/* sw32_rpart.c 24 bit color software renderer particle effects. Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #define NH_DEFINE #include "namehack.h" #include #ifdef HAVE_STRING_H # include #endif #ifdef HAVE_STRINGS_H # include #endif #include "QF/cvar.h" #include "QF/qargs.h" #include "QF/quakefs.h" #include "QF/render.h" #include "QF/sys.h" #include "QF/va.h" #include "compat.h" #include "r_internal.h" static int ramp1[8] = { 0x6f, 0x6d, 0x6b, 0x69, 0x67, 0x65, 0x63, 0x61 }; //static int ramp2[8] = { 0x6f, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x68, 0x66 }; static int ramp3[8] = { 0x6d, 0x6b, 6, 5, 4, 3 }; void sw32_R_InitParticles (void) { } void sw32_R_ClearParticles (void) { unsigned int i; free_particles = &particles[0]; active_particles = NULL; for (i = 0; i < r_maxparticles; i++) particles[i].next = &particles[i + 1]; if (r_maxparticles) particles[r_maxparticles - 1].next = NULL; } void sw32_R_ReadPointFile_f (void) { QFile *f; vec3_t org; int r; int c; particle_t *p; const char *name; char *mapname; mapname = strdup (r_worldentity.model->name); if (!mapname) Sys_Error ("Can't duplicate mapname!"); QFS_StripExtension (mapname, mapname); name = va ("maps/%s.pts", mapname); free (mapname); QFS_FOpenFile (name, &f); if (!f) { Sys_Printf ("couldn't open %s\n", name); return; } Sys_Printf ("Reading %s...\n", name); c = 0; for (;;) { char buf[64]; Qgets (f, buf, sizeof (buf)); r = sscanf (buf, "%f %f %f\n", &org[0], &org[1], &org[2]); if (r != 3) break; c++; if (!free_particles) { Sys_Printf ("Not enough free particles\n"); break; } p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = 99999; p->color = (-c) & 15; p->type = pt_static; p->phys = R_ParticlePhysics (p->type); VectorZero (p->vel); VectorCopy (org, p->org); } Qclose (f); Sys_Printf ("%i points read\n", c); } static void R_ParticleExplosion_QF (const vec3_t org) { int i, j; particle_t *p; if (!r_particles->int_val) return; for (i = 0; i < 1024; i++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = vr_data.realtime + 5; p->color = ramp1[0]; p->ramp = rand () & 3; if (i & 1) { p->type = pt_explode; for (j = 0; j < 3; j++) { p->org[j] = org[j] + ((rand () % 32) - 16); p->vel[j] = (rand () % 512) - 256; } } else { p->type = pt_explode2; for (j = 0; j < 3; j++) { p->org[j] = org[j] + ((rand () % 32) - 16); p->vel[j] = (rand () % 512) - 256; } } p->phys = R_ParticlePhysics (p->type); } } static void R_ParticleExplosion2_QF (const vec3_t org, int colorStart, int colorLength) { int i, j; particle_t *p; int colorMod = 0; for (i=0; i<512; i++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = vr_data.realtime + 0.3; p->color = colorStart + (colorMod % colorLength); colorMod++; p->type = pt_blob; p->phys = R_ParticlePhysics (p->type); for (j=0 ; j<3 ; j++) { p->org[j] = org[j] + ((rand()%32)-16); p->vel[j] = (rand()%512)-256; } } } static void R_BlobExplosion_QF (const vec3_t org) { int i, j; particle_t *p; if (!r_particles->int_val) return; for (i = 0; i < 1024; i++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = vr_data.realtime + 1 + (rand () & 8) * 0.05; if (i & 1) { p->type = pt_blob; p->color = 66 + rand () % 6; for (j = 0; j < 3; j++) { p->org[j] = org[j] + ((rand () % 