/* image.c Vulkan image functions Copyright (C) 2020 Bill Currie This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to: Free Software Foundation, Inc. 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include "QF/mathlib.h" #include "QF/Vulkan/barrier.h" #include "QF/Vulkan/device.h" #include "QF/Vulkan/image.h" #include "QF/Vulkan/instance.h" VkImage QFV_CreateImage (qfv_device_t *device, int cubemap, VkImageType type, VkFormat format, VkExtent3D size, uint32_t num_mipmaps, uint32_t num_layers, VkSampleCountFlags samples, VkImageUsageFlags usage_scenarios) { VkDevice dev = device->dev; qfv_devfuncs_t *dfunc = device->funcs; VkImageCreateInfo createInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, 0, cubemap ? VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT : 0, type, format, size, num_mipmaps, cubemap ? 6 * num_layers : num_layers, samples, VK_IMAGE_TILING_OPTIMAL, usage_scenarios, VK_SHARING_MODE_EXCLUSIVE, 0, 0, VK_IMAGE_LAYOUT_UNDEFINED, }; VkImage image; dfunc->vkCreateImage (dev, &createInfo, 0, &image); return image; } VkDeviceMemory QFV_AllocImageMemory (qfv_device_t *device, VkImage image, VkMemoryPropertyFlags properties, VkDeviceSize size, VkDeviceSize offset) { VkDevice dev = device->dev; qfv_physdev_t *physdev = device->physDev; VkPhysicalDeviceMemoryProperties *memprops = &physdev->memory_properties; qfv_devfuncs_t *dfunc = device->funcs; VkMemoryRequirements requirements; dfunc->vkGetImageMemoryRequirements (dev, image, &requirements); size = max (size, offset + requirements.size); VkDeviceMemory object = 0; for (uint32_t type = 0; type < memprops->memoryTypeCount; type++) { if ((requirements.memoryTypeBits & (1 << type)) && ((memprops->memoryTypes[type].propertyFlags & properties) == properties)) { VkMemoryAllocateInfo allocate_info = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, 0, size, type }; VkResult res = dfunc->vkAllocateMemory (dev, &allocate_info, 0, &object); if (res == VK_SUCCESS) { break; } } } return object; } int QFV_BindImageMemory (qfv_device_t *device, VkImage image, VkDeviceMemory object, VkDeviceSize offset) { VkDevice dev = device->dev; qfv_devfuncs_t *dfunc = device->funcs; VkResult res = dfunc->vkBindImageMemory (dev, image, object, offset); return res == VK_SUCCESS; } qfv_imagebarrierset_t * QFV_CreateImageTransitionSet (qfv_imagetransition_t *transitions, int numTransitions) { qfv_imagebarrierset_t *barrierset; barrierset = DARRAY_ALLOCFIXED (*barrierset, numTransitions, malloc); for (int i = 0; i < numTransitions; i++) { barrierset->a[i].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; barrierset->a[i].pNext = 0; barrierset->a[i].srcAccessMask = transitions[i].srcAccess; barrierset->a[i].dstAccessMask = transitions[i].dstAccess; barrierset->a[i].oldLayout = transitions[i].oldLayout; barrierset->a[i].newLayout = transitions[i].newLayout; barrierset->a[i].srcQueueFamilyIndex = transitions[i].srcQueueFamily; barrierset->a[i].dstQueueFamilyIndex = transitions[i].dstQueueFamily; barrierset->a[i].image = transitions[i].image; barrierset->a[i].subresourceRange.aspectMask = transitions[i].aspect; barrierset->a[i].subresourceRange.baseMipLevel = 0; barrierset->a[i].subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS; barrierset->a[i].subresourceRange.baseArrayLayer = 0; barrierset->a[i].subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS; } return barrierset; } VkImageView QFV_CreateImageView (qfv_device_t *device, VkImage image, VkImageViewType