/* flow.c PVS PHS generator tool Copyright (C) 2002 Colin Thompson This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ static const char rcsid[] = "$Id$"; #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #ifdef HAVE_UNISTD_H # include #endif #ifdef HAVE_IO_H # include #endif #ifdef HAVE_STRING_H # include #endif #ifdef HAVE_STRINGS_H # include #endif #include #include #include #include #include "QF/bspfile.h" #include "QF/cmd.h" #include "QF/mathlib.h" #include "QF/quakefs.h" #include "QF/sys.h" #include "vis.h" #include "options.h" int c_chains; int c_portalskip, c_leafskip; int c_vistest, c_mighttest; int c_leafsee, c_portalsee; byte portalsee[MAX_PORTALS]; void CheckStack (leaf_t *leaf, threaddata_t *thread) { pstack_t *p; for (p = thread->pstack_head.next; p; p = p->next) if (p->leaf == leaf) Sys_Error ("CheckStack: leaf recursion"); } /* ClipToSeparators Source, pass, and target are an ordering of portals. Generates seperating planes candidates by taking two points from source and one point from pass, and clips target by them. If target is totally clipped away, that portal can not be seen through. Normal clip keeps target on the same side as pass, which is correct if the order goes source, pass, target. If the order goes pass, source, target then flipclip should be set. */ winding_t * ClipToSeparators (winding_t *source, winding_t *pass, winding_t *target, qboolean flipclip) { float d; int i, j, k, l; int counts[3]; qboolean fliptest; plane_t plane; vec3_t v1, v2; vec_t length; // check all combinations for (i = 0; i < source->numpoints; i++) { l = (i + 1) % source->numpoints; VectorSubtract (source->points[l], source->points[i], v1); // find a vertex of pass that makes a plane that puts all of the // vertexes of pass on the front side and all of the vertexes of // source on the back side for (j = 0; j < pass->numpoints; j++) { VectorSubtract (pass->points[j], source->points[i], v2); plane.normal[0] = v1[1] * v2[2] - v1[2] * v2[1]; plane.normal[1] = v1[2] * v2[0] - v1[0] * v2[2]; plane.normal[2] = v1[0] * v2[1] - v1[1] * v2[0]; // if points don't make a valid plane, skip it length = plane.normal[0] * plane.normal[0] + plane.normal[1] * plane.normal[1] + plane.normal[2] * plane.normal[2]; if (length < ON_EPSILON) continue; length = 1 / sqrt (length); plane.normal[0] *= length; plane.normal[1] *= length; plane.normal[2] *= length; plane.dist = DotProduct (pass->points[j], plane.normal); // find out which side of the generated seperating plane has the // source portal fliptest = false; for (k = 0; k < source->numpoints; k++) { if (k == i || k == l) continue; d = DotProduct (source->points[k], plane.normal) - plane.dist; if (d < -ON_EPSILON) { // source is on the negative side, so we want all // pass and target on the positive side fliptest = false; break; } else if (d > ON_EPSILON) { // source is on the positive side, so we want all // pass and target on the negative side fliptest = true; break; } } if (k == source->numpoints) continue; // planar with source portal // flip the normal if the source portal is backwards if (fliptest) { VectorSubtract (vec3_origin, plane.normal, plane.normal); plane.dist = -plane.dist; } // if all of the pass portal points are now on the positive side, // this is the seperating plane counts[0] = counts[1] = counts[2] = 0; for (k = 0; k < pass->numpoints; k++) { if (k == j) continue; d = DotProduct (pass->points[k], plane.normal) - plane.dist; if (d < -ON_EPSILON) break; else if (d > ON_EPSILON) counts[0]++; else counts[2]++; } if (k != pass->numpoints) continue; // points on negative side, not a seperating plane if (!counts[0]) { continue; // planar with seperating plane } // flip the normal if we want the back side if (flipclip) { VectorSubtract (vec3_origin, plane.normal, plane.normal); plane.dist = -plane.dist; } // clip target by the seperating plane target = ClipWinding (target, &plane, false); if (!target) return NULL; // target is not visible break; //XXX is this correct? big speedup } } return target; } /* RecursiveLeafFlow Flood fill through the leafs If src_portal is NULL, this is the originating leaf */ void RecursiveLeafFlow (int leafnum, threaddata_t *thread, pstack_t *prevstack) { int i, j; leaf_t *leaf; long *test, *might, *vis; qboolean more; pstack_t stack; portal_t *p; plane_t backplane; winding_t *source, *target; c_chains++; leaf = &leafs[leafnum]; CheckStack(leaf, thread); // mark the leaf as visible if (!