/* r_part.c @description@ Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA $Id$ */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include "r_local.h" #include "QF/qargs.h" #include "QF/console.h" #include "server.h" #include "QF/msg.h" #define MAX_PARTICLES 2048 // default max # of particles at one // time #define ABSOLUTE_MIN_PARTICLES 512 // no fewer than this no matter // what's // on the command line int ramp1[8] = { 0x6f, 0x6d, 0x6b, 0x69, 0x67, 0x65, 0x63, 0x61 }; int ramp2[8] = { 0x6f, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x68, 0x66 }; int ramp3[8] = { 0x6d, 0x6b, 6, 5, 4, 3 }; particle_t *active_particles, *free_particles; particle_t *particles; int r_numparticles; vec3_t r_pright, r_pup, r_ppn; extern cvar_t *gl_particles; /* =============== R_InitParticles =============== */ void R_InitParticles (void) { int i; i = COM_CheckParm ("-particles"); if (i) { r_numparticles = (int) (atoi (com_argv[i + 1])); if (r_numparticles < ABSOLUTE_MIN_PARTICLES) r_numparticles = ABSOLUTE_MIN_PARTICLES; } else { r_numparticles = MAX_PARTICLES; } particles = (particle_t *) Hunk_AllocName (r_numparticles * sizeof (particle_t), "particles"); } #ifdef QUAKE2 void R_DarkFieldParticles (entity_t *ent) { int i, j, k; particle_t *p; float vel; vec3_t dir; vec3_t org; org[0] = ent->origin[0]; org[1] = ent->origin[1]; org[2] = ent->origin[2]; for (i = -16; i < 16; i += 8) for (j = -16; j < 16; j += 8) for (k = 0; k < 32; k += 8) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 0.2 + (rand () & 7) * 0.02; p->color = 150 + rand () % 6; p->type = pt_slowgrav; dir[0] = j * 8; dir[1] = i * 8; dir[2] = k * 8; p->org[0] = org[0] + i + (rand () & 3); p->org[1] = org[1] + j + (rand () & 3); p->org[2] = org[2] + k + (rand () & 3); VectorNormalize (dir); vel = 50 + (rand () & 63); VectorScale (dir, vel, p->vel); } } #endif /* =============== R_EntityParticles =============== */ #define NUMVERTEXNORMALS 162 extern float r_avertexnormals[NUMVERTEXNORMALS][3]; vec3_t avelocities[NUMVERTEXNORMALS]; float beamlength = 16; vec3_t avelocity = { 23, 7, 3 }; float partstep = 0.01; float timescale = 0.01; void R_EntityParticles (entity_t *ent) { int count; int i; particle_t *p; float angle; float sr, sp, sy, cr, cp, cy; vec3_t forward; float dist; dist = 64; count = 50; if (!avelocities[0][0]) { for (i = 0; i < NUMVERTEXNORMALS * 3; i++) avelocities[0][i] = (rand () & 255) * 0.01; } for (i = 0; i < NUMVERTEXNORMALS; i++) { angle = cl.time * avelocities[i][0]; sy = sin (angle); cy = cos (angle); angle = cl.time * avelocities[i][1]; sp = sin (angle); cp = cos (angle); angle = cl.time * avelocities[i][2]; sr = sin (angle); cr = cos (angle); forward[0] = cp * cy; forward[1] = cp * sy; forward[2] = -sp; if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 0.01; p->color = 0x6f; p->type = pt_explode; p->org[0] = ent->origin[0] + r_avertexnormals[i][0] * dist + forward[0] * beamlength; p->org[1] = ent->origin[1] + r_avertexnormals[i][1] * dist + forward[1] * beamlength; p->org[2] = ent->origin[2] + r_avertexnormals[i][2] * dist + forward[2] * beamlength; } } /* =============== R_ClearParticles =============== */ void R_ClearParticles (void) { int i; free_particles = &particles[0]; active_particles = NULL; for (i = 0; i < r_numparticles; i++) particles[i].next = &particles[i + 1]; particles[r_numparticles - 1].next = NULL; } void R_ReadPointFile_f (void) { QFile *f; vec3_t org; int r; int c; particle_t *p; char name[MAX_OSPATH]; char buf[256]; snprintf (name, sizeof (name), "maps/%s.pts", sv.name); COM_FOpenFile (name, &f); if (!f) { Con_Printf ("couldn't open %s\n", name); return; } Con_Printf ("Reading %s...