32) - 16); p->vel[j] = (rand () % 512) - 256; } } else { p->type = pt_blob2; p->color = 150 + rand () % 6; for (j = 0; j < 3; j++) { p->org[j] = org[j] + ((rand () % 32) - 16); p->vel[j] = (rand () % 512) - 256; } } p->phys = R_ParticlePhysics (p->type); } } static void R_LavaSplash_QF (const vec3_t org) { int i, j, k; particle_t *p; float vel; vec3_t dir; if (!r_particles->int_val) return; for (i = -16; i < 16; i++) for (j = -16; j < 16; j++) for (k = 0; k < 1; k++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = vr_data.realtime + 2 + (rand () & 31) * 0.02; p->color = 224 + (rand () & 7); p->type = pt_grav; p->phys = R_ParticlePhysics (p->type); dir[0] = j * 8 + (rand () & 7); dir[1] = i * 8 + (rand () & 7); dir[2] = 256; p->org[0] = org[0] + dir[0]; p->org[1] = org[1] + dir[1]; p->org[2] = org[2] + (rand () & 63); VectorNormalize (dir); vel = 50 + (rand () & 63); VectorScale (dir, vel, p->vel); } } static void R_TeleportSplash_QF (const vec3_t org) { float vel; int i, j, k; particle_t *p; vec3_t dir; if (!r_particles->int_val) return; for (i = -16; i < 16; i += 4) { for (j = -16; j < 16; j += 4) { for (k = -24; k < 32; k += 4) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = vr_data.realtime + 0.2 + (rand () & 7) * 0.02; p->color = 7 + (rand () & 7); p->type = pt_grav; p->phys = R_ParticlePhysics (p->type); dir[0] = j * 8; dir[1] = i * 8; dir[2] = k * 8; p->org[0] = org[0] + i + (rand () & 3); p->org[1] = org[1] + j + (rand () & 3); p->org[2] = org[2] + k + (rand () & 3); VectorNormalize (dir); vel = 50 + (rand () & 63); VectorScale (dir, vel, p->vel); } } } } static void R_DarkFieldParticles_ID (const entity_t *ent) { int i, j, k; unsigned int rnd; float vel; particle_t *p; vec3_t dir, org; org[0] = ent->origin[0]; org[1] = ent->origin[1]; org[2] = ent->origin[2]; for (i = -16; i < 16; i += 8) { for (j = -16; j < 16; j += 8) { for (k = 0; k < 32; k += 8) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; rnd = rand (); p->die = vr_data.realtime + 0.2 + (rnd & 7) * 0.02; p->color = 150 + rand () % 6; p->type = pt_slowgrav; p->phys = R_ParticlePhysics (p->type); dir[0] = j * 8; dir[1] = i * 8; dir[2] = k * 8; p->org[0] = org[0] + i + ((rnd >> 3) & 3); p->org[1] = org[1] + j + ((rnd >> 5) & 3); p->org[2] = org[2] + k + ((rnd >> 7) & 3); VectorNormalize (dir); vel = 50 + ((rnd >> 9) & 63); VectorScale (dir, vel, p->vel); } } } } static vec3_t avelocities[NUMVERTEXNORMALS]; static void R_EntityParticles_ID (const entity_t *ent) { int i; float angle, sp, sy, cp, cy; // cr, sr float beamlength = 16.0, dist = 64.0; particle_t *p; vec3_t forward; if (!avelocities[0][0]) { for (i = 0; i < NUMVERTEXNORMALS * 3; i++) avelocities[0][i] = (rand () & 255) * 0.01; } for (i = 0; i < NUMVERTEXNORMALS; i++) { angle = vr_data.realtime * avelocities[i][0]; cy = cos (angle); sy = sin (angle); angle = vr_data.realtime * avelocities[i][1]; cp = cos (angle); sp = sin (angle); // Next 3 lines results aren't currently used, may be in future. --Despair // angle = vr_data.realtime * avelocities[i][2]; // sr = sin (angle); // cr = cos (angle); forward[0] = cp * cy; forward[1] = cp * sy; forward[2] = -sp; if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = vr_data.realtime + 0.01; p->color = 0x6f; p->type = pt_explode; p->phys = R_ParticlePhysics (p->type); p->org[0] = ent->origin[0] + r_avertexnormals[i][0] * dist + forward[0] * beamlength; p->org[1] = ent->origin[1] + r_avertexnormals[i][1] * dist + forward[1] * beamlength; p->org[2] = ent->origin[2] + r_avertexnormals[i][2] * dist + forward[2] * beamlength; } } static void R_RunParticleEffect_QF (const vec3_t org, const vec3_t dir, int color, int count) { int i, j; particle_t *p; if (!r_particles->int_val) return; for (i = 0; i < count; i++) { if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = vr_data.realtime + 0.1 * (rand () % 5); p->color = (color & ~7) + (rand () & 7); p->type = pt_slowgrav; p->phys = R_ParticlePhysics (p->type); for (j = 0; j < 3; j++) { p->org[j] = org[j] + ((rand () & 15) - 8); p->vel[j] = dir[j]; // + (rand()%300)-150; } } } static void R_SpikeEffect_QF (const vec3_t org) { R_RunParticleEffect_QF (org, vec3_origin, 0, 10); } static void R_SuperSpikeEffect_QF (const vec3_t org) { R_RunParticleEffect_QF (org, vec3_origin, 0, 20); } static void R_KnightSpikeEffect_QF (const vec3_t org) { R_RunParticleEffect_QF (org, vec3_origin, 226, 20); } static void R_WizSpikeEffect_QF (const vec3_t org) { R_RunParticleEffect_QF (org, vec3_origin, 20, 30); } static void R_BloodPuffEffect_QF (const vec3_t org, int count) { R_RunParticleEffect_QF (org, vec3_origin, 73, count); } static void R_GunshotEffect_QF (const vec3_t org, int count) { R_RunParticleEffect_QF (org, vec3_origin, 0, count); } static void R_LightningBloodEffect_QF (const vec3_t org) { R_RunParticleEffect_QF (org, vec3_origin, 225, 50); } static void R_RocketTrail_QF (const entity_t *ent) { float len; int j; particle_t *p; vec3_t old_origin, vec; if (!r_particles->int_val) return; VectorCopy (ent->old_origin, old_origin); VectorSubtract (ent->origin, ent->old_origin, vec); len = VectorNormalize (vec); while (len > 0) { len -= 3; if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; VectorZero (p->vel); p->die = vr_data.realtime + 2; p->ramp = (rand () & 3); p->color = ramp3[(int) p->ramp]; p->type = pt_fire; p->phys = R_ParticlePhysics (p->type); for (j = 0; j < 3; j++) p->org[j] = old_origin[j] + ((rand () % 6) - 3); VectorAdd (old_origin, vec, old_origin); } } static void R_GrenadeTrail_QF (const entity_t *ent) { float len; int j; particle_t *p; vec3_t old_origin, vec; if (!r_particles->int_val) return; VectorCopy (ent->old_origin, old_origin); VectorSubtract (ent->origin, old_origin, vec); len = VectorNormalize (vec); while (len > 0) { len -= 3; if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; VectorZero (p->vel); p->die = vr_data.realtime + 2; p->ramp = (rand () & 3) + 2; p->color = ramp3[(int) p->ramp]; p->type = pt_fire; p->phys = R_ParticlePhysics (p->type); for (j = 0; j < 3; j++) p->org[j] = old_origin[j] + ((rand () % 6) - 3); VectorAdd (old_origin, vec, old_origin); } } static void R_BloodTrail_QF (const entity_t *ent) { float len; int j; particle_t *p; vec3_t old_origin, vec; if (!r_particles->int_val) return; VectorCopy (ent->old_origin, old_origin); VectorSubtract (ent->origin, old_origin, vec); len = VectorNormalize (vec); while (len > 0) { len -= 