0; while (a->pitch > 360.0) a->pitch -= 360.0; while (a->roll < 0.0) a->roll += 360.0; while (a->roll > 360.0) a->roll -= 360.0; } static void fisheyelookuptable (byte **buf, int width, int height, byte *scrp, double fov) { int x, y; for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { double dx = x-width/2; double dy = -(y-height/2); double yaw = sqrt(dx*dx+dy*dy)*fov/((double)width); double roll = -atan2(dy, dx); double sx = sin(yaw) * cos(roll); double sy = sin(yaw) * sin(roll); double sz = cos(yaw); // determine which side of the box we need double abs_x = fabs(sx); double abs_y = fabs(sy); double abs_z = fabs(sz); int side; double xs = 0, ys = 0; if (abs_x > abs_y) { if (abs_x > abs_z) { side = ((sx > 0.0) ? BOX_RIGHT : BOX_LEFT); } else { side = ((sz > 0.0) ? BOX_FRONT : BOX_BEHIND); } } else { if (abs_y > abs_z) { side = ((sy > 0.0) ? BOX_TOP : BOX_BOTTOM); } else { side = ((sz > 0.0) ? BOX_FRONT : BOX_BEHIND); } } #define RC(x) ((x / 2.06) + 0.5) #define R2(x) ((x / 2.03) + 0.5) // scale up our vector [x,y,z] to the box switch(side) { case BOX_FRONT: xs = RC( sx / sz); ys = R2( sy / sz); break; case BOX_BEHIND: xs = RC(-sx / -sz); ys = R2( sy / -sz); break; case BOX_LEFT: xs = RC( sz / -sx); ys = R2( sy / -sx); break; case BOX_RIGHT: xs = RC(-sz / sx); ys = R2( sy / sx); break; case BOX_TOP: xs = RC( sx / sy); ys = R2( sz / -sy); break; //bot case BOX_BOTTOM: xs = RC(-sx / sy); ys = R2( sz / -sy); break; //top?? } if (xs < 0.0) xs = 0.0; if (xs >= 1.0) xs = 0.999; if (ys < 0.0) ys = 0.0; if (ys >= 1.0) ys = 0.999; *buf++ = scrp+(((int)(xs*(double)width))+ ((int)(ys*(double)height))*width)+ side*width*height; } } } static void rendercopy (void *dest) { void *p = vid.buffer; // XXX vid.buffer = dest; R_RenderView_ (); vid.buffer = p; } static void renderside (byte* bufs, double yaw, double pitch, double roll, int side) { struct my_angles a; get_ypr (RAD(yaw), RAD(pitch), RAD(roll), side, &a); if (side == BOX_RIGHT) { a.roll = -a.roll; a.pitch = -a.pitch; } if (side == BOX_LEFT) { a.roll = -a.roll; a.pitch = -a.pitch; } if (side == BOX_TOP) { a.yaw += 180.0; a.pitch = 180.0 - a.pitch; } r_refdef.viewangles[YAW] = a.yaw; r_refdef.viewangles[PITCH] = a.pitch; r_refdef.viewangles[ROLL] = a.roll; rendercopy (bufs); } static void renderlookup (byte **offs, byte* bufs) { byte *p = (byte*)vid.buffer; unsigned int x, y; for (y = 0; y < vid.height; y++) { for (x = 0; x < vid.width; x++, offs++) p[x] = **offs; p += vid.rowbytes; } } static void R_RenderViewFishEye (void) { int width = vid.width; //r_refdef.vrect.width; int height = vid.height; //r_refdef.vrect.height; int scrsize = width*height; int fov = scr_ffov->int_val; int views = scr_fviews->int_val; double yaw = r_refdef.viewangles[YAW]; double pitch = r_refdef.viewangles[PITCH]; double roll = 0; //r_refdef.viewangles[ROLL]; static int pwidth = -1; static int pheight = -1; static int pfov = -1; static int pviews = -1; static byte *scrbufs = NULL; static byte **offs = NULL; if (fov < 1) fov = 1; if (pwidth != width || pheight != height || pfov != fov) { if (scrbufs) free (scrbufs); if (offs) free (offs); scrbufs = malloc (scrsize*6); // front|right|back|left|top|bottom SYS_CHECKMEM (scrbufs); offs = malloc (scrsize*sizeof(byte*)); SYS_CHECKMEM (offs); pwidth = width; pheight = height; pfov = fov; fisheyelookuptable (offs, width, height, scrbufs, ((double)fov)*M_PI/180.0); } if (views != pviews) { pviews = views; memset (scrbufs, 0, scrsize*6); } switch (views) { case 6: renderside (scrbufs+scrsize*2, yaw, pitch, roll, BOX_BEHIND); case 5: renderside (scrbufs+scrsize*5, yaw, pitch, roll, BOX_BOTTOM); case 4: renderside (scrbufs+scrsize*4, yaw, pitch, roll, BOX_TOP); case 3: renderside (scrbufs+scrsize*3, yaw, pitch, roll, BOX_LEFT); case 2: renderside (scrbufs+scrsize, yaw, pitch, roll, BOX_RIGHT); default: renderside (scrbufs, yaw, pitch, roll, BOX_FRONT); } r_refdef.viewangles[YAW] = yaw; r_refdef.viewangles[PITCH] = pitch; r_refdef.viewangles[ROLL] = roll; renderlookup (offs, scrbufs); } void gl_overbright_f (cvar_t *un) { }