/* symtab.h Symbol table management Copyright (C) 2011 Bill Currie Author: Bill Currie Date: 2011/01/04 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA $Id$ */ #ifndef __symtab_h #define __symtab_h #include "expr.h" struct defspace_s; enum storage_class_e; /** \defgroup qfcc_symtab Symbol Table Management \ingroup qfcc */ //@{ typedef enum { vis_public, vis_protected, vis_private, } vis_e; typedef enum { sy_var, ///< symbol refers to a variable sy_const, ///< symbol refers to a constant sy_type, ///< symbol refers to a type sy_expr, ///< symbol refers to an expression sy_func, ///< symbol refers to a function sy_class, ///< symbol refers to a class } sy_type_e; typedef struct symbol_s { struct symbol_s *next; ///< chain of symbols in symbol table struct symtab_s *table; ///< symbol table that owns this symbol vis_e visibility; ///< symbol visiblity. defaults to public const char *name; ///< symbol name sy_type_e sy_type; ///< symbol type (st_type) struct type_s *type; ///< type of object to which symbol refers struct param_s *params; ///< the parameters if a function union { int offset; ///< st_var (in a struct/union) struct def_s *def; ///< st_var struct ex_value_s value; ///< st_const struct expr_s *expr; ///< st_expr struct function_s *func; ///< st_func } s; } symbol_t; typedef enum { stab_global, ///< global (many symbols) stab_local, ///< local (few symbols: func) stab_struct, stab_union, stab_enum, } stab_type_e; typedef struct symtab_s { struct symtab_s *parent; ///< points to parent table struct symtab_s *next; ///< next in global collection of symtabs stab_type_e type; ///< type of symbol table int size; ///< size of structure represented by symtab struct hashtab_s *tab; ///< symbols defined in this table symbol_t *symbols; ///< chain of symbols in this table symbol_t **symtail; ///< keep chain in declaration order struct defspace_s *space; ///< storage for vars in scope symtabs } symtab_t; /** Create a new, empty named symbol. Only the symbol name field will be filled in. \a name will be copied using save_string(). \param name The name of the symbol. \return The new symbol. */ symbol_t *new_symbol (const char *name); /** Create a new, typed, named symbol. Only the symbol name and type fields will be filled in. \a name will be copied using save_string(). \param name The name of the symbol. \param type The type of the symbol. \return The new symbol. */ symbol_t *new_symbol_type (const char *name, struct type_s *type); /** Create a new, empty symbol table. The symbol tables support scoping via their \c parent pointer. This supports both code block scoping and ivar inheritance. \param parent Pointer to parent scope symbol table. \param type The type of symbol table. Currently governs expected size. \return The new, empty symbol table. */ symtab_t *new_symtab (symtab_t *parent, stab_type_e type); /** Lookup a name in the symbol table. The entire symbol table chain (symtab_t::parent) starting at symtab will be checked for \a name. \param symtab The symbol table to search for \a name. If \a name is not in the symbol table, the tables's parent, if it exists, will be checked, and then its parent, until the end of the chain. \param name The name to look up in the symbol table chain. */ symbol_t *symtab_lookup (symtab_t *symtab, const char *name); /** Add a symbol to the symbol table. If there is already a symbol with the same name in the symbol table, the symbol will not be added to the table, and the symbol that was found in the table witll be returned. \param symtab The symol table to which the symbol will be added. \param symbol The symbol to be added to the symbol table. \return The symbol as in the table, either \a symbol if no symbol with the same name is already in the symbol table, or the symbol that was found in the table. */ symbol_t *symtab_addsymbol (symtab_t *symtab, symbol_t *symbol); /** Remove a symbol from the symbol table. \param symtab The symol table from which the symbol will be removed. \param symbol The symbol to be removed from the symbol table. \return The symbol as was in the table, or NULL if not found. */ symbol_t *symtab_removesymbol (symtab_t *symtab, symbol_t *symbol); /** Make a copy of a symbol. The new symbol will not be associated with any table. \param symbol The symbol to be copied. \return The new symbol. */ symbol_t *copy_symbol (symbol_t *symbol); /** Create a new single symbol table from the given symbol table chain. Create a new symbol table and add all of the symbols from the given symbol table chain to the new symbol table. However, in order to preserve scoping rules, duplicate names in ancestor tables will not be added to the new table. The new symbol table will be "local". The intended use is for creating the ivar scope for methods. \param symtab The symbol table chain to be copied. \param parent The parent symbol table of the new symbol table, or null. \return The new symbol table. \dot digraph symtab_flat_copy { layout=dot; rankdir=LR; compound=true; nodesep=1.0; subgraph clusterI { node [shape=record]; root [label="

parent|integer\ x;|integer\ y;|float\ z;"]; base [label="

parent|float\ w;|float\ x;"]; cur [label="

parent|float\ y;"]; symtab [shape=ellipse]; cur:p -> base; base:p -> root; } subgraph clusterO { node [shape=record]; out [label="

parent|float\ z;|float\ w;|float\ x;|float\ y;"]; return [shape=ellipse]; parent [shape=ellipse]; } symtab -> cur; cur -> out [ltail=clusterI,lhead=clusterO]; out:p -> parent; return -> out; } \enddot */ symtab_t *symtab_flat_copy (symtab_t *symtab, symtab_t *parent); /** Create a global symbol and allocate space for a variable. If the symbol already exists, it must be of the correct type. If it is external, it will be converted to the given storage class and allocatged space from the given defspace, otherwise it will be returned. If the symbol is new, it will be allocated space from the given defspace with the given storage class. \param name The name of the symbol. \param type The type of the symbol. \param space The defspace from which space will be allocated for the symbol. Ignored for st_extern, must not be null for others. \param storage The storage class for the symbol. Only st_extern, st_global, and st_static are valid. */ symbol_t *make_symbol (const char *name, struct type_s *type, struct defspace_s *space, enum storage_class_e storage); //@} #endif//__symtab_h