3; if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; VectorZero (p->vel); p->die = vr_data.realtime + 2; p->type = pt_slowgrav; p->phys = R_ParticlePhysics (p->type); p->color = 67 + (rand () & 3); for (j = 0; j < 3; j++) p->org[j] = old_origin[j] + ((rand () % 6) - 3); break; VectorAdd (old_origin, vec, old_origin); } } static void R_SlightBloodTrail_QF (const entity_t *ent) { float len; int j; particle_t *p; vec3_t old_origin, vec; if (!r_particles->int_val) return; VectorCopy (ent->old_origin, old_origin); VectorSubtract (ent->origin, old_origin, vec); len = VectorNormalize (vec); while (len > 0) { len -= 6; if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; VectorZero (p->vel); p->die = vr_data.realtime + 2; p->type = pt_slowgrav; p->phys = R_ParticlePhysics (p->type); p->color = 67 + (rand () & 3); for (j = 0; j < 3; j++) p->org[j] = old_origin[j] + ((rand () % 6) - 3); VectorAdd (old_origin, vec, old_origin); } } static void R_WizTrail_QF (const entity_t *ent) { float len; particle_t *p; vec3_t old_origin, vec; if (!r_particles->int_val) return; VectorCopy (ent->old_origin, old_origin); VectorSubtract (ent->origin, old_origin, vec); len = VectorNormalize (vec); while (len > 0) { static int tracercount; len -= 3; if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = vr_data.realtime + 0.5; p->type = pt_static; p->phys = R_ParticlePhysics (p->type); p->color = 52 + ((tracercount & 4) << 1); tracercount++; VectorCopy (old_origin, p->org); if (tracercount & 1) { p->vel[0] = 30.0 * vec[1]; p->vel[1] = 30.0 * -vec[0]; } else { p->vel[0] = 30.0 * -vec[1]; p->vel[1] = 30.0 * vec[0]; } p->vel[2] = 0.0; VectorAdd (old_origin, vec, old_origin); } } static void R_FlameTrail_QF (const entity_t *ent) { float len; particle_t *p; vec3_t old_origin, vec; if (!r_particles->int_val) return; VectorCopy (ent->old_origin, old_origin); VectorSubtract (ent->origin, old_origin, vec); len = VectorNormalize (vec); while (len > 0) { static int tracercount; len -= 3; if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = vr_data.realtime + 0.5; p->type = pt_static; p->phys = R_ParticlePhysics (p->type); p->color = 230 + ((tracercount & 4) << 1); tracercount++; VectorCopy (old_origin, p->org); if (tracercount & 1) { p->vel[0] = 30.0 * vec[1]; p->vel[1] = 30.0 * -vec[0]; } else { p->vel[0] = 30.0 * -vec[1]; p->vel[1] = 30.0 * vec[0]; } p->vel[2] = 0.0; VectorAdd (old_origin, vec, old_origin); } } static void R_VoorTrail_QF (const entity_t *ent) { float len; int j; particle_t *p; vec3_t old_origin, vec; if (!r_particles->int_val) return; VectorCopy (ent->old_origin, old_origin); VectorSubtract (ent->origin, old_origin, vec); len = VectorNormalize (vec); while (len > 0) { len -= 3; if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; VectorZero (p->vel); p->die = vr_data.realtime + 0.3; p->type = pt_static; p->phys = R_ParticlePhysics (p->type); p->color = 9 * 16 + 8 + (rand () & 3); for (j = 0; j < 3; j++) p->org[j] = old_origin[j] + ((rand () & 15) - 8); VectorAdd (old_origin, vec, old_origin); } } void sw32_R_DrawParticles (void) { particle_t *p, **particle; VectorScale (vright, sw32_xscaleshrink, r_pright); VectorScale (vup, sw32_yscaleshrink, r_pup); VectorCopy (vpn, r_ppn); for (particle = &active_particles; *particle;) { if ((*particle)->die < vr_data.realtime) { p = (*particle)->next; (*particle)->next = free_particles; free_particles = (*particle); (*particle) = p; } else { p = *particle; particle = &(*particle)->next; sw32_D_DrawParticle (p); p->phys (p); } } } void sw32_r_easter_eggs_f (cvar_t *var) { } void sw32_r_particles_style_f (cvar_t *var) { } static vid_particle_funcs_t particles_QF = { R_RocketTrail_QF, R_GrenadeTrail_QF, R_BloodTrail_QF, R_SlightBloodTrail_QF, R_WizTrail_QF, R_FlameTrail_QF, R_VoorTrail_QF, 0,//R_GlowTrail_QF, R_RunParticleEffect_QF, R_BloodPuffEffect_QF, R_GunshotEffect_QF, R_LightningBloodEffect_QF, R_SpikeEffect_QF, R_KnightSpikeEffect_QF, R_SuperSpikeEffect_QF, R_WizSpikeEffect_QF, R_BlobExplosion_QF, R_ParticleExplosion_QF, R_ParticleExplosion2_QF, R_LavaSplash_QF, R_TeleportSplash_QF, R_DarkFieldParticles_ID, R_EntityParticles_ID, R_Particle_New, R_Particle_NewRandom, }; static void R_ParticleFunctionInit (void) { sw32_vid_render_funcs.particles = &particles_QF; } static void r_particles_nearclip_f (cvar_t *var) { Cvar_SetValue (r_particles_nearclip, bound (r_nearclip->value, var->value, r_farclip->value)); } static void r_particles_f (cvar_t *var) { R_MaxParticlesCheck (var, r_particles_max); } static void r_particles_max_f (cvar_t *var) { R_MaxParticlesCheck (r_particles, var); } void sw32_R_Particles_Init_Cvars (void) { easter_eggs = Cvar_Get ("easter_eggs", "0", CVAR_NONE, r_easter_eggs_f, "Enables easter eggs."); r_particles = Cvar_Get ("r_particles", "1", CVAR_ARCHIVE, r_particles_f, "Toggles drawing of particles."); r_particles_max = Cvar_Get ("r_particles_max", "2048", CVAR_ARCHIVE, r_particles_max_f, "Maximum amount of " "particles to display. No maximum, minimum " "is 0."); r_particles_nearclip = Cvar_Get ("r_particles_nearclip", "32", CVAR_ARCHIVE, r_particles_nearclip_f, "Distance of the particle near clipping " "plane from the player."); r_particles_style = Cvar_Get ("r_particles_style", "1", CVAR_ARCHIVE, r_particles_style_f, "Sets particle style. " "0 for Id, 1 for QF."); R_ParticleFunctionInit (); } void sw32_R_Particle_New (ptype_t type, int texnum, const vec3_t org, float scale, const vec3_t vel, float die, int color, float alpha, float ramp) { particle_t *p; if (!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; VectorCopy (org, p->org); p->color = color; p->tex = texnum; p->scale = scale; p->alpha = alpha; VectorCopy (vel, p->vel); p->type = type; p->phys = R_ParticlePhysics (p->type); p->die = die; p->ramp = ramp; } void sw32_R_Particle_NewRandom (ptype_t type, int texnum, const vec3_t org, int org_fuzz, float scale, int vel_fuzz, float die, int color, float alpha, float ramp) { float o_fuzz = org_fuzz, v_fuzz = vel_fuzz; int rnd; vec3_t porg, pvel; rnd = rand (); porg[0] = o_fuzz * ((rnd & 63) - 31.5) / 63.0 + org[0]; porg[1] = o_fuzz * (((rnd >> 5) & 63) - 31.5) / 63.0 + org[1]; porg[2] = o_fuzz * (((rnd >> 9) & 63) - 31.5) / 63.0 + org[2]; rnd = rand (); pvel[0] = v_fuzz * ((rnd & 63) - 31.5) / 63.0; pvel[1] = v_fuzz * (((rnd >> 5) & 63) - 31.5) / 63.0; pvel[2] = v_fuzz * (((rnd >> 9) & 63) - 31.5) / 63.0; sw32_R_Particle_New (type, texnum, porg, scale, pvel, die, color, alpha, ramp); }