type, VkFormat format, VkImageAspectFlags aspect) { VkDevice dev = device->dev; qfv_devfuncs_t *dfunc = device->funcs; VkImageViewCreateInfo createInfo = { VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, 0, 0, image, type, format, { VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, }, { aspect, 0, VK_REMAINING_MIP_LEVELS, 0, VK_REMAINING_ARRAY_LAYERS, } }; VkImageView view; dfunc->vkCreateImageView (dev, &createInfo, 0, &view); return view; } size_t QFV_GetImageSize (qfv_device_t *device, VkImage image) { qfv_devfuncs_t *dfunc = device->funcs; size_t size; size_t align; VkMemoryRequirements requirements; dfunc->vkGetImageMemoryRequirements (device->dev, image, &requirements); size = requirements.size; align = requirements.alignment - 1; size = (size + align) & ~(align); return size; } void QFV_GenerateMipMaps (qfv_device_t *device, VkCommandBuffer cmd, VkImage image, unsigned mips, unsigned width, unsigned height, unsigned layers) { qfv_devfuncs_t *dfunc = device->funcs; qfv_imagebarrier_t pre=imageBarriers[qfv_LT_TransferDst_to_TransferSrc]; qfv_imagebarrier_t pst=imageBarriers[qfv_LT_TransferSrc_to_ShaderReadOnly]; qfv_imagebarrier_t fnl=imageBarriers[qfv_LT_TransferDst_to_ShaderReadOnly]; pre.barrier.image = image; pre.barrier.subresourceRange.layerCount = layers; pst.barrier.image = image; pst.barrier.subresourceRange.layerCount = layers; fnl.barrier.image = image; fnl.barrier.subresourceRange.layerCount = layers; VkImageBlit blit = { {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, layers}, {{0, 0, 0}, {width, height, 1}}, {VK_IMAGE_ASPECT_COLOR_BIT, 1, 0, layers}, {{0, 0, 0}, {max (width >> 1, 1), max (height >> 1, 1), 1}}, }; while (--mips > 0) { dfunc->vkCmdPipelineBarrier (cmd, pre.srcStages, pre.dstStages, 0, 0, 0, 0, 0, 1, &pre.barrier); dfunc->vkCmdBlitImage (cmd, image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blit, VK_FILTER_LINEAR); dfunc->vkCmdPipelineBarrier (cmd, pst.srcStages, pst.dstStages, 0, 0, 0, 0, 0, 1, &pst.barrier); blit.srcSubresource.mipLevel++; blit.srcOffsets[1].x = blit.dstOffsets[1].x; blit.srcOffsets[1].y = blit.dstOffsets[1].y; blit.dstSubresource.mipLevel++; blit.dstOffsets[1].x = max (blit.dstOffsets[1].x >> 1, 1); blit.dstOffsets[1].y = max (blit.dstOffsets[1].y >> 1, 1); pre.barrier.subresourceRange.baseMipLevel++; pst.barrier.subresourceRange.baseMipLevel++; fnl.barrier.subresourceRange.baseMipLevel++; } dfunc->vkCmdPipelineBarrier (cmd, fnl.srcStages, fnl.dstStages, 0, 0, 0, 0, 0, 1, &fnl.barrier); } static int ilog2 (unsigned x) { unsigned o = x; if (x > 0x7fffffff) { // avoid overflow return 31; } x--; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; x++; int y = 0; y |= ((x & 0xffff0000) != 0) << 4; y |= ((x & 0xff00ff00) != 0) << 3; y |= ((x & 0xf0f0f0f0) != 0) << 2; y |= ((x & 0xcccccccc) != 0) << 1; y |= ((x & 0xaaaaaaaa) != 0) << 0; return y - ((o & (x - 1)) != 0); } int QFV_MipLevels (int width, int height) { return ilog2 (max (width, height)) + 1; } VkFormat QFV_ImageFormat (QFFormat format, int srgb) { switch (format) { case tex_palette: return VK_FORMAT_R8_UINT; case tex_l: case tex_a: return srgb ? VK_FORMAT_R8_SRGB : VK_FORMAT_R8_UNORM; case tex_la: return srgb ? VK_FORMAT_R8G8_SRGB : VK_FORMAT_R8G8_UNORM; case tex_rgb: return srgb ? VK_FORMAT_R8G8B8_SRGB : VK_FORMAT_R8G8B8_UNORM; case tex_rgba: return srgb ? VK_FORMAT_R8G8B8A8_SRGB : VK_FORMAT_R8G8B8A8_UNORM; case tex_frgba: return VK_FORMAT_R32G32B32A32_SFLOAT; } return VK_FORMAT_R8_SRGB; }