\n", name); c = 0; for (;;) { if (!Qgets (f, buf, sizeof (buf))) break; r = sscanf (buf, "%f %f %f\n", &org[0], &org[1], &org[2]); if (r != 3) break; c++; if (!free_particles) { Con_Printf ("Not enough free particles\n"); break; } p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = 99999; p->color = (-c) & 15; p->type = pt_static; VectorCopy (vec3_origin, p->vel); VectorCopy (org, p->org); } Qclose (f); Con_Printf ("%i points read\n", c); } /* =============== R_ParseParticleEffect Parse an effect out of the server message =============== */ void R_ParseParticleEffect (void) { vec3_t org, dir; int i, count, msgcount, color; for (i = 0; i < 3; i++) org[i] = MSG_ReadCoord (net_message); for (i = 0; i < 3; i++) dir[i] = MSG_ReadChar (net_message) * (1.0 / 16); msgcount = MSG_ReadByte (net_message); color = MSG_ReadByte (net_message); if (msgcount == 255) count = 1024; else count = msgcount; R_RunParticleEffect (org, dir, color, count); } /* =============== R_ParticleExplosion =============== */ void R_ParticleExplosion (vec3_t org) { int i, j; particle_t *p; for (i = 0; i < 1024; i++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 5; p->color = ramp1[0]; p->ramp = rand () & 3; if (i & 1) { p->type = pt_explode; for (j = 0; j < 3; j++) { p->org[j] = org[j] + ((rand () % 32) - 16); p->vel[j] = (rand () % 512) - 256; } } else { p->type = pt_explode2; for (j = 0; j < 3; j++) { p->org[j] = org[j] + ((rand () % 32) - 16); p->vel[j] = (rand () % 512) - 256; } } } } /* =============== R_ParticleExplosion2 =============== */ void R_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength) { int i, j; particle_t *p; int colorMod = 0; for (i = 0; i < 512; i++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 0.3; p->color = colorStart + (colorMod % colorLength); colorMod++; p->type = pt_blob; for (j = 0; j < 3; j++) { p->org[j] = org[j] + ((rand () % 32) - 16); p->vel[j] = (rand () % 512) - 256; } } } /* =============== R_BlobExplosion =============== */ void R_BlobExplosion (vec3_t org) { int i, j; particle_t *p; for (i = 0; i < 1024; i++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 1 + (rand () & 8) * 0.05; if (i & 1) { p->type = pt_blob; p->color = 66 + rand () % 6; for (j = 0; j < 3; j++) { p->org[j] = org[j] + ((rand () % 32) - 16); p->vel[j] = (rand () % 512) - 256; } } else { p->type = pt_blob2; p->color = 150 + rand () % 6; for (j = 0; j < 3; j++) { p->org[j] = org[j] + ((rand () % 32) - 16); p->vel[j] = (rand () % 512) - 256; } } } } /* =============== R_RunParticleEffect =============== */ void R_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count) { int i, j; particle_t *p; for (i = 0; i < count; i++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; if (count == 1024) { // rocket explosion p->die = cl.time + 5; p->color = ramp1[0]; p->ramp = rand () & 3; if (i & 1) { p->type = pt_explode; for (j = 0; j < 3; j++) { p->org[j] = org[j] + ((rand () % 32) - 16); p->vel[j] = (rand () % 512) - 256; } } else { p->type = pt_explode2; for (j = 0; j < 3; j++) { p->org[j] = org[j] + ((rand () % 32) - 16); p->vel[j] = (rand () % 512) - 256; } } } else { p->die = cl.time + 0.1 * (rand () % 5); p->color = (color & ~7) + (rand () & 7); p->type = pt_slowgrav; for (j = 0; j < 3; j++) { p->org[j] = org[j] + ((rand () & 15) - 8); p->vel[j] = dir[j] * 15; // + (rand()%300)-150; } } } } /* =============== R_LavaSplash =============== */ void R_LavaSplash (vec3_t org) { int i, j, k; particle_t *p; float vel; vec3_t dir; for (i = -16; i < 16; i++) for (j = -16; j < 16; j++) for (k = 0; k < 1; k++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 2 + (rand () & 31) * 0.02; p->color = 224 + (rand () & 7); p->type = pt_slowgrav; dir[0] = j * 8 + (rand () & 7); dir[1] = i * 8 + (rand () & 7); dir[2] = 256; p->org[0] = org[0] + dir[0]; p->org[1] = org[1] + dir[1]; p->org[2] = org[2] + (rand () & 63); VectorNormalize (dir); vel = 50 + (rand () & 63); VectorScale (dir, vel, p->vel); } } /* =============== R_TeleportSplash =============== */ void R_TeleportSplash (vec3_t org) { int i, j, k; particle_t *p; float vel; vec3_t dir; for (i = -16; i < 16; i += 4) for (j = -16; j < 16; j += 4) for (k = -24; k < 32; k += 4) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 0.2 + (rand () & 7) * 0.02; p->color = 7 + (rand () & 7); p->type = pt_slowgrav; dir[0] = j * 8; dir[1] = i * 8; dir[2] = k * 8; p->org[0] = org[0] + i + (rand () & 3); p->org[1] = org[1] + j + (rand () & 3); p->org[2] = org[2] + k + (rand () & 3); VectorNormalize (dir); vel = 50 + (rand () & 63); VectorScale (dir, vel, p->vel); } } void R_RocketTrail (vec3_t start, vec3_t end, int type, entity_t *ent) { vec3_t vec; float len; int j; particle_t *p; int dec; static int tracercount; if (type == 0) R_AddFire (start, end, ent); if (!gl_particles->int_val) return; VectorSubtract (end, start, vec); len = VectorNormalize (vec); if (type < 128) dec = 3; else { dec = 1; type -= 128; } while (len > 0) { len -= dec; if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; VectorCopy (vec3_origin, p->vel); p->die = cl.time + 2; switch (type) { case 0: // rocket trail p->ramp = (rand () & 3); p->color = ramp3[(int) p->ramp]; p->type = pt_fire; for (j = 0; j < 3; j++) p->org[j] = start[j] + ((rand () % 6) - 3); break; case 1: // smoke smoke p->ramp = (rand () & 3) + 2; p->color = ramp3[(int) p->ramp]; p->type = pt_fire; for (j = 0; j < 3; j++) p->org[j] = start[j] + ((rand () % 6) - 3); break; case 2: // blood p->type = pt_grav; p->color = 67 + (rand () & 3); for (j = 0; j < 3; j++) p->org[j] = start[j] + ((rand () % 6) - 3); break; case 3: case 5: // tracer p->die = cl.time + 0.5; p->type = pt_static; if (type == 3) p->color = 52 + ((tracercount & 4) << 1); else p->color = 230 + ((tracercount & 4) << 1); tracercount++; VectorCopy (start, p->org); if (tracercount & 1) { p->vel[0] = 30 * vec[1]; p->vel[1] = 30 * -vec[0]; } else { p->vel[0] = 30 * -vec[1]; p->vel[1] = 30 * vec[0]; } break; case 4: // slight blood p->type = pt_grav; p->color = 67 + (rand () & 3); for (j = 0; j < 3; j++) p->org[j] = start[j] + ((rand () % 6) - 3); len -= 3; break; case 6: // voor trail p->color = 9 * 16 + 8 + (rand () & 3); p->type = pt_static; p->die = cl.time + 0.3; for (j = 0; j < 3; j++) p->org[j] = start[j] + ((rand () & 15) - 8); break; } VectorAdd (start, vec, start); } }