(thread->leafvis[leafnum >> 3] & (1 << (leafnum & 7)))) { thread->leafvis[leafnum >> 3] |= 1 << (leafnum & 7); thread->base->numcansee++; } prevstack->next = &stack; stack.next = NULL; stack.leaf = leaf; stack.portal = NULL; stack.mightsee = malloc(bitbytes); might = (long *) stack.mightsee; vis = (long *) thread->leafvis; // check all portals for flowing into other leafs for (i = 0; i < leaf->numportals; i++) { p = leaf->portals[i]; if (!(prevstack->mightsee[p->leaf >> 3] & (1 << (p->leaf & 7)))) { c_leafskip++; continue; // can't possibly see it } // if the portal can't see anything we haven't already seen, skip it if (p->status == stat_done) { c_vistest++; test = (long *) p->visbits; } else { c_mighttest++; test = (long *) p->mightsee; } more = false; for (j = 0; j < bitlongs; j++) { might[j] = ((long *) prevstack->mightsee)[j] & test[j]; if (might[j] & ~vis[j]) more = true; } if (!more) { // can't see anything new c_portalskip++; continue; } // get plane of portal, point normal into the neighbor leaf stack.portalplane = p->plane; VectorSubtract (vec3_origin, p->plane.normal, backplane.normal); backplane.dist = -p->plane.dist; if (_VectorCompare (prevstack->portalplane.normal, backplane.normal)) continue; // can't go out a coplanar face c_portalcheck++; stack.portal = p; stack.next = NULL; target = ClipWinding(p->winding, &thread->pstack_head.portalplane, false); if (!target) continue; if (!prevstack->pass) { // the second leaf can only be blocked if coplanar stack.source = prevstack->source; stack.pass = target; RecursiveLeafFlow (p->leaf, thread, &stack); FreeWinding (target); continue; } target = ClipWinding (target, &prevstack->portalplane, false); if (!target) continue; source = CopyWinding (prevstack->source); source = ClipWinding (source, &backplane, false); if (!source) { FreeWinding (target); continue; } c_portaltest++; if (options.level > 0) { target = ClipToSeparators (source, prevstack->pass, target, false); if (!target) { FreeWinding (source); continue; } } if (options.level > 1) { target = ClipToSeparators (prevstack->pass, source, target, true); if (!target) { FreeWinding (source); continue; } } if (options.level > 2) { source = ClipToSeparators (target, prevstack->pass, source, false); if (!source) { FreeWinding (target); continue; } } if (options.level > 3) { source = ClipToSeparators (prevstack->pass, target, source, true); if (!source) { FreeWinding (target); continue; } } stack.source = source; stack.pass = target; c_portalpass++; // flow through it for real RecursiveLeafFlow (p->leaf, thread, &stack); FreeWinding (source); FreeWinding (target); } free (stack.mightsee); } void PortalFlow (portal_t *p) { threaddata_t data; if (p->status != stat_working) Sys_Error ("PortalFlow: reflowed"); p->status = stat_working; p->visbits = calloc (1, bitbytes); memset (&data, 0, sizeof (data)); data.leafvis = p->visbits; data.base = p; data.pstack_head.portal = p; data.pstack_head.source = p->winding; data.pstack_head.portalplane = p->plane; data.pstack_head.mightsee = p->mightsee; RecursiveLeafFlow (p->leaf, &data, &data.pstack_head); p->status = stat_done; } /* This is a rough first-order aproximation that is used to trivially reject some of the final calculations. */ void SimpleFlood (portal_t *srcportal, int leafnum) { int i; leaf_t *leaf; portal_t *p; if (srcportal->mightsee[leafnum >> 3] & (1 << (leafnum & 7))) return; srcportal->mightsee[leafnum >> 3] |= (1 << (leafnum & 7)); c_leafsee++; leaf = &leafs[leafnum]; for (i = 0; i < leaf->numportals; i++) { p = leaf->portals[i]; if (!portalsee[p - portals]) continue; SimpleFlood (srcportal, p->leaf); } } void BasePortalVis (void) { int i, j, k; float d; portal_t *tp, *p; winding_t *winding; for (i = 0, p = portals; i < numportals * 2; i++, p++) { p->mightsee = calloc (1, bitbytes); c_portalsee = 0; memset (portalsee, 0, numportals * 2); for (j = 0, tp = portals; j < numportals * 2; j++, tp++) { if (j == i) continue; winding = tp->winding; for (k = 0; k < winding->numpoints; k++) { d = DotProduct (winding->points[k], p->plane.normal) - p->plane.dist; if (d > ON_EPSILON) break; } if (k == winding->numpoints) continue; // no points on front winding = p->winding; for (k = 0; k < winding->numpoints; k++) { d = DotProduct (winding->points[k], tp->plane.normal) - tp->plane.dist; if (d < -ON_EPSILON) break; } if (k == winding->numpoints) continue; // no points on front portalsee[j] = 1; c_portalsee++; } c_leafsee = 0; SimpleFlood (p, p->leaf); p->nummightsee = c_leafsee; } }